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ABSTRACT

The majority of musical feature extraction applications are based
on the Fourier transform in various disguises. This is despite the
fact that this transform is subject to a series of restrictions, which
admittedly ease the computation and interpretation of transform
coefficients, but also imposes arguably unnecessary limitations on
the ability of the transform to extract and identify features. How-
ever, replacing the nicely structured dictionary of the Fourier trans-
form (or indeed other nice transform such as the wavelet trans-
form) with a home-made dictionary is a dangerous task, sinceeven
the most basic properties are easily lost.

1. INTRODUCTION

The extraction of features from music signal, and indeed many
types of signals, often starts with a transformation of the signal.
The purpose is to rearrange the energy in the signal such thatvar-
ious features of interest is concentrated in few samples. A large
class of transforms of particular interest in feature extraction is the
the linear transforms, because they can be interpreted as a corre-
lation between a signal and a dictionary of atoms. The choiceof
dictionary is usually guided by some knowledge of the signals to
be transformed and by the properties associated with each dictio-
nary. The shape and structure of the atoms in the dictionary deter-
mine which shapes and structures in the signal the transformwill
‘look for’, i.e. which features can be extracted by choosingonly
a few samples in the transformed signal, and the interpretation of
the atoms is therefore crucial in understanding how the transform
responds to various properties of the signal.

The by far most widely used linear transform for feature ex-
traction in music is the Fourier transform. Although there are a
number of good reasons for using this particular transform (in par-
ticular the conception of music as a linear combination of individ-
ual frequencies is a good reason) there are a number of indications
that the Fourier transform (and indeed also the more recent wavelet
transform) is inadequate for extracting high level and detailed in-
formation from music.

Firstly, in the majority of the more advanced Fourier trans-
form based feature extraction applications reported in theliterature
(such as classification of notes and harmonics [1, 2], identifica-
tion of genre [3, 4] and instruments [5, 6], automated transcription
[7, 8], beat and rhythm detection [9, 10], to mention just a few)
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the success rate is lower than any slightly trained listeneris ca-
pable of. Secondly, the trigonometric dictionary corresponding to
the Fourier transform fulfills a set of rather restrictive and in the
context of musical analysis arguably unnecessary conditions that
introduces a series of limitations in the use of Fourier coefficients
for feature extraction (see for instance [11]).

Relaxing just some of the conditions introduces a significant
freedom in the design of the dictionary, a freedom which can be
used to tailor a dictionary to a certain signal type, such as music.
However, even slightly loosened conditions come at a surprisingly
high cost in the form of more complicated interpretations, con-
fusion in coefficient order, numerical instability, and loss of fast
implementations. Indeed, the mathematical as well as practical
challenges in applying home-made dictionaries is far from trivial.

2. FREEDOM AND LIMITATIONS

In theory one has absolute freedom when choosing atoms for the
dictionary. This is a quite appealing fact in the sense that it pro-
vides the freedom to design atoms which resembles features of in-
terest, which is known to appear in the signal. The corresponding
sample in the transformed signal is then an indication of to what
extent that particular feature is present in the signal. Nonetheless
virtually no-one exploits this freedom, but rather stick totrans-
forms where the atoms are generated by some method independent
of the signals to be transformed. In many cases the dictionary is an
orthogonal (or orthogonal-like) set, and in some cases the atoms
are merely dilated and translated versions of one another.

The major reasons for choosing a priori given and rather re-
stricted transforms in favor of the freedom to design signal-specific
dictionaries is that some transforms have a set of properties which
anyone would be very reluctant to abandon. A list of these prop-
erties is given below. All of the well-known transforms (Fourier,
wavelet, Gabor, etc.) posses most (often all) of these properties. A
home-made ‘arbitrary’ dictionary does not necessarily posses any
of these properties!

Orthogonality In an orthogonal dictionary all atoms are indepen-
dent in the sense that changing one coefficient in the trans-
formed signal is equivalent to altering the original signal
(by addition) with exactly the corresponding atom. This
makes the calculations and interpretation of transformed
signal easy, and allows for a simple reconstruction based
on the same dictionary.

Uniqueness When their is a one-to-one correspondence between
the original and the transformed signal (this implies that



the dictionary is a basis) the transformed signal is unique.
Thus, the original signal is represented by only one particu-
lar set of coefficients. If the dictionary contains more atoms
than necessary for representing any signal the dictionary is
redundant.

Mother atom A dictionary can be generated by simple alterations,
like translation, scaling, and dilation, of a single atom. In
that case the interpretation of every atom is closely related
to the interpretation of the mother atom, and thus, the whole
dictionary has in some sense a uniform interpretation.

Greedy When the bestm-term approximation of a signal is given
by them largest transform coefficients the dictionary is call-
ed greedy (see [15, 16] for a precise definition). Thus, in
a greedy dictionary the most dominating features always
correspond to the largest coefficients.

Note that an orthogonal transform requires the signal as well as
the atoms to exist in a Hilbert space, while greediness is defined in
a Banach space. Note also that orthogonality implies uniqueness
and greediness.

