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Abstract In this paper, we study radio frequency identification tag identification problems
using framed slotted ALOHA protocol. Each tag will be assumed to participate in the con-
tention with a certain probability. Then, the frame size and the probability will be dynamically
controlled by the reader in every reading round so that all the tags can be detected in a short
period of time. Moreover, we propose a practical way of controlling the probability in terms
of transmit power control, assuming Additive White Gaussian Noise channel or flat Rayleigh
fading channel. Computer simulation results demonstrate the effectiveness of the proposed
method.

Keywords RFID · Tag identification · Framed slotted ALOHA · Transmit power control

1 Introduction

Radio frequency identification (RFID) technology has become very popular in many applica-
tions of identifying objects automatically. Some of them are inventory control and tracking,
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2948 C. T. Nguyen et al.

medical patient management and security check [1–3]. In RFID systems, the reader tries to
identify all tags by firstly transmitting an inquiring command to initiate the communication,
and then, upon hearing the reader’s command, tags respond with their identity (ID). How-
ever, as multiple tags may respond to the reader simultaneously, the tags’ replied packets
will collide and be lost. To overcome this challenge, some anti-collision identification algo-
rithms, which can be classified into two main approaches: tree-based [4] (binary tree) and
ALOHA-based [5] (framed slotted ALOHA), are proposed.

The binary tree algorithm is adopted by the international standard ISO 18000-6B [6], which
is based on tree searching [7]. In the algorithm, colliding tags in a time slot continuously try to
re-respond to the reader by selecting one of the two successive time slots until they succeed.
Also, in order to cope with limitations of RFID systems such as constraints on memory
and computational capabilities, a few variants of the algorithm, which are Binary Search
[1], Query-Tree [8], and Binary Tree Traversal [9], have been implemented. The binary tree
algorithm is efficient when the number of tags is small, however, it experiences consecutive
collisions, which is subject to a longer identification time comparing to ALOHA-based
algorithms, for a large tag cardinality. Indeed, it is proved in [10] that the total identification
time for the binary tree algorithm is more than that for the Framed Slotted ALOHA (FSA)
algorithm to complete the identification process. Moreover, the binary tree algorithm requires
much more reading rounds than FSA algorithm, which results in larger overhead. Due to the
simplicity and robustness, ALOHA-based algorithms are widely used in RFID standards [11].

In FSA-based tag identification algorithms, the reader probes the tags using a frame
composed of time slots, where each tag randomly picks a slot in the frame to transmit, which
is referred as a contention process. To improve the efficiency of the algorithms, Dynamic
Framed Slotted ALOHA (DFSA) protocol [12–17] is proposed in which the frame size is
dynamically controlled by the reader in every reading round depending on the observed
slots. Two common methods for controlling the frame size in DFSA are Q algorithm [14]
and Log algorithm [15]. Specifically, in Q algorithm, the next frame size is determined
based on the observed number of empty, collision slots in the current reading round, while
in Log algorithm, the frame size is found using the estimated number of undetected tags.
In fact, it is proved that optimal system efficiency, in which the number of detected tags is
maximum in each reading round, can be obtained when the frame size is equal to the number
of tags. However, the optimality is difficult to achieve in practice because the total number
of tags is unknown a priori. Moreover, as the total number of tags is increased, the protocol
becomes usually inefficient since the choice of the frame size is limited due to hardware
constraints [18,19], although a very large tag cardinality could be estimated by extracting the
information from collisions with Lottery Frame (LoF) protocol [20]. Indeed, in [18] and [21],
the frame sizes are under the form 2Q where the maximal values of Q are set to 256 and 512
respectively.

