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Abstract- In this contribution, we derive a probability
distribution suitable for characterizing bi-azimuth (az-
imuth of arrival and azimuth of departure) direction
dispersion of individual path components in the response
of the propagation channel. This distribution belongs to
the family of generalized von Mises Fisher distributions.
The elements in this family maximize the entropy under
the constraint that the expectations and correlation matrix
of the directions are known. The probability density
function (pdf) of the proposed distribution is used to
describe the bi-azimuth power spectrum of individual path
components. An estimator of the parameters of the pdf is
derived and applied to characterize the spreads in both
azimuth of departure and azimuth of arrival, as well as
the correlation between both azimuths of individual path
components Preliminary results from an experimental
investigation demonstrate the applicability of the proposed
characterization in real environments.

Index Terms-Path components, bi-azimuth dispersion,
von-Mises-Fisher distribution, maximum-likelihood esti-
mation.

I. INTRODUCTION

Due to the heterogeneity of the propagation environ-
ment, the received signal at the receiver (Rx) of a radio
communication system is the superposition of a number
of components. Each individual component, which we
call "path component", is contributed by an electromag-
netic wave propagating along a path from the transmitter
(Tx) to the Rx. Along this path, the wave interacts with
a certain number of objects referred to as scatterers.
Due to the geometrical and electromagnetic properties
of the scatterers, the individual path components may
be dispersive in delay, direction of departure (DoD),
direction of arrival (DoA), polarizations, as well as in
Doppler frequency when the environment is time-variant.

This work was jointly supported by the Network of Excellence in
Wireless COMmunications (NEWCOM) and Elektrobit Testing Oy.

Path components can be observed in the response
of the channel and any characterizing function derived
from this response. As an example, in Fig. 1 we show
two estimated power spectra with respect to azimuth
of departure (AoD) and azimuth of arrival (AoA) at
specific delays calculated from measurement data using
the Bartleff beamformer L2]. In the sequel, we refer to
these spectra as (bi-azimuth) Bartlett spectra. A certain
number of spots can be observed. Each spot corresponds
to either one or more specific path componens. It can
be observed from Fig. 1 (a) and (b) that the path
components are spread in AoA and AoD. Moreover, they
appear tilted Both effects are due to the geometrical
and electromagnetic properties of the scatterers along the
paths, as well as the response - in particular the limited
resolution - of the measurement equipment.

Recently, estimation of the characteristics of individ-
ual path components have gained much attention. The
conventional approach consists in estimating the channel
response and any characterizing functions derived from
this response An example of the characterizing function
is the power spectrum and a traditional estimate of it
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Fig. 1. Examples of two bi-azimuth Bartlett spectra calculated at
specific relative delays (78 ns, 133 ns) from the correlator output
of the channel sounder [1] in (a) an office, (b) a big hall. In
the calculation, the responses of the Tx and Rx arrays in vertical-
polarization only are considered. The details of the measurement
campaign and measurement setup are provided in Section V.



is the Bartlef spectrum. However, due to the response
of the measurement equipment, the path components are
blurred and consequently, their spreads are artificially in-
creased. In recent years, several model-based estimation
techniques have been proposed to estimate the nominal
azimuth and azimuth dispersion of the path components
at one side of the link [3] [4] [5] These techniques are
based on the assumption that the azimuth power spectra
of individnuai path components exhibit a shape which is
close to that of the probability density function (pdf) of
a certain distribution, like the uniform distribution [4],
the (truncated) Gaussian distribution [3] [4] and the von-
Mises distribution [5].

In this contribution, we propose an entropy-
maximizing bi-direction (i.e. DoD and DoA) distribution
to characterize bi direction dispersion by means of the
mean directions and correlation matrix between both
directions. Such distributions have been derived in [6]
and are called generalized von-Mises-Fisher distribu-
tions. We consider the case of horizontal-only propa-
gation. The von-Mises-Fisher distribution is described
by three free parameters (two vector parameters and
one matrix parameter) that we identify. To do so, we
assume that in the case where the path components are
slightly dispersive the bi-azimuth distribution is close to
a two-dimensional (2-D) truncated Gaussian distribution.
Furthermore, we derive a maximum likelihood estimator
for the parameters of the pdf of the von-Mises Fisher
distribution. This estimator is applicable in time-variant
environments, i.e. when fast-fading occurs [7].