It is important to realize that the main reasons for stickingto
transforms with these properties is algorithmic and computational
as well as a fairly simple interpretation of transform coefficients.
When it comes to targeting specific, significant features in the sig-
nals one can only hope (or have a qualified believe) that an a priori
given set of atoms will perform reasonably well.

For instance, a wavelet basis is (inL2 norm) an orthogonal
dictionary based on a mother atom (it also possesses the other
properties). As a consequence the computation of transformco-
efficients is easy, and the interpretation of the transform result is
straight forward. However, orthogonality combined with a mother
atom introduces significant restrictions to the freedom of choosing
atoms for the dictionary. Once we choose the first atom, we auto-
matically exclude a rather large set of other atoms. We can only
hope that none of these other atoms resemble important features in
the signal.

The obvious question at this point is why the vast majority of
feature extraction results are based on these transforms instead of
transforms tailored to particular purposes. The short answer is that
it is very difficult (if not impossible) to design a fast transform ac-
cording to some arbitrary dictionary, and the interpretation of the
coefficients is by no means straight forward. When each single
coefficient is potentially affect by all features (non-orthogonality)
and more than one coefficient corresponds to each feature (non-
uniqueness) and each atom is constructed according to it’s own
rule (no mother atom) and the most dominating features are not
necessarily represented by the largest coefficients (not greedy dic-
tionary), it does become difficult to extract as well as exploit the
transform coefficients.

3. REDUNDANT DICTIONARIES

In feature extraction applications the most common reason for aban-
doning orthogonality is the need or desire for a redundant dictio-
nary. It may be that in order to target all variations of all interesting
features it is essential to introduce more atoms than is strictly nec-
essary for representing the signal in the transform domain.Or one
might be interested in having multiple ways of representingthe
same signal and therefore purposely introduce more atoms (as is
the case with the Gabor dictionary). In most cases a redundant dic-
tionary is needed for targeting all features, often simply due to the

fact that most features are localized in time, and thus time trans-
lations of the same atom is needed to find all such features (this
argument applies in other domains, such as frequency, as well).
A redundant dictionary composed of individual, ’arbitrary’ atoms
will suffer from the loss of the above mentioned properties and
one might therefore be interested in finding some way of structur-
ing the redundancy.

Suppose that a group of signals seems to contains two dis-
tinct sets of features where one set would be well represented in
a frequency-localized dictionary and the other set would bewell
represented in a time-localized dictionary. An easy way of impos-
ing some structure while adhering to the apparent features in the
signal is to let the dictionary be the union of two (or more) orthog-
onal dictionaries. While this approach does not a priori guarantee
any of the above properties it does become much easier to make
statements about the transform coefficients.

One major problem that arises with redundant dictionaries is
finding the optimal set of atoms for representing a given signal (as
representations are no longer unique). It turns out that this prob-
lem is NP-hard, and consequently one has to settle for a suboptimal
representation in any practical applications. In the case of merged
dictionaries a number of methods has been suggested for approxi-
mating relatively fast the optimal representation. The basis pursuit
[17] uses convex optimization for finding a suboptimal represen-
tation. The algorithmic complexity is equal to Fourier and wavelet
analysis, i.e.O(N log N). Another related method is the matching
pursuit approach [18, 19] which employs a greedy algorithm that
iteratively selects atoms to obtain a suboptimal representation. A
variation on this theme is local discriminant bases, see [20].

The Gabor transform is also (usually) a redundant representa-
tion, and is one of the more serious, organized attempts to relax
(although from a radical stand-point only slightly) the restrictive
conditions imposed on the dictionary. For Gabor transform ap-
plied to music signal see [12, 13, 14].

4. EXISTING HOME-MADE DICTIONARIES

Despite the many challenges there do exist quite a few results on
applications of home-made dictionaries ranging from slight relax-
ations of one or two of the above mentioned properties to com-
plete abandonment of most of the properties, with a tendencyto
the former rather than the latter! The general impression ofthese
results is that virtually any small step towards an ‘arbitrary’ home-
made dictionary is accompanied by a major increase in interpreta-
tional complexity and post-transform processing, and, thus, com-
putational load. This is exemplified by the fact that while the best
representation in a orthogonal dictionary is readily available from
the coefficients, it is an NP-hard problem to obtain the optimal
representation in a union of two orthogonal dictionaries.

Existing results are also characterized by the lack of a unified
theory for arbitrary or slightly structured dictionaries (as such a
theory is still in its infancy) and as a consequence there is alarge
variety in the methods and terminology applied in differentpub-
lications. A few examples of home-made-dictionary applications
are: Merging of different well-structured bases with basispursuit
and matching pursuit (see above), adaption of an existing orthog-
onal construction to a particular signal [21], using a very large set
of features for generating a dictionary (sparse component analysis)
[22]. There also exist several musical applications, for instance
chirp atoms [23], matching pursuit [24], and tone model design of
atoms [25].
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Fig. 1. The three graphs show: a) Waveform of sampled trumpet
fanfare with markings of which of three notes is played. b) Time-
frequency distribution of energy (log scale) by means of smoothed
pseudo Wigner-Ville distribution. c) Output of transform based on
hand-made dictionary.