There are some methods dealing with this problem. For example, in [22], transmit power
can be controlled to cluster the tags in distance ascending order from the reader, however,
this method is only applied to tree-based algorithms. Note that the reader could utilize both
the tree-based and ALOHA-based algorithms, in which tags are first split into multiple
subgroups through the tree-based algorithm with binary suffix strings, and then the ALOHA-
based algorithm is used to identify tags in each subgroup [23]. However, when the number of
tags is very large, the splitting process, which is based on the estimate of the tag cardinality,
could not be efficient because the estimate is usually inaccurate, while it also takes much time
before the usage of the ALOHA-based algorithm. Another approach is deploying multiple
readers with overlapping interrogation zones [24,25], but the disadvantages of these methods
are high cost, system complexity, reader-to-reader interference [26] and the readers’ optimal
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placement [27,28]. On the other hand, Kodialam and Nandagopal [29] propose a protocol
using a probability, which is called probabilistic framed slotted ALOHA (PFSA), in order
to deal with the tag set cardinality estimation problem when the total number of tags is very
large. In this case, the reader may inform a fixed frame size L and a parameter p ∈ (0, 1]
and then, each tag is assumed to participate in the contention process with the probability
p. However, the scope of Kodialam and Nandagopal [29] is mainly focused on the tag set
cardinality estimation, while the tag identification problem is not investigated in the paper,
although it is straightforward to apply PFSA to the identification problem.

In this paper, we study the tag identification problem in a situation that the number of tags
might be much greater than the maximal frame size. For a given way of estimating the tag
cardinality, the optimal system efficiency can be obtained in each reading round, regardless
of the limitedly chosen frame sizes, by the proposed protocol: Probabilistic Dynamic Framed
Slotted ALOHA (PDFSA), where the definition of the transmission probability p is utilized.
In particular, the frame size and the transmission probability are controlled in each reading
round in order to maximize the channel usage efficiency (CUE), which is defined as a ratio
of average number of singleton slots to the frame size by which all the tags can be detected
in a short period of time. Moreover, we propose a practical way of implementing PDFSA
using transmission power control, assuming Additive White Gaussian Noise (AWGN) chan-
nel or flat Rayleigh fading channel. Computer simulations will be performed proving the
effectiveness of the proposed method comparing to conventional methods.

The rest of this paper is organized as follows. In Sect. 2, the system model and the
conventional approaches are described. Sections 3 and 4 provide the proposed method in
detail and simulation results are shown in Sect. 5. Finally, we conclude in Sect. 6.

2 System Model and Conventional Approaches

2.1 System Model

The considered RFID system consists of a reader and n unknown tags. In the r th reading
round, the reader first transmits a time slotted frame with size Lr . Then, each tag randomly
selects one of the available time slots and transmits its ID at the selected time slot [16]. After
reception of IDs at the reader, if a slot j has no transmission or only one transmission, then
we refer to this slot as an empty or singleton slot, respectively. If multiple tags transmit in the
same slot j , we refer to slot j as a collision slot. The reader observes Er empty, Sr singleton
and Cr collision slots where Lr = Er + Sr + Cr . The reading process is repeated until all
the tags are identified. Note that, the frame size is limited due to hardware constraints and in
this paper, it is under the form of 2Q [21], where Q = 0, 1, 2, . . . , 8.

2.2 Conventional Approaches

2.2.1 DFSA

In DFSA protocol, the frame size is dynamically controlled in each reading round for efficient
tag identification. In particular, in the r th reading round, the CUE [16] is defined by the
expected value of the number of singleton slots S̄r divided by the frame size Lr as

CUE = S̄r

Lr
= nr

Lr

(
1 − 1

Lr

)nr −1

, (1)
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Fig. 1 Anticollision process
with dynamic framed ALOHA

where nr is the number of undetected tags before r th reading round. In order to obtain the
optimal CUE, the derivative of (1) with respect to Lr is set to zero by continuous relaxation,
which results in Lr = nr . Then, Log algorithm [15] determines the frame size by

Lr = 2round(log2(nest,r )), (2)

where round(X) rounds the value of X to the nearest integer, and nest,r is the estimate of nr ,
which can be found by Schoute method [30] or Vogt [18] method. Specifically, using Vogt
method, nest,r can be found by minimizing the distance between the actual and the theoretical
reading results Er−1, Sr−1, Cr−1 as

nest,r = arg min
nr

{
(Ēr−1 − Er−1)

2 + (S̄r−1 − Sr−1)
2 + (C̄r−1 − Cr−1)

2} − Sr−1, (3)

where Ēr−1, S̄r−1, C̄r−1 are the expected values of Er−1, Sr−1, Cr−1 respectively i.e.,
Ēr−1 = Lr−1(1−1/Lr−1)

nr , S̄r−1 = nr (1−1/Lr−1)
nr −1 and C̄r−1 = Lr−1− Ēr−1− S̄r−1.

