Aalborg Universitet

Modification of the glass surface induced by redox reactions and internal diffusion processes

Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

Publication date: 2008

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Smedskjær, M. M., Deubener, J., & Yue, Y. (2008). *Modification of the glass surface induced by redox reactions* and internal diffusion processes. Abstract from Annual Meeting of German Society of Glass Technology, Hameln, Germany.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Modification of the glass surface by iso-thermal treatment under different gases

Morten M. Smedskjaer¹, Joachim Deubener², Yuanzheng Yue¹

¹Aalborg University, DK-9000 Aalborg, Denmark

²Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany

In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under different gases. As a result, we have observed a striking phenomenon, i.e., the outward diffusion of divalent cations occurs not only under an oxidizing atmosphere of heat-treatment, but also under nitrogen, even under reducing atmospheres like H_2/N_2 (10/90). The extent of the cationic diffusion depends on temperature and duration of heat-treatments. The mechanism of the diffusion depends on the type of the gases used for the heat-treatments. In this paper we propose several possible models describing mechanisms of the cationic diffusion, and hence, of the formation of the nano-layer. We also report the effect of the nano-layer on properties of the glasses.