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Abstract

Current research has proposed a non-parametric speech
waveform representation (rep) based on zeros of the z-transform
(ZZT) [1] [2]. Empirically, the ZZT rep has successfully been
applied in discriminating the glottal and vocal tract components
in pitch-synchronously windowed speech by using the unit cir-
cle (UC) as discriminant [1] [2]. Further, similarity between
ZZT reps of windowed speech, glottal flow waveforms, and
waveforms of glottal flow opening and closing phases has been
demonstrated [1] [3]. Therefore, the underlying cause of the
separation on either side of the UC can be analyzed via the
individual ZZT reps of the opening and closing phase wave-
forms; the waveforms are generated by the LF glottal flow
model (GFM) [1]. The present paper demonstrates this cause
and effect analytically and thereby supplement the previous em-
pirical works. Moreover, this paper demonstrates that immisci-
bility is variant under changes in frame lengths; lengths that
maximize or minimize immiscibility are presented.

Index Terms: Zeros of the z-transform, LF glottal flow model,
opening/closing phase separation

1. Introduction

A non-parametric speech signal representation (rep) dubbed
ZZT (zeros of the z-transform) has been proposed in recent
studies [1] [2] [4]. In the ZZT rep, the signal sequence represent
a coefficient sequence in a real univariate polynomial, and the
ZZT rep is obtained by estimating the zeros of this polynomial
function.

Empirical studies on source/filter separation by ZZT,
demonstrate that the ZZT rep related to the glottal flow opening
phase lie outside the unit circle (UC), and the ZZT rep related to
the vocal tract filter and glottal flow closing phase lie inside the
UC when a suitable pitch synchronous windowing technique is
employed [1] [4]. With the windowing technique, ZZT reps of
speech waveforms are similar to ZZT reps of glottal flow wave-
forms alone and the separation around the UC in the complex
plane remains [1]. Moreover, similarity between ZZT reps of
entire glottal flow waveforms and ZZT reps of their individ-
ual glottal flow opening and closing phases have been demon-
strated [3]. Therefore, analysis of the underlying cause of the
source/filter separation on either side of the UC can be con-
ducted on the individual ZZT reps of the opening and closing
phases. In the studies [1] and [2], the non-interactive paramet-
ric LF glottal flow model (GFM) [5] was used to generate the
glottal flow waveforms. In order to extend the previous studies,
the LF GFM is also used in the present paper.

In the present paper, it is analytically demonstrated that the
ZZT rep of the LF GFM opening phase lie outside the UC and
the ZZT rep of the closing phase lie inside the UC. This prop-
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erty is dubbed immiscibility as the ZZT reps are disjoint sets
in the complex plane. Further, this paper demonstrates that the
ZZT domain immiscibility is variant under changes in the frame
length, i.e. the z-transform coefficient sequence length, N. Val-
ues of /V that maximize or minimize immiscibility are found.

The remainder of this paper is organized by describing the
fundamentals of the study in section 2; section 3 presents an
analysis of immiscibility as a function of the z-transform coef-
ficient sequence length, and in section 4 the analysis is exem-
plified. The results in section 5 present coefficient sequence
lengths that maximize or minimize immiscibility, and in the
closing section, section 6, the results are discussed along with
future perspectives.

2. Fundamentals
2.1. LF glottal flow model
The LF GFM is defined by the derivative of the glottal flow as,

Definition 1 LF glottal flow model [5]

Eoeatsin(wgt), to <t <te
e(t) = _g_z (e—eu—te) _ e—e(tc—te)) e <t <t
0, te<t<T

Figure 1 illustrates a LF GFM waveform period, 7', along
with the commonly associated temporal landmarks.

In def. 1, the LF GFM is defined by three constituents: (i)
an opening phase, e, (t) = e(t) for to < ¢ < t., (ii) a closing
phase, e.(t) = e(t) for te < t < t., and (iii) a shut phase,
es(t) =e(t) forte <t <T.

The opening phase models the opening of glottis from to,
the glottal opening instant (GOI), to t., the glottal closure in-
stant (GCI) where the waveform yields its maximum negative
amplitude, — F. The parameter ¢, = 7 /w, marks the location
of maximum glottal airflow.

The closing phase models the closing of glottis after the air-
flow termination at GCI, i.e. at t., to total closure at ¢.. The pa-
rameter ¢, determines the duration from t. to the zero crossing
of the tangent to e.(t.), i.e. tq is a measure of glottal closure
abruptness. Finally, the shut phase simply models total closure
of the glottal folds from the instant . to to/.

2.2. Zeros of the z-transform

In accordance with [1] [2] [4], the ZZT rep is defined as an all-
zero rep of the z-transform of a signal sequence, i.e.