The organization of this contribution is as follows. In
Section Il we derive the pdf of the bi-variate von-Mises-
Fisher distribution. Section III presents the signal model
describing bi-azimuth dispersion of path components.
The maximum likelihood estimator of the parameters of
the pdf is derived in Section IV. Section V presents the
result 01 the experimental investigation. Finally conclud-
ing remarks are made in Section VI.

II VON-MISES-FISHER DISTRIBUTION

Following the nomenclature in [8], we use a unit
vector ee to characterize a direction. In the considered
case of horizontal-only propagation, the vector Q has
its initial point anchored at the origin 0 of a coordinate
system specified in the region surrounding the array of
interest, and terminal point located on a unit circle S1
centered at 0. The vector Q is uniquely determined by
its azimuth b. The one-to-one relation between 52 and q$
is

Q=e()[COS (0), sinl) T ( 4)

with [-] denoting transposition.
Among all probability distributions on SI, the von-

Mises distribution appears to be a natural candidate to
describe direction dispersion by individual path compo-
nents, provided the characterization of direction disper-
sion is only by means of the mean direction E[51][8].
The von-Mises distribution shares the same virtue as the
Gaussian distribution, namely it maximizes the entropy
among the family of probability distributions on the
circle with the constraint that the second central moment
is fixed. Notice that the second central moment of a
circular distribution is the direction spread [8]. It is
uniquely determined by the norm of the mean direc-
tion. Indeed, if oT denotes the direction spread, then
au = /1- E[Q2 112 [8] The pdf of the von-Mises
distribution reads [6, Sect 2.1]

1
T

-M2) I (I) exp{{ 2Q l2}
where I-() is the modified Bessel function of the first
kind and order n, , 0 is called the concentration
parameter, and Q e(cs) denotes a unit vector with
azimuth 0 equal to the azimuth of EBQ] The azimuth
distribution induced by the von-Mises distribution via the
mapping (1) has the pdf [9, P 36]

1
f (0) 2 lo() exp{ cos(($ - )}. (2)

By a generalization of terminology, the azimuth prob-
ability distribution with the pdf (2) is referred to the
von-Mises distribution as well.

Note that throughout the paper azimuth variables are
within the range [-iQ Addition and subtraction of
azimuth variables are defined in such a way that the
resulting angle lies in the range -r, ir). When , is large,
typically > 7,

(3)
holds, which leads to the approximation cos(_o )
1_(~1 )2- Inserting this approximation in (2) yields

2VY~~ ~~~NTYJ*)2g9pp.the Gaussian pdf fG($) exp{ ( _)2} [9_P
37].

In the sequel, we derive a bivariate pdf of the DoA
QN and the DoD 522 for horizontal-only propagation. The
symbols with subscript 1 and 2 are with respect to the Tx
array and the Rx array respectively. It is shown in [6] that
the maximum entropy bi-direction distribution when the
expectations E[Qj] and E[Q2] and the correlation matrix
E[jQT] are specified has a pdf of the form

f(52, Q2)) C * exp{a1a 21 + a}T2 + QT 2}, (4)

2

2 _ IIQ - 112
(O 0)

_
Q



where C denotes a normalization factor, a, a2 R2X 1
and A C R2x2. Following [6] we refer to this distribution
as the generalized von-Mises-Fisher distribution.

The parameters a,, a2 and A in (4) are free parame-
ters, the specification of which depends on the particular
problem at hand To find the appropriate expressions of
a,, a2 and A for our particular application, i.e. the
characterization of bi azimuth dispersion we postulate
that, for slightly distribuited pasth components, the hi-
azimuth pdf induced by (4) via the mapping (1) should be
close to the truncated pdf of a 2-D Gaussian distribution:

fG (01 i2) oc exp{ (
1,2 2 z

O
+ _2-0 po 1 0 2

.(5)
(Trl (Tg2 ,TIr (T2)

Notice that the traditional meaning of the parameters ,

cJ2 and p as second-order central moments of a bivariate
Gaussian distribution does not hold any more for the pdf
(5) due to the fact that the azimuth ranges are bounded

In the case where the path components are slightly
dispersive, the approximation in (3) is valid for both AoA
and AoD. In addition, the approximation

(X -1)(2 -4 2) (Q1-2Q1)TR(Q2 - Q2) (6)
holds where

ft B(1,)B(2)'
LCOS(O
-sin(§l

-§2)

§32)

_sin(§3 _2)

cos(3 32) j

The matrix B(§3) is the orthonormal matrix that rotates
the vectore() to [0 1' :H:ence, B() [e- () e(§3)
with e'(§) e( +-Fr/2) denoting the unit vector
portside orthogonal to e(O). The right-hand-side of (6) is
rotational invariant, i.e. it does not change when for any
specific index i E {1,2}, Qj, 2i and e(§3i) are rotated
by an identical arbitrary azimuth.