In Schoute method, the frame size is assumed to be chosen such that the number of tags
responding to the reader in each slot is Poisson distributed with mean 1, which is valid if the
frame size is equal to the number of undetected tags. Then, nr is estimated by

nest,r = 2.39Cr−1. (4)

On the other hand, the frame size can also be determined by by Q algorithm [14], which sets
Lr to 2Lr−1, Lr−1/2, or Lr−1 depending on the observed number of empty, singleton and
collision slots

Lr =
⎧⎨
⎩

2Lr−1 if Ir−1 ≥ 1,

Lr−1 if Ir−1 = 0,

Lr−1/2 if Ir−1 ≤ −1,

(5)

where Ir−1 = round
[
(Cr−1 − Er−1) k

]
and k is a constant (0.1 ≤ k ≤ 0.5).

Figure 1 shows a simple example of the identification process with DFSA. The initial
frame size is set to L1 = 2 and the tags respond by sending their ID in the chosen time slots.
After the first reading round, tags 1, 3 and 2, 4 cause two collisions since they transmit their
ID at the same time and hence, E1 = 0, S1 = 0 and C1 = 2. In the second reading round,
by Log algorithm using Schoute estimate, the reader determines a new frame size L2 = 4.
In this case, all the tags are identified and E2 = 0, S2 = 4, C2 = 0.
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Probabilistic Dynamic Framed Slotted ALOHA 2951

Table 1 Estimators of n with
PFSA

Estimator

PZE ne e−(pne/L) = E/L

PCE nc 1 − (1 + (pnc/L))e−(pnc/L) = C/L

2.2.2 PFSA

Probabilistic framed slotted ALOHA protocol deals with the tag set cardinality estimation
problem using a fixed frame size i.e., Lr = L , which might be smaller than the total number
of tags. Assuming each tag decides to contend in the frame with a probability p, two tag
set cardinality estimators: Probabilistic Zero Estimator (PZE) and Probabilistic Collision
Estimator (PCE) are derived using the empty and collision slots, which are described in
Table 1, where ne (nc) is the number of tags estimated by PZE (PCE) estimator. The optimal
probabilities corresponding to PZE and PCE are determined by minimizing the variance of
the estimators.

3 Proposed Protocol: PDFSA

In this section, we propose the PDFSA protocol, which can be considered as an extension
of DFSA and PFSA, to deal with the tag identification problem in the case where the total
number of tags is large.

3.1 PDFSA

In the proposed protocol, the reader probes the tags by broadcasting the frame size and a
parameter p ∈ (0, 1] called transmission probability. Then, each tag contends in the frame
with probability p, and if it decides to contend, randomly picks up one of the slots to respond.
This reading process, where the frame size and the transmission probability are dynamically
controlled, is repeated until all the tags are identified.

Suppose that in the r th reading round, using the frame size Lr and the transmission
probability pr , the reader obtains Er empty, Sr singleton and Cr collision slots, where
Lr = Er + Sr + Cr . The CUE can be written as

CUE = S̄r

Lr
= nr pr

Lr

(
1 − pr

Lr

)nr −1

. (6)

Setting the derivative of (6) with respect to pr to be zero, we obtain

∂(CUE)

∂pr
= nr

L2
r

(
1 − pr

Lr

)nr −2

(Lr − pr nr ) = 0,

or equivalently

Lr = pr nr . (7)

We see that for a given Lr , if pr is chosen to satisfy (7), the CUE and hence the number of
tags detected in the frame is maximized. Also, with Lr and pr satisfying (7), we have