Definition 2 Zeros of the z-transform
The zeros of the z-transform of a sequence () 2’;01 C R are
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Figure 1: 4 LF GFM waveform period, T, with the commonly
associated temporal landmarks.

defﬁ”edas 21y 22y .05 Zm € C \ {0} such that
X(2i) = 22];01 Tnz, " =0forl <i<m.

Generally, a z-transform can be factored as,

N—
o Hm:i(z — Zm)
L(N—1)

N-1
X(2) = Z Tnz "
n=0

Provided xo # 0.

That is, the ZZT is an unordered sequence of the zeros of
the assumed polynomial function in the numerator deducted by
any poles, i.e. zeros at zero in this case, as these lead to an
undefined z-transform.

The ZZT-transformation is denoted p R — C,
p((xn)DN_1) = (2m)NZ17F, where z is a polynomial coeffi-
cient sequence ordered in descending powers, z is a sequence
of non-zero zeros and k is the multiplicity of a zero at zero. The
inverse ZZT transformation is either a true inverse (up to order
and scaling), p—*, if k = 0 as p becomes bijective, or an inverse

relation, p;r, if & # 0 as p becomes non-injective.

2.3. ZZT representation of opening and closing phase

Let p(a, z) denote a univariate polynomial of (N — 1)’th de-
gree with variable z € C and the sequence of coefficients
(an)N5' C R ordered in descending powers. If e, (t) is dis-
cretized into the sequence eo = (eon) =y, the ZZT rep be-
comes

Expression 1 ZZT of LF GFM opening phase [3]

ZZT : 2 = € p(ap), 2m # 0,e°F* m e [1; N — 2]
where

p(2p, 2) = sin(k)z" — sin(kN)z + sin(k(N — 1)),
k=wy=m/t,

Similarly, if e.(t) is discretized into the sequence ec
(ecn)NZ4, the ZZT rep becomes
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Expression 2 ZZT of LF GFM closing phase [3]
ZZT : zm = p(xp), 2m # 0,1, ", m e [1; N —1]

where

p(zp,2) = (1 — cg)ZNJrl + (626716 — cl)zNJr
(ca —cre ™)z + (cre ™™ — cae™¥),

N

In order to demonstrate the property of immiscibility of the
ZZT reps in expressions 1 and 2, theorem 1, 2 and 3 are intro-
duced as they state the modulus bounds of polynomial zeros.
Theorem 1 Cauchy bound [6]

All zeros of a complex polynomial,
n—1
pla,z) =2" + Z anz®
k=0
lie in the disk |z| < X where A\ =14+ maz {|ar|}
0<k<n—1

Theorem 2 Cauchy bounded annulus [7]

Let p(a, z) be a polynomial with zeros z1, ..., zm ordered as
0 < |z1] € ... < |zm|. Let X" denote the Cauchy bound of
pla,z) and \i the Cauchy bound of z™p(a,1/z). Then the
following inequalities hold,
.
(21/m — 1)\,

Theorem 3 and 1 are equivalent, but theorem 3 does some-
times yield a tighter bound [8] which is the case in this paper.
Theorem 3 Alternative Cauchy bound [8]

All zeros of a n'’th degree complex polynomial,

Ai <lm| < and 2V Z )N < |zm| < A°

n—1
pla,z) =2" + Z apz"
k=0

lie in the disk |z| < Xa where Ao = max {1, S |ail}

The subscript a on A denotes the alternative Cauchy bound.

3. Immiscibility Invariance

In this section, the Cauchy bounds, A, of the opening and clos-
ing phases are analysed. In order to investigate the immiscibility
invariance under variations in polynomial coefficient sequence
lengths, N, the bounds are expressed as functions of N. In the
analysis N € R4 although N € Z in theorem 1, 2, and
3. Letting N be a non-integer real must only be considered as a
reasonable theoretical interpolation.

3.1. Analysis of Cauchy bound of opening phase

The lowest Cauchy bound for an annulus containing all zeros is
AZH(N) (cf. th. 2). IEAL (V) > 1 all zeros lie outside the UC.
As the e” factor is just a real scaling of the zeros of p(xy, ) in
exp. 1, A\71(N) of p(x, z) can be analysed in isolation heeding

M= S (1/ATH(N) = A (N)) < a > In(A.(N)) (3.1)

to ensure all zeros of the opening phase lie outside the UC. Note
the sampling period b = 1 (cf. exp. 1). A7 ' (N) of p(zp, 2)

yields;
hE

(3.2)

sin(k)
sin(k(N—1)) |’

sin(kN)
sin(k(N—1))

