Chapter 41


CHAPTER 41
ON RELIABILITY-BASED STRUCTURAL OPTIMIZATION

P. Thoft-Christensen, Aalborg University, Denmark

ABSTRACT

In this paper a brief presentation of the state-of-the-art of reliability-based structural optimization (RBSO) is given. Special emphasis is put on problems related to application of RBSO on real (large) structures. Shape optimization, knowledge-based optimization and optimal inspection strategies are briefly discussed. A list of 125 references is included in the appendix.

1. INTRODUCTION

RBSO has been an area of research which has grown strongly in the last two decades. In figure 1 (based on the references in the appendix) the number of papers published since 1960 are shown for 5-year periods. From a very slow start in 1960 a drastic increase is seen in the years 1985-1989. A similar development has taken place for classical (deterministic) structural optimization. This paper is highly inspired by the references in the appendix. However, for the cases of simplicity reference is only made to a few papers, namely when results are taken directly from these papers. The authors are asked for understanding for this point of view.

Why this growing interest in structural optimization? First of all structural optimization is an efficient methodology for design. It is a general and versatile tool for automatic design and it is relatively easy to use for practicing engineers. It should also be mentioned that although a number of approximations have to be made the essential features of the original optimization problems are maintained. Therefore, structural optimization techniques have a number of advantages compared with traditional design techniques, but clearly the quality of an optimal design is only as good as the underlying analysis.
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 be N optimization variables, e.g. dimensions of structural elements. Then an element reliability-based optimization problem can be formulated in the following way
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 where W is the object function. 
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 is the reliability index for (failure) element i and 
[image: image4.wmf]min

i

b

 the corresponding minimum acceptable value. 
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 are simple lower and upper values for the design variable zi, i = 1,…, m.

The corresponding formulation on systems reliability level K, K = 1,2,…, can be formulated in the following way
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Here
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is the systems reliability index on level K and 
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is the corresponding minimum acceptable value.

Notice that the main difference between (1) - (2) and classical structural optimization is that in classical structural optimization the constraints are related to e.g. stresses and displacements, but in RBSO to element or system reliability. In (1)-(2) only a single objective function is used. In a more general formulation multi-objective functions are introduced.

Optimal design problems can be classified at four optimization levels depending on the nature of the design variables z:

Level l: Cross-sectional optimization

Sizing design variables

Level 2: Shape optimization

Sizing design variables

Shape design variables

Level 3: Configuration optimization

Sizing design variables

Shape design variables

Configuration variables

Level 4: Total optimization

Sizing design variables

Shape design variables

Configuration variables

Material selection variables

In RBSO most of the work is at level 1. Some work is done at level 2 and a little work at level 3. To the author's knowledge, no work is done at level 4.

2. OPTIMIZATION OF LARGE COMPLEX STRUCTURES

An overview of optimization of 1arge complex structures is given by Jensen & Thoft-Christensen [1]. When standard methods for optimization of normal-size problems (moderate number of variables and constraints) are used on large problems (high number of variables and constraints) then numerous complications will usually occur. First of all, the fact that a large problem is being considered will result in analysis of a vast amount of data. This primarily causes problems with lacking internal memory and this implies frequent swapping of information between internal and external memory. As a result of these methods based on the Hessian may encounter serious problems.

Standard optimization methods may also fail because of numerical problems, lack of convergence to a "wrong" solution, cycling or program errors. In the worst case the calculation time when using traditional methods will grow exponentially with the number of design variables. This in itself puts considerable limits to the size of the problem that can be analysed no matter if a (deterministic) problem or an RBSO problem is considered.

In the literature several methods for optimization of large problems are described. These methods can be divided into five groups:

I     direct methods with linear constraints,

II    indirect methods with linear constraints,

III   direct methods with general constraints,

IV   indirect methods with general constraints,

  V     methods suited for parallel computers.

In RBSO the groups III - V are most relevant, since the reliability constraints are strongly non-linear. Direct methods handling general constraints are the most widely used in optimization of structures. Methods based on penalty functions, extended penalty functions, sequential linear programming, sequential quadratic programming, reduced gradient, projected gradient, augmented Lagrangian, various Newton-type methods and feasible directions are only some of the types used to optimize problems in structural engineering. All of these methods work well on small to moderate-sized problems and some can be extended to optimization of special types of large structures.