CUE =
(

1 − 1

nr

)nr −1

→ 1

e
(nr → ∞).
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Algorithm 1 Log-based PDFSA
1: Initialize Lr , pr = 1 for the first reading round (r = 1), and observe E1, S1 and C1
2: while at least one tag is not identified do
3: r = r + 1
4: Find nest,r and Lr = 2�log2(nest,r )� (if nest,r < 1 then Lr = 1)

5: pr = min
(

1, Lr
nest,r

)
6: Broadcast Lr and pr , and observe Er , Sr and Cr
7: end while

In order to satisfy (7), Lr has to be smaller than nr , because pr can only take the value in
(0, 1]. On the other hand, from a viewpoint of the overhead required for each reading round,
Lr should be set as large as possible in order to reduce the number of reading rounds. Thus,
in the proposed protocol, Lr is determined by

Lr = 2�log2(nest,r )�, (8)

where nest,r is the estimate of nr , and �X� rounds the value of X to the nearest integer less
than or equal to X . Note that nest,r can be found by some estimation methods such as Vogt
method or Schoute method e.g.,

nest,r = Sr−1 + 2.39Cr−1

pr−1
− Sr−1. (9)

The probability pr used for the r th reading round will be controlled by

pr = min

(
1,

Lr

nest,r

)
. (10)

The proposed protocol is summarized in Algorithm 1, which is named Log-based PDFSA
due to its similarity to the conventional Log algorithm for DFSA.

Another way to control the frame size Lr is to use the idea of conventional Q algorithm
for DFSA. Specifically, Lr is controlled as follows

Lr =

⎧⎪⎪⎨
⎪⎪⎩

2Lr−1 if Ir−1 ≥ 1 and nest,r ≥ 2Lr−1,

Lr−1 if Ir−1 ≥ 0 and Lr−1 ≤ nest,r < 2Lr−1,
Lr−1

2 if Ir−1 ≤ 0 and Lr−1
2 ≤ nest,r < Lr−1,

Lr−1
4 if Ir−1 ≤ −1 and nest,r <

Lr−1
2 ,

(11)

In this case, the algorithm is called Q-based PDFSA.

4 Implementation of PDFSA Using Transmit Power Control

In PDFSA and PFSA protocols, tags need to be smart enough to cope with the transmission
probability. Indeed, to implement PFSA for the tag set cardinality estimation, Phillips I-Code
RFID smart tags [32], which can hash their IDs into the range [1, 	L/p
], where 	X
 rounds
the elements of X to the nearest integers greater than or equal to X , is used in [29]. Then, if
the hashed value is smaller than L , the tag responds in the corresponding slot, otherwise it
does not respond in the frame, thereby resulting in a transmission probability of L

L/p = p.
However, since such a processing ability is not equipped in tags of common RFID systems
[1], PFSA as well as PDFSA can not be directly applied to existing systems.
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Here, we consider a practical way to implement PDFSA in common RFID systems, taking
advantage of the fact that, in general, a tag responds to the reader only if its received signal
power is strong enough for activation and signal decoding, or in other words, the tag’s
instantaneous Signal-to-Noise Ratio (SNR) is greater than the tag’s sensitivity threshold.
Indeed, an European Union tag operating at 868 MHz requires 50 microwatts to respond
from a distance of about 3.25 m, under ideal conditions [19], and hence, transmit power
control methods can be used to resolve RFID collision problems [22,31]. Specifically, in Ali
et.al. [22], propose a novel approach for solving passive tag collision, namely the Power-based
Distance Clustering (PDC) in which transmit power is controlled to cluster and identify the
tags in distance ascending order from the reader. In [31], another method called transmission
power control for collision arbitration (TPC-CA) is proposed to reduce redundant reader
collisions. In our algorithm, the transmit power will be utilized to control the number of
tags responding to the reader in each reading round such that the expected number of the
contention tags is equal to the frame size. On the other hand, since the received SNR largely
depends on the assumed channel model, we present transmit power control methods for a
flat Rayleigh fading channel model and an AWGN channel model, separately.

