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Radio Channel Modelling Using Stochastic
Propagation Graphs

Troels Pedersen and Bernard H. Fleury
Department of Electronic Systems, Aalborg University,

DK-9220 Aalborg East, Denmark. Email: {troels,fleury}@es.aau.dk

Abstract— In this contribution the radio channel model pro-
posed in [1] is extended to include multiple transmitters and re-
ceivers. The propagation environment is modelled using random
graphs where vertices of a graph represent scatterers and edges
model the wave propagation between scatterers. Furthermore,
we develop a closed form analytical expression for the transfer
matrix of the propagation graph. It is shown by simulation that
impulse response and the delay-power spectrum of the graph
exhibit exponentially decaying power as a result of the recursive
scattering structure of the graph. The impulse response exhibits
a transition from specular to diffuse signal contributions as
observed in measurements.

I. INTRODUCTION

The design and optimisation of modern radio communica-
tion systems require realistic models of the radio propaga-
tion channel, which incorporate dispersion in delay, Doppler
frequency, direction of departure, direction of arrival, and
polarisation. Often radio communication systems are assessed
by Monte Carlo simulations in which stochastic models are
used to generate synthetic realisations of the response of the
(radio) propagation channel.

Traditional stochastic radio channel models reflect the statis-
tical properties of the (time-variant or time-invariant) impulse
response of the channel between the input of any antenna
element at the transmitter site and the output of any antenna
element at the receiver site. The probability distributions of
the parameters of the channel impulse response are generally
difficult to obtain from environment parameters such as the
scatterer size and density. Instead, the model parameters are
often inferred from measurements. Motivated by experimental
results, conventional models implement an exponentially de-
caying delay-power spectrum and impulse response magnitude
by including various ad-hoc constraints on the random model
parameters. The two contributions [2] and [3] follow this
approach. In these models a key parameter for modelling the
arrival times of individual signal components is the “cluster
arrival rate”. However this parameter is difficult to derive
from a propagation environment. In the model given in [4]
the scattering coefficients are corrected to account for the
effects observed experimentally like the exponential decay of
the delay-power spectrum. These approaches, however, do not
reflect the underlying physical mechanisms that lead to this
decaying behaviour.

A different approach is followed by Franceschetti in [5]
where the radio propagation mechanism is modelled as a
“stream of photons” performing a continuous random walk

in a cluttered environment with constant clutter density. The
transmitted signal is a pulse of finite duration. When a pho-
ton interacts with an obstacle, it is either absorbed (with a
certain probability) or scattered and changes direction. The
Franceschetti model is mainly a descriptive model for the
delay-power spectrum; it is not possible to obtain realistic
realisations of the channel impulse responses from this model.
Furthermore, the model does not cover the transition from
specular to diffuse signal contributions as observed in [6] for
ultra wide band measurements. This transition effect is well-
known within the field of room acoustics [7]. In a recently
published work [8] Andersen et. al model the exponentially
decaying power of the diffuse tail of the impulse response by
applying Sabine’s reverberation formula commonly used in
room acoustics. In the work presented in [1] the propagation
environment was modelled using random graphs where ver-
tices of a graph represent scatterers and edges model the wave
propagation between scatterers. When a graph is generated,
the corresponding realisation of the channel impulse response
can be computed by exhaustively searching for propagation
paths that connect the transmitter to the receiver. The obtained
impulse response exhibits the specular-to-diffuse transition.

In this contribution we extend the model described in [1]
to include multiple transmitters and receivers. We develop
a closed form analytical expression for the transfer matrix.
The derivation is inspired from the method used in the room
acoustical model proposed in [9].

The remaining part of the paper is organised as follows.
In Section II the modelling concept based directed graphs
is presented and a model of the propagation environment is
introduced. In Section III an analytical expression for the
transfer matrix of the propagation graph is derived. Numerical
examples are given in Section IV and concluding remarks are
addressed in Section V.