5. TRUMPET SOUND AS AN EXAMPLE

To illustrate the points made in the first part of this paper wehere
present a simple home-made dictionary. The signal to be ana-
lyzed is a part of a trumpet fanfare played by a single trumpet,
and consists of three different tones played in rapid succession.
The waveform of the sampled (11025 Hz) signal is shown in Fig-
ure 1a along with markings of the which note is played. The
time-frequency distribution of the energy is shown by meansof
a smoothed Vigner-Wille distribution (a refinement of the Fourier
spectrogram, see Cohen [26]) in Figure 1b.

In this example the aim is to identify which of the notes is
being played at what point in time, and obviously to do this by
means of a hand-made dictionary. As argued above there are a

number of consideration worth doing in terms of computational
efficiency, but this example serves an illustrative purposeonly and
thus a brute force approach suffice.

The sole purpose of the dictionary is to identify features cor-
responding to three different notes, and several methods can be
applied for designing the atoms. The most obvious methods is
taking those particular parts of the signal waveform that holds the
features of interest, i.e. let each of the atoms be a replica of wave-
form features. While this method seems appealing it often turns
out to be surprisingly inefficient. The reason is that the features
we are looking for are identified not by an exact waveform, but
rather a particular structure of the waveform. Therefore wewant
the atom to respond to this structure rather than a particular wave-
form. Consequently, we need to reproduce the structure of the
feature in order to be able to disregard the small (or not so small!)
differences between waveforms corresponding to the same feature.

Depending on what sort of differences one can expect various
methods can be applied in an attempt to make such differences
transparent to the atom. In the present case the main difference
is low amplitude noise, phase shift, and small variations infre-
quency (too small to be noticed in the time-frequency plane in
Figure 1b, but large enough to cause a significant discrepancy be-
tween a waveform-replicated atom and (other) occurrences of that
feature).

To reproduce the structure of the three features in the present
signal, three vectors have been designed such that they haveap-
proximately the same frequency content as the three features (thus
the time-frequency plane in Figure 1b). While this approachrelies
on the Fourier transform as a design tool other transforms, such as
the wavelet transform, might just as well have been applied,since
the choice of transform for the purpose of reproducing a certain
structure is governed by the ability of the transform to analyze as
well as synthesize in a nice and easy fashion rather than producing
coefficients with a specific interpretation.

The length of the designed vectors is 100 entries, i.e. long
enough to capture sufficiently low frequencies. A matrix of size
300× 100 is now constructed with the first vector inserted in the
first 100 rows and starting on the diagonal with wrap around. The
following 100 rows are filled in the same fashion with the second
vector, and so on. In this fashion the unknown phase is captured.
The entire signal is then transformed by applying this matrix to
consecutive parts of the signal (each part being 100 samples), that
is, no overlap, and finally, the average of the absolute valueof the
first 100 samples〈1〉, the second〈2〉 and third 100 samples〈3〉 of
the transform coefficients are computed. The resulting signals are
shown in Figure 1c.

There are two apparent properties of the three curves: Firstly,
large coefficients in the transform does not necessarily indicate the
presence of the corresponding feature. For instance the response
from the second atom〈2〉 is larger for feature|1| than for its ‘own’
feature|2|. Secondly, it is nonetheless easy to tell which feature
is present at what point in time since the total response (allthree
curves) differs significantly between features as well as vary only
a little for different instances of the the same feature.

This second property allows some simple non-linear method to
map the three dimensional transform output to the set{|1|, |2|, |3|},
i.e. the three notes. In this simple case a one-hidden layer neural
network with two perceptrons would suffice (the challenge resem-
bles the classical XOR problem, see [27]).

There are a number of obvious improvements, such as exploit-
ing the chirp-like structure in some of the notes (as evidentin the



time-frequency plot) and applying the transform in a more subtle
way. However, the construction suffice for the present example.

6. DISCUSSION

The purpose of this paper is to bring attention to the potential as
well as the challenges of home-made dictionaries. In a musical
feature extraction application based on a linear transformone has
a choice of dictionary ranging from the classical, well-structured,
restricted dictionaries such as Fourier and wavelet to ‘arbitrary’,
home-made dictionaries. It was argued that the degree of structure
in a dictionary is quite important because 1) a ‘too high’ degree of
structure imposes unnecessary restrictions on the choice of atoms,
2) a ‘too low’ degree of structure means loss of very useful compu-
tational and interpretational properties, and 3) even a slight reduc-
tion in the degree of structure comes at a high cost. The unionof
orthogonal bases is currently being investigated by several people
and is at present perhaps the most interesting way of constructing
less restricted dictionaries.

The simple example of identifying notes in a trumpet fanfare
demonstrates one of many ways of constructing a feature-based
transform. The simplicity of the example is deceptive, though,
as more extensive sound examples would require a significantly
larger effort, and indeed the purpose is only to illustrate some of
the points made in the preceding discussions of home-made dic-
tionaries.
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