4.1 PDFSA in Flat Rayleigh Fading Channel

The propagation model in this subsection will be assumed to be flat Rayleigh fading without
effects of path-loss phenomenon. Specifically, the received signal model for tag i is described
as

yi = √
Phi s + vi , (12)

where s, P and hi are the transmitted signal from the reader with zero mean and unit variance,
the transmit power and the fading coefficient with hi ∼ CN (0, 1), respectively. vi is an
AWGN with vi ∼ CN (0, N0). The model will be appropriate for indoor RFID applications
where the channel is scattering rich and the transmission is considered to be short range. Tag
i’s instantaneous SNR for given hi can be written as

SNRRayleigh
i = Ph2

i

N0
. (13)

Then, suppose that tag i responds to the reader only if its instantaneous SNR is greater than
a given threshold i.e., SNRRayleigh

i > γ , where γ is the tag’s sensitivity threshold and is
assumed to be the same for every tag. The probability that a tag participates in the contention
can be derived as

Pr
(

SNRRayleigh
i > γ

)
=

∞∫
γ N0

P

e−x dx = e− γ N0
P . (14)

Hence, the transmit power P can be used to control the transmission probability as

p = e− γ N0
P .

Before the r th reading round, suppose that the observations Er−1, Sr−1 and Cr−1 are
available so that the total number of undetected tags can be estimated. For example, if we
employ Schoute method in (9), we have

nest,r = (Sr−1 + 2.39Cr−1)e
γ N0
Pr−1 − Sr−1, (15)
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Algorithm 2 TPC/Rayleigh
1: Initialize Lr , γ, Pr = Pmax for the first reading round (r = 1), and observe E1, S1 and C1
2: while at least one tag is not identified do
3: r = r + 1
4: Find nest,r and Lr = 2�log2(nest,r )�
5: Pr = γ N0

log
( nest,r

Lr

) (if Pr > Pmax then Pr = Pmax)

6: Broadcast Lr using Pr , and observe Er , Sr and Cr
7: end while

where Pr−1 is the transmit power in the (r − 1)th reading round. Then, the frame size in the
r th reading round Lr can be determined by using (8). Finally, the transmit power is obtained
by

Pr = γ N0

log
(

nest,r
Lr

) . (16)

Note that there is a restriction on the maximum transmit power in general, and Pr in (16)
might be greater than the maximum value Pmax. Thus, if Pr > Pmax, then we set Pr =
Pmax. Also, note that we set P1 = Pmax so that as many tags as possible respond to the
request to obtain the information of the total number of tags in the range. The algorithm
is summarized in Algorithm 2, which we call Transmit Power Control in Rayleigh fading
channel (TPC/Rayleigh). In addition, the frame size can also be determined by using (11).

4.2 PDFSA in AWGN Channel

In this subsection, all the tags will be assumed to be uniformly distributed in a circle with
radius R1 centered at the reader. The received signal model for tag i in AWGN channel is
described as

yi =
√

Pli −ηs + vi , (17)

where η is the path-loss exponent and li is the distance from tag i to the reader. The tag i’s
SNR can thus be given by

SNRAWGN
i = Pli −η

N0
. (18)

We suppose that tag i is in the range covered by the reader with transmit power P if SNRAWGN
i

is greater than or equal to the threshold γ . In other words, if P ≥ N0li ηγ , tag i responds
to the reader, otherwise, it does not. Hence, the transmit power can be used to control the
number of tags to respond. We denote Ar the area covered by Pr , which is the transmit power
of the r th reading round, where all the tags within Ar respond, and nAr

est the estimated number
of undetected tags in Ar . nAr

est can be obtained by any estimation method such as Vogt method
in (3) or Schoute method in (4) using observations Er , Sr and Cr .

We now describe how to control the frame size and the transmit power in each reading
round. In particular, the initial transmit power is set to the maximum value P1 = N0 Rη

1γ :=
Pmax, which covers the circle with radius R1 so that all the tags respond. The reader observes
E1, S1, C1, and hence the total number of undetected tags nest,2 is estimated where nA1

est =
nest,2 after the 1st reading round.