The indirect method with general constraints involves decomposition of the problem into smaller parts (substructures) at 2 or more levels (multilevel). Each of these subsystems must have their own goals (objective functions) and constraints. The standard form of interconnection between substructures is the top-down hierarchical form. This means that a given subsystem controls the systems at the level below and is itself controlled by the system at the level above. Main considerations using this approach should be concerned with information flow between substructures and the coordination of the problems to ensure fulfillment of the overall goal. However, decomposition into smaller sub problems that can be independently optimized is rarely possible in practical engineering problems. Optimizing one sub problem without taking into consideration interaction with other sub problems may lead to none or non-optimal solutions.

The most well-known indirect methods are

· the model coordination method (Wismer [2], Kirsch [3])

· the goal-coordination method ("Tismer [2], Kirsch [3])

· the linear decomposition method (Sobieszczanski-Sobieski et al. [4], [5], [6]).

To the author's knowledge, none of these methods has been used in RBSO only in classical structural optimization. The last-mentioned method seems to be suitable for RBSO problems and some research is being performed in this area and will be published soon by Jensen & Thoft-Christensen [7]. This method is described in detail in [4], [5], [6], and [1]. The method can be compared to the design and organization of a large structure. A coordinator divides the design of the structure into smaller problems and assigns the task to smaller groups. Each group solves its design problems with their own tools, and sends the result back to the coordinator. He analyses the results, coordinates them and he may change some of the parameters and send the problems back for re-analysis. This iterative scheme continues until an optimum is achieved. This decomposition clearly has a number of advantages in the subdivision of the structure. However, the method can diverge. It is not clear how this method will work with reliability constraints but as mentioned earlier, research is being performed in this area.

3. SHAPE OPTIMIZATION
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To illustrate RBSO at optimization level 2 (shape optimization) consider the simple model of a mono-tower platform shown in figure 2. This example is taken from Enevoldsen, Sørensen & Thoft-Christensen [8].

The RBSO problem (2) at systems level K= 1 is solved using 
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 is the steel volume between seabed and topside (initially W = 36.8 m3). 11 stochastic variables are used in the reliability modelling of the structure and two types of failure modes (yielding failure and fatigue failure) are used, see Enevoldsen et al. [8] for details.

The shape optimization problem is solved with three different reliability models with failure elements in series

· Model 1: 5 yielding failure elements corresponding to an extreme load case.

· Model 2: 5 fatigue failure elements.

· Model 3: 10 failure elements from models 1 and 2.

In all three models the optimization problem is solved directly using the NLPQL and the VMCWD algorithm. The results are shown in figure 3. Both algorithms gave the same optimal design corresponding to models 1 and 2. However, the NLPQL algorithm did not converge when used to solve the optimization problem corresponding to model 3 (several different starting points have been used).

The optimal design corresponding to the three different reliability models is seen to be quite different. The optimal design found with model 1 (extreme failure) has the lowest objective function (steel volume). The optimal design corresponding to models 2 and 3 (fatigue failure and extreme plus fatigue failure) has almost the same steel volumes indicating that fatigue failure is the most significant failure mode.
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The optimal shapes for models 1 and 2 are very different. The optimal design corresponding to model 1 has the smallest diameter at the sea level, whereas the design corresponding to model 2 has the largest diameter at sea level. The reason is the different physical mechanisms in the two failure modes. The optimal shape corresponding to model 3 has (as expected) the smallest diameter at sea level. Although the fatigue failure mode is the most significant and the shape from model 2 should be expected the diameter increases below sea level due to the influence from the extreme wave failure mode.

Compared with the initial structural design the steel volume is reduced by 12 % and the systems reliability index is increased from 1.43 to 3.00.