AN = (1+mam{

where k=wy = 7/tp



3.1.1. Global minima

The global minima points of A\, *(NN) are
lim |—2n) | _
Neat sin(k(N—1)) _
lim sin(kN) - 00 = Nlltg )\ ( ) =0
Noat sin(k(N—1))
where a = (k+qm)/k =14 qtp, ¢ € 7Z (3.3)

3.1.2. Global maxima

The global maxima points of \; ' (V) are at the intersections

sin(k)
sin(k(N—1))
N==x1l4gqt, V N=1t,£1+qt, =
N=—-14qt, VN=t,—1+qty, q€Z (3.4)
The solutions N = 1V N = t, 4+ 1 are deducted as they

coincide with the global minima points, i.e. singularities. The
global maxima points lead to the following maximum value;

sin(kN)
sin(k(N—1))

‘ & |sin(k)| = [sin(kN)| <

=

_ 1
N=—1 v  |2cos(n/tp)

N=tp—1

_ sin(k)
sin(k(N—1)) ‘

|2c08(n/tp)]
[2cos(m/tp)|+1

M=) =2 - 1) = (35

Note that choosing N equal to a global max point does not
guarantee the best possible separation, it merely puts the best
possible lower bound on the separation distance; this is due to
the inequalities in theorem 1, 2, and 3.

3.2. Analysis of Cauchy bound of closing phase

The upper modulus bound for the ZZT rep of the closing phase
stated in expression 2 can be found by either of the theorems 1
or 3. Theorem 3 will, however, in some situations yield a tighter
bound [8]; this is the case in the present closing phase analysis.

Aa(N) = 69
—k —kN
coe " —cq co—cle cre PN —che™
max{l, c1—c2 + c1—ca + c1—c2
_ —ete _ ,—€eN e(—te—1) __—€eN
max{l,e € + |e c_—e |+|e c e |}
1—e~€tc
t —e(te—t
where c1 = ee, ey = e teTte) | —¢

3.2.1. Global minimum

Clearly, the global minimum value of A, (
is achieved at the intersection

N) is 1; the minimum

ey |675tﬁ_67£N|+|ee( te— 1)_6751\7'

1—e—€tc
— 1 _
= ln(2

The approximation N ~ —In(1)/e is sufficiently accurate
for physically realistic LF GFMs as € > 300 [3] (cf. eq. 4.4).

le7 4+ e_e(tc+l)) /€ 3.7)

3.2.2. Global maximum

For completeness, the global maximum point of Ao (V) is 0; the
maximum value is

—ete _675N|+|e<<7tc71)_67<N|

lim e “+ |e
1—e—cte

N—0+

e 414 L(t‘“) (3.8)

—e—ctc
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For practical LF GFM instances, the limit value is approxi-
mately 2 as € > 300 and ¢, > 0.002 [3].

4. Numerical Experiment

In this experiment, the lower Cauchy bound of the opening
phase and the upper Cauchy bound of the closing phase are
illustrated as functions of the coefficient sequence length V.
Again, N € R4 although N € Z, 1 in theorem 1, 2, and 3.
Letting N be a non-integer real must only be considered as a
reasonable theoretical interpolation.

The LF GFM parameters are set to the values applied in the
waveform in figure 1; they are

to = 0.00000s
to = 0.00031s

t, = 0.00380s
t = 0.00800s

te = 0.00480s
FEe = 1.00000Pa
4.1. Cauchy bound of opening phase

The lower Cauchy bound of the LF GFM opening phase (cf.
eq. 3.2) is illustrated along with the lower bound of the alpha
parameter (cf. ineq. 3.1) in figure 2.

3
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Figure 2: The black line illustrates the lower Cauchy bound
of the LF GFM opening phase. A global min point (cf. eq.
3.3) is indicated by the vertical dashed line. The vertical and
horizontal dotted lines indicate a global max point (cf. eq. 3.4)
and the global max value (cf. eq. 3.5) respectively. The grey
line shows the lower bound of o (cf. ineq. 3.1). The grey region
exemplifies a feasible neighbourhood for N (cf. ineq. 4.3).