In the 2nd reading round, the frame size is determined by L2 = 2�log2(nest,2)�. To obtain
the optimal CUE, the transmit power P2 is controlled so that the expected number of tags
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(a) L3 nA2
est (b) L3 nA2

est

Fig. 2 Transmit power control in AWGN channel-The 3rd reading round

responding to the reader is equal to the frame size L2. On the other hand, since P1 = N0 Rη
1γ ,

all tags are detected with the same probability in the 1st reading round regardless of the tags’
positions. Thus, the distribution of undetected tags before the 2nd reading round is also
uniform, where the estimated number of undetected tags in A1(n

A1
est) is nest,2. In other words,

denoting R2 the communication radius in the 2nd reading round, we have L2/nest,2 = R2
2/R2

1 .

Hence, from (18), we obtain P2 = P1
(
L2/nest,2

)η/2. After observing E2, S2 and C2, nA2
est

is estimated. Then, the total number of undetected tags in A1 before the 3rd reading round

is estimated as nest,3 =
(

nA2
est + S2

)
(P1/P2)

2/η − S2 since (P2/P1)
2/η is the ratio of the

number of undetected tags between A2 and A1. Note that we only use the latest observations
(E2, S2, C2) for the estimation of the number of undetected tags for simplicity, although it
could be possible to improve the estimation by using all the observations obtained. At the
end of the 2nd reading round, the estimated number of undetected tags in A1 is updated by
nA1

est = nest,3.
In the 3rd reading round, the frame size is determined as L3 = 2�log2(nest,3)�, and the

transmit power P3 is also controlled so that the expected number of undetected tags in the
communication range is equal to L3. We separate this situation into two cases corresponding
to the value of L3 as follows

– L3 ≤ nA2
est :

In this case, P3 will be set as P3 ≤ P2, as shown in Fig. 1a. Since the tag distribution

in A2, and hence A3, is uniform, P3 can be determined as P3 =
(

L3/nA2
est

)η/2
P2.

Besides, the estimated number of undetected tags outside A2 is nA1
est − nA2

est , while the

number of undetected tags in A2 is re-estimated by
(

nA3
est + S3

)
(P2/P3)

2/η − S3. Hence,

the estimated total number of undetected tags before the 4th reading round is nest,4 =
nA1

est − nA2
est +

(
nA3

est + S3

)
(P2/P3)

2/η − S3. The numbers of undetected tags in A1 and

A2 are updated as nest,4 and nA2
est − S3, respectively.

– L3 > nA2
est :

P3 will be set to P2 < P3 ≤ P1 as shown in Fig. 2b. Let Ax\Ay denote the area inside the
circle covered by Px but outside the circle covered by Py . We can see that the undetected
tag density in A1\A2 is uniform, while the numbers of undetected tags in A1\A2 and
A3\A2 are nA1

est − nA2
est and L3 − nA2

est , respectively. Thus, P3 and nest,4 can be obtained as
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Algorithm 3 TPC/AWGN

1: Initialize Lr , γ, Pr = N0 Rη
0γ, η = 3 for the first reading round (r = 1), observe E1, S1 and C1 and

determine nest,2 = n
A1
est

2: while at least one tag is not identified do
3: r = r + 1 and Lr = 2�log2(nest,r )�

4: Find Pu , Pv and Pr =

⎛
⎜⎜⎝P

2
η

u +

(
Lr −nAu

est

)(
P

2
η

v −P
2
η

u

)

nAv
est −nAu

est

⎞
⎟⎟⎠

η
2

5: Broadcast Lr using Pr , and observe Er , Sr and Cr (r ≥ 2)

6: nest,r+1 = n
A1
est − nAv

est + nAu
est − Sr +

(
nAr

est +Sr −nAu
est

)(
P

2
η

v −P
2
η

u

)

