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Abstract. The paper deals with the stochastic analysis of a single-degree-of-freedom vehicle moving at a
constant velocity along an infinite Bernoulli-Euler beam. The beam is supported by a Kelvin foundation
which has been modified by the introduction of a shear layer. The spring stiffness in the support is assumed
to be a stochastic homogeneous field consisting of a small random variation around a deterministic mean
value. First, the equations of motion for the vehicle and beam are formulated in a moving frame of reference
following the vehicle. Next, a perturbation analysis is performed to establish the relationship between the
variation of the spring stiffness and the response of the mass of the vehicle as well as the displacement
variance of the beam under the oscillator.

INTRODUCTION

A road, runway or railway track is often modelled as a beam structure on a Kelvin foundation. In
itself this model only weakly describes the real situation of a track resting on a subsoil. However, a
reasonable model may be obtained by adjusting the stiffness of the Kelvin foundation as proposed
by Dieterman and Metrikine [1] and Metrikine and Popp [2], respectively, for representation of
a visco-elastic half-space or a layer over a bedrock. Alternatively Vallabhan and Das [3] showed
that an elastic layer under static load may be approximated by a Winkler foundation modified by
the inclusion of a shear layer. Intuitively this is a better model since the modified support is at
least capable of transporting energy in the along-beam direction. Analytic solutions for shear and
translational spring stiffnesses were derived by Krenk [4].

Recently the vertical stiffness of the ballast and sleepers that are used to support railway
tracks has been found to vary significantly along the track [5] with a correlation length much
smaller and a variation coefficient much larger than the sub-soil. This variation leads to vibrations
of a moving vehicle and the track itself, even when no external excitation is applied. In the litera-
ture similar problems have been treated numerically using finite elements in a number of papers.
Yoshimura et al. [6] analysed a vehicle moving along a simply supported beam with random sur-
face irregularities and varying cross-section. Friba et al. [7] examined the behaviour of an infinitely
long Euler beam on a Kelvin foundation with randomly varying parameters along the beam.

In the present paper a novel numerical method will be presented for the analysis of a single-
degree-of-freedom (SDOF) vehicle moving uniformly along a beam on a random modified Kelvin
foundation. The vertical support stiffness is described by a weakly homogeneous random process.

-2811 -



The randomness is primary due to the sleeper and ballast stiffness variation, as mentioned above.
Furthermore it should be noticed that the parameters of a sub-soil under e.g. a railway track is usu-
ally known beforehand from field observations and/or laboratory tests. The problem is formulated
in a local coordinate frame, which follows the vehicle, and the interaction between the vehicle and
the beam is taken into account. Based on a perturbation analysis, the stationary response of the ve-
hicle and beam due to the variation of the spring stiffness is calculated. No resort to Monte Carlo
simulation is necessary since a closed form solution feasible for numerical treatment is derived.

THEORY

A vehicle modelled as an SDOF system with deterministic mass my, spring stiffness kq and viscous
damping cp is moving uniformly in permanent contact along the smooth surface of a Bernoulli-
Euler beam at the velocity v, thus having the along beam position z = vt at time t. The beam
has the deterministic bending stiffness EI and mass m per unit length and the beam axis forms a
straight line in the state of static equilibrium. The beam rests on'a modified Kelvin foundation with
deterministic shear stiffness G and viscous damping -y per unit length of the beam, see Fig. 1.

)t @™ .,

—> ¥ X
Figure 1: SDOF vehicle on an Euler beam supported by a modified random Kelvin foundation.

The vertical stiffness of the support «(z) is assumed to be described by a stochastic homo-
geneous field along the beam with the mean value & = E|[k(z)]. The auto-covariance function C,,
and two-sided auto-spectral density S, are defined as,

Crr(Az) = 02e” ey , Az =139 — 11, (1)
_ i * —ikAg _ %o oa
Ss(k) = - /_ me(Az)e dAz = -~ T 2)

Here o2 is the variance of x(z), 2 is the correlation length and i = 4/—1 is the imaginary unit.
k denotes a wavenumber, k = %" where L is the corresponding wavelength. The auto-spectrum
represents a first-order (so-called Ornstein-Uhlenbech) filtration of Gaussian white noise.

In a local moving coordinate system defined by the transformation x = = — vt, the equations
of motion for the vehicle and beam become, respectively,

d%z dz
mo'@' + ¢ (E —u(O,t)> + ko (Z—-U(O,t)) ={J, 3)
o*u i ou . G\ 0% . Ou __
EIEF+m (u— 21)& + (v - T—n-> W) + (u—va—x-> + ku = f(t)o(x), 4)
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where the vertical displacements of the vehicle mass and beam relative to the positions in the state
of static equilibrium are denoted 2 = z(t) and u = u(x, t), respectively. 4, = %—’t‘ and il = &3 | are
the local velocity and acceleration of the beam, respectively. The force on the beam originates from

the SDOF vehicle, i.e. f(t) = —my(g + W) g being the gravitational acceleration. Analytical
expressions for £ and G are derived in [4] for an elastic layer of finite magnitude H, defined by the
mass density p and the Lamé constants ), », and overlaying a bedrock.