Inserting (3) and (6) into (5) and identifying (4)
and (5), we obtain after some straightforward algebraic
manipulations

A
ft

1 -2

{1, }, i 7 j

with the definitions ij - r2 i = 1,2. Inserting the
right-hand-sides in (4) yields the sought pdf:

I~ P i~1 2 -T

f(Qi, 92) C exp p2 +

K2 P-PV I{Ki2 T P QRRQK2 (7
p2 1Q2Q2+ p2 2J.Q (7)
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of the bi-azimuth pdf (8) with parameter
' and (a) (ril,i K2,p) (30, 40, 0., (b)

O.

The normalization constant C can be computed from the
expression derived in [10, P. 167] for the general form
(7):.

C - (4 2 I
|r/m

L _r1 2

n -1ul

/T 1-p
K2 P-PVi2

1 p

-1I
From (7) the joint pdf of bi and 2 is calculated to

be

f(§31, (2) §31)

(8)

= CSx2 COS((x yw l
PV J-'2 Y2

J1 -p
K2 - P 'K-1 V20 -

P2 CO os02A An2)
P /1;1I;2 - -

1 - P2 COL[(0 -l01)-J(0 0 -

Fig. 2 illustrates the contour plots of (8) for two
different settings of the parameters tI, i2 and p. It can be
observed that when 'i and i2 are large, the contour lines
are close to tilted ellipses. This is consistent with the fact
that the pdf (8) iL close to a bivariate normal pdf in this
case. When both rj and c2 are small, the contour lines
are still close to ellipses in a range enclosing (§3i §2).
This observation indicates that in this region the pdf (8)
can be approximated by a bivariate normal pdf as well.

III. SIGNAL MODEL FOR BI-AZIMUTH DISPERSION
BY PATH COMPONENTS IN MIMO CHANNEL

SOUNDING

We consider horizontal-only propagation and narrow-
band transmission. The latter condition implies that
the product of the signal bandwidth times the channel
delay spread is much smaller than one. Following the
nomenclature in [8], the continuous-time output signal

p
Ki

) Q-i. iii

I



of the Rx array reads

Y(t) H(t)s(t) + W(t)

=-Jc(02)c1(0j)'h.(t;01) 02)dOjdO20 s(t)

+W(t). (9)

The M2-D complex vector Y(t) E icflvx2 contains the
output signals of the Rx array observed at time instance t.
The matrix H(t) E CA4 N1 represents the time-variant
transfer matrix of the MIMO system. The M11-D vector
s(t) E M1Cmlx denotes the complex envelope of the
transmitted signal. The function h(t; /, f2) is referred
to as the (time-variant) bi-azimuth spread function of
the propagation channel [8]. In a scenario where the
electromagnetic energy propagates from the Tx to the
Rx via D paths, h(tf- 102) can be decomposed as

D

h(t; ,32) Z- hd(t;3i, 2)
d=l

(10)

The summand hd(t; §3, §2) denotes the dth path com-
ponent in h(t; §i §32). The noise component W(t) E
- 1fCVl2 A 1 in (9) is a vector valued circularly symmetric

spatially and temporally white Gaussian process with
component spectral height oT2%. Finally, the complex
vectors c1i() C i( .),.. ,nCim(), ,Ci(mi 3)1' e
( Mi x I I1,2 are the responses of the Tx array (i 1)
and the Rx array (i 2).

Moreover, we make the following assumptions regard-
ing the properties of some components in (9):

a) The channel is sounded during N non-overlapping
intervals of duration T. Thus, the overall sounding
eriod is of the form U7Nn=t tt + T) where

t, denotes the beginning of the nth interval and
j t1TLn-1 I\tn+l >n + T, n- 1..**N.

b) The sounding signal s(t) is known to the
Rx. Its components are orthonormall, i.e.
Jt +S.t)st)Hdt = IMI, E [1..N.]. Here,
I denotes an identity matrix of dimension given
as an index.

c) The transfer matrix H(t) fluctuates oxver the oxver-
all sounding period, but it is constant within in-
dividual observation intervals: H(t) H(t,,)
H11, t 17n tn +T). Similarly, the bi-azimuth