4. KNOWLEDGE-BASED OPTIMIZATION
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Automatic RBSO will probably in general not be possible if optimization is taking place at optimization level 3 (configuration optimization). It seems to be much more reasonable to use some kind of interactive system, where expert knowledge is used to improve the design. In this chapter a very simple example is shown where expert knowledge is used in an extremely simple way. This example is taken from Thoft-Christensen [9], where more details can be found, and is based on an M.Sc. thesis by Frisk & Poulsen [10]. 10 design variables are considered, namely 6 shape variables zl, ..., z6 and 4 sizing variables z7,..., zl0 (see figure 4). The structure has 19 tubular members and each of them has 3 failure elements (failure modes), namely a yield failure element at the ends of the beams and a stability failure element.

The optimization problem is formulated on element level and with the weight as objective function:
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The start value of W is 148.75 tons and the smallest reliability index for any failure element is 
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 = 5.42. Optimal values for 
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 are obtained after 27 iterations with the NLPQL algorithm. The minimum weight is W = 104.49 tons and the smallest 
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-value is 
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 = 4.00. This lowest acceptable reliability 
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 = 4.00 is obtained for 7 stability failure elements. The shape of the structure in the initial state (iteration 0) after 8 iterations, after 20 iterations, and the optimal shape (after 

[image: image27.png]! l -t
t ey L
| ~
ﬂ o W
[a¥)
] ‘1
| o
J
|
|
_
~ “ N
&S o g
| l | ] t1_.
9 T
I
=~
o
=5




27 iterations) is shown in figure 5.
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It is obvious from figure 5 that the optimal solution is not optimal from an economic point of view. It is expensive to produce the 3 tubular joints in the symmetry line. This result is typical for shape optimization of structures where the weight is used as an objective function. It is, however, not expedient to reformulate the optimization problem so that the production costs of e.g. tubular joints are included. Formulation of the objective function will namely in such a case be very complicated. It seems to be much more natural to use expert knowledge in the way described below. As a simple example of expert knowledge consider the brace in figure 6, where, depending on the position of the joint, a K-brace or an X-brace is considered most economic. 

The same optimization problem is considered again, but now the expert knowledge illustrated in figure 6 is included. The result of the optimization is shown in figure 7. The states 1 and 2 are identical with the initial state and the optimal state in figure 5.

In state 3 the middle brace is fixed as an X-brace. By continued iteration state 4 is then obtained. Next the lowest brace is fixed as a K-brace (state 5) and by renewed optimization state 6 is obtained. Finally, the upper brace is fixed as an X-brace (state 7) and by optimization state 8 is obtained. In figure 8 the variation of the smallest 
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-index and the weight W during the iteration are shown. In the optimal design (state 8) only 4 failure elements have 
[image: image19.wmf]b

 = 4.00.
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5. OPTIMAL STRATEGIES FOR INSPECTION AND MAINTENANCE OF STRUCTURAL SYSTEMS

A review of optimal reliability-based strategies for inspection and maintenance is given by Sommer & Thoft-Christensen [11]. Several strategies are described in [11]. In this paper a strategy originally developed by Thoft-Christensen & Sørensen [12], and later improved by several authors, e.g. Madsen & Sørensen [13], is described. The design variables are the number m, the quality 
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 and the times of inspection 
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 as well as some structural parameters 
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 related to the individual structural members. The objective function is the total expected cost in the lifetime T of the structure, including the initial cost CI, inspection cost CIN, repair cost CR, and the cost of failure CF. The constraints are reliability-based and simple constraints. The optimization problems can

then (see e.g. [13]) be formulated in the following way
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qi is the inspection quality at inspection time Ti, i = 1,..., n. E[Ri] is the expected number of repairs at the time Ti. PF(Ti) is the probability of failure at the time Ti and r is the inflation rate.

Extensive research in this area is being performed within the EC research programme BRITE. It is believed that the optimal strategies for inspection and repair based on the formulation above will result in substantial savings compared with traditional strategies.
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Figure 7. Shape optimization with application of expert knowledge.








Figure 8. Iteration history.





Figure 6. Optimal braces.





Figure 5. Iteration history.





Figure 4. Frame structure with 6 shape design variables Z1,…, z6     


               and 4 sizing design variables z7,…,zl0 .





Figure 3. Optimization results for the 3 models.





Figure 2. Mono-tower platform and design variables.





Figure 1. Number of references as a function of year 


                (see appendix).
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