Perturbation Analysis

The coefficient of variation % of the spring stiffness is assumed to be sufficiently small so that
a perturbation analysis may be performed for the response of the vehicle and beam. Hence, the
displacements and the spring stiffness are divided up into zero- and first-order terms,

2() =2+23(t), u(ot)=8(x)+a(xt), ~x+ovt)=F+~(x+vt). ()
In Eq. (5) and below, the bar denotes mean values and the hat denotes stochastic deviations. The
mean value of the vehicle displacement is constant and will be disregarded in the analysis. A mov-
ing vehicle on a beam and Kelvin foundation with constant stiffness causes no wave propagation in
the moving frame of reference contrary to the analogous problem with a vehicle on an elastic half-
space. Hence the zero-order beam displacement term @ is the solution to the zero-order equation
EI‘%——+ _E dz_a_ v@-—i-kﬂ———m 5(x) 6

Dt L = —mpgo(x), (6)

which is time-independent. Four linearly independent solutions to (6) may be found on the form

U, (X) = _mogl?neiknxa = 1’ 27374' (7)

U, are the amplitudes at ¥ = 0 and K, are the corresponding characteristic wavenumbers. Only
solutions that are decaying in the far-field are physically valid. Thus the full solution on either side
of the vehicle is the sum of two of the components, @, (x). Further details are given by Andersen
et al. [8], who also suggested a procedure for calculating U, and K,.

When %(x) has been determined, and neglecting the second-order terms, the first-order terms
%(t) and @(x, ) can be calculated by a simultaneous solution of the equations

d2 dz .
mlE e ( z a(o,t)) ko (2(t) — 30, ) = 0, ®

o4 ot [, G\ 8% o 3
EI-a—iZ+m(u——2v5;+<v ——-—) 8X>+’y< —U§>+l€u(x,) foot). )

Here f(x,t) = —mo ?m-d (x) — &(x + vt)@(x) is the excitation of the beam. Apparently the para-
metric excitation due to the stiffness variation is transformed to an equivalent distributed additive
excitation &(x + vt)@(x) in the first-order differential equation.

Discretisation of the First-Order Spring Stiffness Term

In order to find a solution to Eqs. (8) and (9) the influence of the distributed equivalent line load
—R(x + vt)u(x) has to be evaluated. This is done numerically by a discretisation into J time-

varying static equivalent point loads ]‘j (t) acting on the beam at the positions ;. The distance
Ax; between each point load must be sufficiently small so that both the bending waves in the
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beam and the variation of the spring stiffness are described satisfactorily. In practice this requires
at least 10 discrete loads per wavelength The approximation may be written

—&(x + vt)a( ng (x=xi)r  Jilt) = —&(x; +vt)u(x;) Ax;. (10)

In order to obtain a good apprommatlon the summation has to be carried out over the entire region
where %(x) is not very close to zero. The size of this region is highly dependent on the damping,
7, in the support, and the velocity, v. Since the model is linear, the principle of superposition is
applicable and the total field 4(x, t) may be written as

(X, t) = (X, 1) + s (6 t), s (1) Zﬁﬂa (11)

where g (x, t) is the contribution from the interaction force from the vehicle at x = 0 and 4;(x;, t),

j=1,2,...,J, are the displacement fields generated by the point loads }j (t). Equations (8) and (9)
then lead to the formulation

o2 4 o (jt f0(0,) — as<o,t>) ko (3(t) - (0,8) — 15(0,8)) =0, (12)

o 2u§i—+ _& o + (u —vaﬁ>+/~:u( ti=
3X ax BX Y J ax J X -

Fs(x—x;), i=0,1,..,J,  (13)

where fy(t) = —mo“—ii%%, xo = 0, and f;(t), j = 1,2, ..., J, are given in Eq. (10). The equations of
motion (13) for j = 1,2, ...,J are decoupled. Hence 4;(x,t), j = 1,2, ..., J, may be determined
independently. However, subsequently Eqs. (12) and (13) for j = 0 must be solved simultaneously.

Frequency Response Functions for First-Order Terms

The origin of the vibrations is the first-order variation of the spring stiffness, whereas the output is
the displacement of the vehicle and the beam. The input-output relations are illustrated in Fig. 2,

where H; (w) and Hy;(x,w) are the frequency response functions for 2(t) and @(y, t) for unit
harmonic forces at xo = 0 and yx, respectively.