'The orthogonality 0f the signal components can be obtained by
using difterent sounding techniques, such as time-division [11] and
frequency-division multiplexing. It can be also nearly achieved by
using different pseudo-noise (PN) sequences or differentlyshiftede
ver ions of the same PN sequence as the components of the ounding
signal s(t).

spread function hd(t; b1, p2) arising in (10) is
constant within individual observation intervals:
hd (t- 1 02) = hd(tn0102 ) - hdnl(01, 02 )
t E [t7, t7, + T). The processes hd,n(01,02), n E
[1 ..., N], d E 1, . . . D] are uncorrelated com-
plex (zero-mean) orthogonal stochastic measures,
.e

E[hd (i1,0$2)hd'n'b 1(
/ I6)]

Pd (0l 02 )nnl6ddl60 1 - 01)6(0 2

where (.) denotes the complex conjugate, u(.)
and 6<) represent the Kronecker delta and the
Dirac delta function respectively, and PdQ§1, -2)
E hdnn(1 S62)121 is the bi-azimuth power spec-
trum of the dth path component. Thus, identity (11)
implies that the spread functions of different indi-
vidual path components or at different observation
intervals are uncorrelated. This scenario is referred
to as the incoherent-distributed-source case in the
literature (see e.g. [12]).

d) The spectrum Pd(01, 02) describes the manner
the average power of the dth path component is
distributed with respect to both AoD and AoA.
We assume Pd(b1, p2) = Pd * fd(0 §32) with Pd
representing the total average power ofthe dth path
component and fd(§3l, §2) being of the form (8)
with path specific parameters

cd [=dj,d,2§ /dj1rd,2 Pdl-
IV MAXIMUM LIKELIHOOD ESTIMATION

Let 0 denote a vector containing the model parameters
in (9)

0 , (2~plpr 2~
D 01 02. ODIl

Under the assumption that the components of s(t) are
orthonormal the MV x kI, matrices

tunT

H, dtJtJt, n N
1,...,1 12)

form a sufficient statistic for the estimation of 0. It can
be shown that Hn H +N where Nn EC(A/1'2xAl
n = 1 ...VN is a sequence of independent random
matrices the entries of which are independent circularly
symmetric Gaussian random variables with variance 0<.
The maximum likelihood estimate of 0 based on the

observation Y(t) = y(t) during the sounding interval

UNt [tr1,i+ T) is a solution of [2]:

0 -argmrax -ln[ E
0

tr (E)-, } (13)

4

012): (I 10)
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Fig. 3. (a): Bi-azimuth Bartlett spectrum calculated from the received
signal as is, (b): Bi-azimuth Bartlett spectrum calculated from the
matrix E in (14) parameterized with the estimate 0 (c): Contour
lines of the estimated bi-azimuth power spectrum using the proposed
characterization by means of the von-Mises-Fisher pdf (8).

with tr *1 representing the trace of the matrix given as
an argumenantd

E = E[vec[H,] *vec[Hn]H
D

ZPd cI(LCji)C1H( [1iC2(V2)C2V(2)]
d=L t

fd(§1 c/32)dyldc/32 + cT jMl' (14)

where the operator vec stacks the columns of the given
matrix into a vector and 0 denotes the Kroneckeryyrod-
uct.In (13) the matrix E -_ 7 1 cH on]c[Hn1F
is an estimate of l computed from the observation y(t)
over UN [1Ln Tn )J

Calculation of 0 requires (5D + 1)-D maximization
operations. The SAGE algorithm described in [13] can
be used to compute a low-complexity approximation of
the maximum likelihood estimator in (13).

V. PRELIMINARY EXPERIMENTAL INVESTIGATION

In this section, we assess the applicability of the char-
acterization by means of the von-Mises-Fisher pdf (8) in
a real environment. The measurement data were obtained
with the MIMO wideband radio channel sounder Elek-
trobit Propsound CS [1]. The measurement campaign
was conducted in a big hall at a center frequency of
5.2 GHz with bandwidth 100 MHz. The Tx and Rx
were both equipped with two similar 9-element circular
arrays. The polarization direction of the elements is 45°
slanted with respect to the vertical. The positions of the

TABLE I

PARAMlETER ESTIMATES IN THE EXPERIMENTAL INVESTIGATIOW

d Od, I Od,2 d.1 KI kd. p Pd a2
7;- 1 480 8 629 2290 480 260 002 15.5dB

2 340 40 153.75 4.60 18.36 13.40 -0.83 4.69 dB
154 240 233.02 3.80 320 3.20 0.70 11.1 dB