Figure 2 illustrates that A\;'(N) — 0 = a — oo why
N must be chosen outside a small neighbourhood of the global
min points and preferably inside a small neighbourhood of the
global max points. By choosing N according to these guide-
lines, the constraint on « is minimized and the opening/closing
phase separation guarantee around the UC maximized. Con-
cretely, by def. 1 the o parameter is computed;

e(te)

a=In (m) /te = 543.64280 (4.1)

As % is constant under changes in absolute sound pres-
sure level, « is a function of ¢. and ¢,. The a-value in eq. 4.1
leads to the following feasible neighbourhood for IV,

)\*_I(N) > (6—543&3428-(}1:1) ~ 8 ) 10—237) =
NeRyy\[1+qgtp+d],q€Z, =0

(4.2)



In this example, NV can practically be chosen freely with ex-
ception of the global min points at N = 1 + gt,,. Of course, N
must be an element of Z 4 and is chosen in combination with
frame length and sampling frequency, e.g. 30ms of data sam-
pled at 16kHz = N = 30'1})%%00 = 480. Note the sampling
period A = 1 in ineq. 4.2 (cf. exp. 1 and ineq. 3.1). Letting

h = 0.001 yields;

A H(N) > (e 5436428 (h=0.001) 1 ( 58062) = (4.3)
N € [—1+ qt, — 82.68%otp; —1 + qt,, + 86.80%0t,], ¢ € Z

The feasible neighbourhood for /V in ineq. 4.3 is shown in
fig. 2.

4.2. Cauchy bound of closing phase

In order to compute the upper Cauchy bound of the LF GFM
closing phase (cf. eq. 3.6), the parameter ¢ must be estimated.
This is done iteratively by the following relationship [5],

—e(te—te)

el =1—¢ & er3261.44143 4.4

Figure 3 illustrates the upper Cauchy bound and that the
global min point is reached at N < t. << 1; thus, only
the opening phase constraints on /N must be considered when

choosing a suitable sequence length.

22

Modulus

0.8 n | n
0 2

Number of coefficients, N X107

Figure 3: Upper Cauchy bound of LF GFM closing phase. The
global min point in eq. 3.7 is indicated by the vertical dashed
line; the horizontal dashed line indicates the global min value.

5. Results

In the present paper it has been demonstrated that the lower
bound of ZZT-domain immiscibility of LF GFM opening and
closing phases is periodically variant under changes in the z-
transform coefficient sequence length, i.e. frame length, N.

To maximize the lower immiscibility bound, i.e. maximize
the opening/closing phase separation guarantee, /N must equal
a global max point of the lower Cauchy bound of the LF GFM
opening phase, (cf. eq. 3.4). At these ¢,-periodically recur-
ring global max points, the lower Cauchy bound of the opening
phase ZZT rep, Ay ' (IN), reaches its max value (cf. eq. 3.5). To
guarantee that the ZZT rep of the opening phase lies outside the
UC, the constraint o > In(A.(V)) must be satisfied (cf. def.
1 and eq. 3.1); by choosing /N equal to a global max point, the
constraint on « is minimized. In practical terms, a well-chosen
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N is contained in a small neighbourhood around a max point.
The size of the neighbourhood is determined by ¢, and «.

To minimize the opening/closing phase separation guaran-
tee, N must equal a global min point of the lower Cauchy bound
of the opening phase (cf. eq. 3.3). At the ¢,-periodically recur-
ring global min points, the guarantee vanishes and the ZZT rep
of the opening phase does not have a min modulus bound, i.e.
the Cauchy bound is zero. In practical terms, N must be chosen
outside a small neighbourhood around the min points as « is up-
per bounded in a physically realistic LF GFM instance; feasible
neighbourhoods are exemplified in ineq. 4.2 and 4.3.

The global min value, 1, of the upper Cauchy bound of the
closing phase is reached at N < t. << 1 (cf. eq. 3.7); thus,
the ZZT rep of the closing phase will always be within or on the
UC. Therefore, only the opening phase constraints on N must
be considered when choosing a suitable sequence length. The
global maximum value, = 2 for practical LF GFM instances, is
only interesting from a theoretical point of view as it is reached
at N = 0 (cf. eq. 3.8).

6. Discussion

Section 3 and 4 demonstrate how to choose a z-transform co-
efficient sequence length, i.e. frame length, N, that maximize
or minimize the separation guarantee. It must be emphasized
that the max separation guarantee does not guarantee the best
possible separation, but the best possible lower bound on the
separation distance (cf. th. 1, 2, and 3). In practical situations,
the present authors have witnessed that opening/closing phase
separation around the UC is the predominant situation even if
guidelines on how to choose NV is not considered.

The guidelines on how to choose N may be applied in
studies as [1], [2] and [4] where separation maximization by
ZZT rep is relevant. In these studies, speech waveforms are
windowed synchronously with the GCI by windows of two-
pitch-period length, i.e. frames from neighbouring GClIs are
determined dynamically per pitch and analyzed; this results in
varying frame and window lengths. To maximize separation,
these frames could also be dynamically adjusted according to
the guidelines.
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