R(xo +vt) —H Hyg (w) |— 2(t) Rx +vt) — Ho (6 w) [— 8(x, 1)
Figure 2: Input-output relations.

In the discretised system defined by Eqgs. (12) and (13) the input is however the discrete

loads f;(t). Hence, as a first step in determining Hz (w) and Hy 4 (x,w), a relationship between
the point loads and the stiffness variation must be established. Assuming &(z) to vary harmonically
with wavenumber k and amplitude K (k), the variation in the moving frame of reference reads

R(x+vt) = K (w)ef@xewt K (w) = K (w/v). (14)
Here w = kv is the apparent circular frequency of the variation seen by an observer following the

moving vehicle, and K (w) is the complex amplitude of &(x + vt) at x = 0. Equations (10) and (14)
imply that a harmonic variation of %(x + vt) leads to the following variation of the point loads,

fi(t) = Fj(w)e™,  Fj(w) = HpzgW)KW), Hppw) = —u(x;)Ax; e, (15)
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where Fy(w) is the amplitude of }j (t) and H #; % (w) is the frequency response function relating

f’j (t) to &(x + vt). With the point loads given by Eq. (15) four linearly independent harmonic
solutions exist to the equation of motion (13) for each j = 1,2, ..., J. The solutions take the form

Un(0t) = Fi(W)Tin(w)e™, j=1,2,..,J, n=1,2,3 4. (16)

Here f]j,n (x,w) are the amplitudes for aharmonically varying force with unit amplitude at x = x;,
i.e. f(t) = e**d(x — x;). Introducing Up (w) as the amplitudes at x = x;, U; » (x, w) may be written

Ujn (3, w) = Up(w)etKnbexi), a7

where the wavenumbers K, are the roots to the characteristic polynomial obtained by assuming
solutions of type (16) in the homogeneous version of Eq. (13), that is with f(¢) = 0.
The vehicle displacement and the interaction terms of the beam displacement are given as

5(t) = Z(w)e™, (1) = wszZ(w)Uo,n(X, w)e™t, n=1,23,4. (18)

Here Z(w) is the first-order vehicle displacement amplitude and U, (X, w) = Uy (w)eiknx are the
amplitudes for a harmonically varying force with unit amplitude at y, = 0.

At any point along the beam only two of the fundamental solutions 4 ,(x, t), n = 1,2, 3, 4,
are present for each j = 0,1,..., J, as it was also the case for %(x). For the sake of convenience the
two wave components existing behind the respective loads fj (t) with reference to the direction of
the velocity v will be assigned the subscripts n = 1,2, whereas the components existing in front
of the respective loads are assigned the subscripts n = 3,4. From Egs. (13) and (18) (70(x,w),
the amplitude of @(x,t), may be expressed in terms of Z(w). Inserting the result into Eq. (12)
and assuming that J; of the point loads are applied behind the vehicle, the following frequency
response relation is obtained by isolating Z (w) on the left-hand side of the resulting equation

Z(w) = Hyp(w)K(w), Hpz(w) = Npz(w)/Dyg(w), (19)
where the numerator Nz (w) and denominator D (w) are, respectively, given as
Nj i (w) = (iwey + ko) Hy (0, w), (20)
2
Dy (w) = (—w’mg +weg + ko) — (1w moco + w?moky) Z U, (w). (1)
=1

n=
Hy, 1 (0,w) is a special case of the frequency response function relating s (x, t) to k(x + vt),

2 4 J 2

Hffsi{(x’w) = Z Hﬁ'jf((w) Z Ujn(x,w) + Z Hﬁ‘jf{(w) Z Ujn(x,w). (22)
j=1 n=3 j=J1+1 n=1

where Hp, i (w) and U; ,(x, w) are previously defined. Inserting Eq. (18) into (13) and making use

of Eq. (19), the contribution from f, (t) to the beam displacement can be found. The contribution

from the discrete loads }j(t), J=12,..,J,is given by Eq. (22). Adding the respective contribu-

tions, the frequency response function relating 4 (x, ¢) to #(x + vy) may eventually be written

U(Xvw) = HﬁR(Xaw)K(w)) Hﬁf{(Xvw) = HﬁsR(X)w) + Hfon(X,CU)HZf{(w), (23)
where is
- - 2 T iKjx {71,742} = {1,2} forx <0
Hooz o) = ma Z Uilw)e™, { {J1,02} = {8,4} forx >0 ° 24)

J=i

- 2815 -



Random Stiffness Variation

In the frequency domain, the two-sided auto-spectral density for the stiffness variation becomes

2

) O

ot S/, S— 2

1+ 22 (w/v)? 25
which is obtained from Eq. (2) by the transformation w = kv. Notice that all the variation lies
within the first-order terms, i.e. Sgx(w) = Sga(w). Next, the two-sided auto-spectral density Sz (w)
for the SDOF vehicle displacement and the two-sided cross-spectral density Sy (1, X2, w) for the
beam displacement at two points x; and x, on the beam axis may be found. Thus, see e.g. [9],