P
2
η

r −P
2
η

u

7: Update n
A1
est , . . . , n

Ar−1
est

8: end while

P3 =

⎛
⎜⎜⎝P

2
η

2 +

(
L3 − nA2

est

)(
P

2
η

1 − P
2
η

2

)
(

nA1
est − nA2

est

)
⎞
⎟⎟⎠

η
2

, (19)

and

nest,4 = nA2
est − S3 +

(
nA3

est + S3 − nA2
est

)(
P

2
η

1 − P
2
η

2

)
(

P
2
η

3 − P
2
η

2

) . (20)

On the other hand, since all tags in A3 are detected in the 3rd reading round with the
same probability, the numbers of undetected tags in A1, A2 are updated as nest,4, nA2

est −
S3nA2

est/L3, respectively.

We now generalize the proposed method to the r th reading round by explaining how to
control the frame size Lr and the transmit power Pr . In particular, after the (r − 1)th reading
rounds, the estimated total number of undetected tags nest,r is available, so the frame size
Lr is determined by Lr = 2�log2(nest,r )�. Then, for given Lr , we find the largest Au and the
smallest Av such that nAu

est < Lr ≤ nAv
est (if no such Au exists, we set Pu = 0 and Au = ∅). It

implies that Pu < Pr ≤ Pv ≤ P1. As the undetected tag distribution in Av\Au is uniform,
Pr and nest, r+1 are determined by

Pr =

⎛
⎜⎜⎝P

2
η

u +

(
Lr − nAu

est

)(
P

2
η

v − P
2
η

u

)

nAv
est − nAu

est

⎞
⎟⎟⎠

η
2

, (21)

and

nest,r+1 = nA1
est − nAv

est + nAu
est − Sr +

(
nAr

est + Sr − nAu
est

)(
P

2
η

v − P
2
η

u

)

P
2
η

r − P
2
η

u

. (22)
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Fig. 3 Average number of
slots/tag-Log based algorithm

On the other hand, since all tags in Ar are detected in the r th reading round with the same
probability, the numbers of undetected tags in A1, Ab for all Pv ≤ Pb < P1, and Ag for all

Pg ≤ Pu are updated as nest,r+1, nAb
est − Sr , and n

Ag
est − Sr n

Ag
est /Lr , respectively.

Note that, as mentioned before, the frame size in this algorithm can also be found by
(11), while the tag set cardinality can be estimated by any estimation method. The proposed
protocol is summarized in Algorithm 3, which we call Transmit Power Control in AWGN
channel (TPC/AWGN).

5 Simulation Results

In this section, the performance of the proposed method under different system parameters
will be evaluated and compared with that of the conventional DFSA and PFSA via computer
simulations. The frame size in PFSA can be an arbitrary constant during the identification
process, however, it will be set to the initial frame size of the other methods. On the other
hand, the total number of tags is assumed to range from 100 to 800, while the initial and the
maximal frame sizes of the proposed method and DFSA are set to 128 and 256, respectively.
In order to estimate the tag set cardinality, Vogt method will be utilized for the 1st reading
round, while Schoute method is used from the 2nd reading round for simplicity. This is
because we cannot assume Lr = nr or Lr = pr nr , which are required for Schoute method,
in the first reading round. The simulation results are obtained by Monte Carlo method with
105 runs.

In Fig. 3, we plot the average number of slots taken per tag to identify all the tags versus
number of tags of DFSA with Log algorithm, PFSA and Log-based PDFSA. The performance
of all the methods when n is known (DFSA-Perfect n, PFSA-Perfect n, PDFSA-Perfect n)
is also presented. We can see that, when n is large (n ≥ 600), the performance of PFSA is
better than that of DFSA because p is utilized efficiently to reduce the collisions. However,
for smaller values of n, since 0 < p ≤ 1, PFSA takes more slots to detect a tag than DFSA.
On the other hand, PDFSA, by dynamically controlling both L and p to obtain the optimal
CUE in every reading round, outperforms the conventional methods. Also, PDFSA-Perfect n
outperforms PFSA-Perfect n and DFSA-Perfect n, which implies that PDFSA shows better
achievable performance than PFSA and DFSA.