Rx and Tx were kept fixed. The hal was crowded with
people moving around during the measurement runs.
This introduced time variations of the channel resonnse
The equipment collects wideband measurement data.
However, the narrowband model developed in Sect. III
can still be applied by considering the correlator output
of the channel sounder at some specific relative delay.
We specifically selected a propagation scenario and

for that scenario, a relative delay at which only few
path components can be observed. The Bartlett spectrum
shown in Fig. 1 (b) corresponds to such a situation
with two or, possibly, three path components. Portion
of this Bartlett spectrum including the path components
is reproduced in Fig 3 (a)
The SAGE algorithm is used to estimate the param

eters of the path components In this preliminary study,
we assume that the number of path components is known
in advance. In the considered case, this number equals 3,
which coincides with the amount of the path components
that can be visually identified from the Bartlett spectrum
shown in Fig. 1 (b). We consider vertical polarization
only, i.e. the vectors ci (0), i = 1, 2 used in the calcu-
lation of E in (14) are the array responses for vertical
polarization. The initial estimates of the parameters of
the individual path components are computed using a
combination of the succesive interference cancelation
method described in [13] and an estimator derived based
on the generalized array manifold model [14]. At each
iteration of the SAGE algorithm, the parameter estimates
of one path component and the estimate of the noise
spectral height 2 are updated. The admissible hidden
data is selected to be the sum of the path component
of which the parameters are estimated, and an V!2-D
noise vector with statistical properties identical to those
of W(tf weighted by 1/v 3. The definition and meaning
of the weighting factor are given in [13].
The obtained parameter estimates are reported in Table

T. Estimates 1 d = 1,2,3, i 1,2 of the
azimuth spreads of the path components expressed in
degree are also provided. Fig. 3 (c) depicts the estimated
bi-azimuth power spectrum

3

P(Ol(12d)= LPdd(01,2),
d=l

(15)
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where fd(01, 02) denotes the pdf f(b1, 2) in (8) pa-
rameterized with the estimate Od. From Fig. 3 (c), we
observe that the path components are significantly more
concentrated than the corresponding components in the
Bartlett spectrum shown in Fig. 3 (a). Moreover, the
third path component in Fig. 3 (c) appears to be stronger
than the first component even though P3 < This is
because the power spectrum of the third path component
is more concentratedI than the spectrum of the first
component.

Fig. 3 (b) depicts the Bartlett spectrum calculated
from the reconstructed signal with the bi-azimuth power
syectrmt (15). Notice that the spectral height estimate
J2 is also considered in the calculation. The blurring
effect due to the limited resolution in azimuth of the
used arrays is clearly demonstrated. As a result the path
components in the Bartlett spectrum exhibit significantly
larger spreads compared to the spreads of the estimated
components. Notice that the Bartlett spectrum shown in
Fig. 3 (b) looks similar to the spectrum in Fig. 3 (a).
Furthermore, it is observed that the magnitude of the
path components depicted in Fig. 3 (b) is lower than that
observed in Fig. 3 (a). This is consistent with an analyti-
cal result not reported here which shows that the power
estimate of a path component is reduced, compared to
the true value, by a certain amount depending on the
residual interference. This interference results since the
path components are not estimated exactly due to either
model mismatch or errors in the parameter estimation.

Calculations show that the ratio of the maximum of
the Bartlett spectrum computed from the reconstructed
signal with <T2 0O to the maximum of the Bartlett
spectrum calculated from the received signal, is equal to
68.7%. Experimental investigations also show that this
number reduces to 37.7% when the ISIS algorithm [I I]
derived based on the specular-scatterer model is applied
to the same measurement data. This observation, together
with the conclusions drawn from Fig. 3, demonstrate
that the von-Mises-Fisher pdf (8) provides an appropriate
characterization of bi-azimuth dispersion by individual
path components.

VI. CONCLUSIONS

In this contribution we proposed a bi-variate gen-
eralized von-Mises-Fisher probability density function
(pdf) suitable for characterizing bi-azimuth (azimuth of
arrival and azimuth of departure) dispersion of individual
path components. We also derived an estimator of the
parameters of the pdf. Preliminary experimental results
demonstrated the applicability of the proposed character-

izing method in real situations. These results also made
evident that the path components are noticeably more
concentrated in the bi-azimuth plane compared to their
corresponding footprints in the Bartlett spectrum.
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