Szz(w) = [Hyz (@) Sex(w),  Svv(x1, X2, w) = Hp ¢ (x1,w) Hy g (X2, w) S (W), (26)

where Hj 5 (w) and Hy - (x,w) are defined previously and HY . (x1,w) is the complex conjugate
of Hyz(x1,w). Again it should be noticed that the principle of superposition is valid, because
the governing equations are all linear, and that all variation lies in the first-order terms. From the
Wiener-Khintchine relation the auto-covariance function Czz(7) for the vehicle displacement and

the cross-covariance function Cyy (x1, X2, 7) for the beam displacement may be expressed as

Srxlw) =

sz(T) = / COS(wT)Szz(w)dw, (27)
Cuv (X1, X2, T) = 2 / N (cos(wr) Sy — sin(wr)SFy) dw, (28)

respectively, where S%;; and S3; are the real and imaginary parts of Syy (X1, x2,w), respectively.
NUMERICAL EXAMPLES

An analysis will be carried out for the standard deviation of the SDOF mass displacement
response, 0z = /C7zz(0), and the standard deviation of the beam displacement response directly
under the vehicle, oy = 1/Cyy(0,0,0). Due to the linearity of the problem o'z and oy are propor-
tional to 0. Hence, they may conveniently be described by the dynamic amplification factors,
7 e (29)
UH O',c
Notice that [sz] = [sy] = m®/N. Furthermore, the circular eigenfrequency wy of the vehicle, the
damping ratios (o and ¢ for the vehicle and beam, and the critical velocity v, are introduced,

Ve — Co v Elx G
= k; =, Eay——1 er — — . 30
Wo 0/m07 CO 2\/m C ZW v mz + m ( )

A beam with mass per unit length m = 1000 kg/m and damping ratio ¢ = 0.1 is considered.
The vehicle has the circular eigenfrequency wy = 27 s~! and the damping ratio ¢y = 1.0, which are
assumed to be typical values. Moreover, the vehicle mass has been set to my = 1000 kg. Various
combinations of the bending stiffness E I and the correlation length z, are analysed. Two different
supports have been examined. In Fig. 3 the results are given for the velocity range v € [1,100] m/s
and a beam resting on a foundation with % = 107 N/m? and G = 5 - 10" Nm/m. The parameters are
rather arbitrarily chosen but may to some extent represent a soft elastic layer. Figure 4 shows the
results for an even softer foundation with & = 10% N/m? and G = 5 - 106 Nm/m.

Sz =

Sy =
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Figure 3: Dynamic amplification of vehicle response (—) and beam response (—). & = 107 N/m?
and G =5+ 107 Nm/m. [sz] = [sy] = m®/N and [v] = m/s.

From the curves on figures 3 and 4 it may be concluded that the amplification of the responses
is generally increasing with the correlation length, zo. Also, in most cases the amplification of both
the vehicle (thick line) and the beam response (thin line) grows si gnificantly with the velocity. Two
exceptions to this can be observed. First, for relatively flexible beams and low correlation lengths
the vehicle response tends to stop increasing at high velocities, whereas the beam response is still
growing rapidly. The phenomenon is most pronounced for the stiffer support, i.e. Fi g. 3. Second,
beyond a certain velocity both amplification factors for EI = 10° Nm? and EI = 107 Nm? on Fig,
4 drop off dramatically. This is due to the fact that v,, in these cases lies below 100 m/s. Thus the
critical velocities for & = 10° N/m? and G = 5 - 10® Nm/m are approximately 70 m/s and 90 m/s
for BT = 10° Nm? and ET = 107 Nm?, respectively. However, at velocities near v,,, where the
sudden drop appears, a relatively strong amplification takes place.

CONCLUSIONS

The response of a single-degree-of-freedom vehicle moving uniformly along a Bernoulli-Euler
beam resting on a modified Kelvin foundation with random spring stiffness has been investigated.
The analysis was performed using the perturbation technique. Hence, it is only valid at relatively
small variations of the spring stiffness. For larger variations a Monte Carlo simulation approach
may be necessary as a higher-order perturbation analysis is inconvenient. Generally the analysis
shows that the response of the moving vehicle and the beam underneath increases with velocity and
the correlation length of the stiffness variation. However, for vehicle velocities beyond the critical
velocity of the beam/support the response due to spring stiffness variation drops dramatically.
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Figure 4: Dynamic amplification of vehicle response (—) and beam response (—). & = 10% N/m?
and G =5 - 10 Nm/m. [sz] = [sy] = m3/N and [v] = m/s.
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