The performance of DFSA with Q algorithm and Q-based PDFSA is also evaluated and
is compared with that of PFSA in Fig. 4. Similar to the previous case, the proposed PDFSA
outperforms the conventional methods.Note that the performance of DFSA-Perfect n with Q

123



2958 C. T. Nguyen et al.

Fig. 4 Average number of
slots/tag-Q based algorithm

Fig. 5 Average number of
slots/tag-Q based DFSA with
different cases of granularity

algorithm is not discussed in this paper since Q algorithm does not directly use the estimated
number of tags to vary the frame size. Also, the average number of slots/tag of Q-based
DFSA is dropped abruptly at n = 400 because of the granularity of the frame size in the
Q algorithm. Figure 5 shows the performance of Q-based DFSA with different cases of the
granularity i.e., the frame size in the next reading round is selected only from one of three
options i.e., L , L/a and aL with different values of a predefined constant a, where L is the
frame size in the current reading round. We can see that, for small values of a(a < 1.5), the
average number of tags no longer drops abruptly.

We now re-simulate the performance of all the methods without limitation of the maximal
frame size i.e., it is under the form 2Q but with Q ∈ N, and the results are shown in Figs. 6
and 7. We can see that the performance of PFSA is the same as the previous cases because
the frame size is constant. On the other hand, the performance of DFSA is improved for large
values of n because the number of collisions is reduced. In both figures, PDFSA achieves the
best performance among the evaluated methods. However, from Fig. 6, we can see that the
performance of DFSA-Perfect n is almost the same as that of PDFSA-Perfect n, while PDFSA
largely outperforms DFSA for the case without ideal knowledge on n. This is because PDFSA
can always set the frame size to be equal to the number of tags participating in the contention
by using the probability, which is required by Schoute method for accurate estimation, while
this cannot be achieved necessarily with DFSA due to the limitation of the frame size to 2Q .
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Fig. 6 Average number of
slots/tag-Log based algorithm
(without limitation of maximal
frame size)

Fig. 7 Average number of
slots/tag-Q based algorithm
(without limitation of maximal
frame size)

Fig. 8 Transmit power
control-Log based algorithm

Thus, the improved accuracy of the tag set cardinality estimation will be the major cause of
the performance gain of the proposed PDFSA against DFSA in this case.

The performance of TPC/Rayleigh and TPC/AWGN is compared with that of DFSA and
PDFSA in Figs. 8 and 9. The maximum transmit power in TPC/Rayleigh is assumed to be
equal to that in TPC/AWGN. We can see that TPC/Rayleigh outperforms DFSA regardless
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Fig. 9 Transmit power control-Q
based algorithm

of the ways determining the frame size, and the performance of TPC/Rayleigh can be com-
parable to that of PDFSA. The degradation of the performance of TPC/Rayleigh from that of
PDFSA is mainly due to the limitation of the maximum transmit power, which results in the
limitation on the probability. In TPC/AWGN, not only the total number of undetected tags
in the whole range but also that in each region has to be estimated. Hence, the performance
of TPC/AWGN is worse than that of TPC/Rayleigh especially when the total number of tags
is large, while the performance is still far better than that of the conventional DFSA.

6 Conclusion

In this paper, we have proposed an efficient RFID tag identification protocol named PDFSA
to deal with the identification problem with a large number of tags while the choice of the
frame size is constrained. In the proposed method, the transmission probability that each tag
participates in the contention and the frame size are dynamically controlled to obtain the
optimal CUE. The protocol is also studied under wireless communication scenarios such as
AWGN and flat Rayleigh fading channels, where practical ways of controlling the transmis-
sion probability are proposed by means of the transmit power control. The proposed methods
are evaluated under different system parameters via computer simulations, and compared
to the performance of conventional methods. From all the results, it can be concluded that
the proposed approach of controlling both frame size and probability (or transmit power) is
effective to achieve efficient RFID tag identification.
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