II. MODELLING PROPAGATION USING GRAPHS

In the following we describe the underlying principles
for modelling the propagation mechanisms using graphs. In
a typical propagation scenario, the electromagnetic signal
emitted by a transmitter propagates through the environment
interacting with a number of objects called scatterers. The
receiver, which is usually placed away from the transmitter,
picks up the transmitted signal. If a line-of-sight exists between
the transmitter and receiver, direct propagation occurs. In other
cases, indirect propagation via one ore more scatterers can

1-4244-0353-7/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 



occur. In the following we represent the propagation envi-
ronment as a directed graph where the vertices represent the
transmitters, receivers, and scatterers, and the edges represent
visibilities between the vertices. First, the necessary notation
is introduced.

A. Directed Graphs

Following [10] we define a directed graph G as a pair (V, E)
of disjoint sets (of vertices and edges) together with the two
mappings init : E → V and term : E → V assigning every
edge e ∈ E an initial vertex init(e) and a terminal vertex
term(e).

Two edges e and e′ are parallel if init(e) = init(e′) and
term(e) = term(e′). When the discussion is restricted to
graphs without parallel edges we may identify the edge e with
(init(e), term(e)) ∈ V2 and write e = (init(e), term(e)) with
a slight abuse of notation. With this identification, E ⊆ V2.

A walk (of length K) in a graph G is a non-empty
alternating sequence 〈v1, e1, v2, e2, . . . , eK , vK+1〉 of vertices
and edges in G such that init(ek) = vk and term(ek) = vk+1,
1 ≤ k < K. An edge e ∈ E that fulfils init(e) = term(e) is
called a loop. Thus, by definition, a loop is a walk of length
1. A path is a walk, without parallel edges, where the vertices
v2, . . . , vK−1 are distinct. A path that fulfils v1 = vK is called
a cycle. The outdegree of a vertex v denoted by degi(v) is the
number of edges with initial vertex v.

B. Propagation Graphs

A propagation graph is a directed graph G = (V, E)
where the vertices model transmitters, receivers and scatterers,
and the edges model the propagation conditions between the
vertices.

The vertex set of a propagation graph is a union of three
disjoint sets: V = Vt∪Vs∪Vr, where Vt = {Tx1, . . . ,TxM1}
is the set of transmit vertices, Vr = {Rx1, . . . ,RxM2} the
set of receive vertices, and Vs = {S1, . . . ,SN} is the set
of scatterer vertices. Fig. 1 shows a propagation graph for
a communication system with M1 = 5 transmitters, M2 = 3
receivers, and N = 6 scatterers. The depicted graph has one
cycle. Each vertex v ∈ V is assigned a coordinate in space with
respect to a coordinate system and arbitrarily selected origin.
The vector rv ∈ R ⊆ R

3, denotes the displacement vector of
v from the origin of the coordinate system. The set R is the
region in which contains the scatterers that significantly affect
the propagation mechanisms between the transmitters and a
receivers in the graph.

In the case depicted in Fig. 1, all transmit vertices are
located in the close proximity of each other, away from the
other vertices which is also the case for the receive vertices.
This corresponds to the case where the transmitter and receiver
sites are equipped with antenna arrays. This is not the case in
multi-user systems, where the transmitters and receivers are
spread evenly in space.

The edges of a propagation graph model the propagation, or
the visibility, between vertices meaning that a signal emitted
from the initial vertex is observed in a filtered (e.g. delayed
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Fig. 1. A propagation graph with four transmit vertices (M1 = 4), three
receive vertices (M2 = 3), and six scatterer vertices (N = 6).

and attenuated) version at the terminal vertex. Due to this
conceptual interpretation of an edge, a propagation graph does
not have parallel edges. In this case we may identify the edge e
with (init(e), term(e)) ∈ V2 and write e = (init(e), term(e))
with a slight abuse of notation. With this identification, E ⊆
V2. Notice that G may have “anti-parallel” edges, i.e. if the
edge e = (v, v′) is in the graph, the edge e′ = (v′, v)
can exist. We restrict the discussion to propagation graphs
where scatterers cannot “see” themselves. Hence we only deal
with graphs without loops. However, the propagation graphs
may have cycles. The transmit vertices are considered as
purely sources with outgoing edges. Likewise, the receivers
are considered as sinks with only incoming edges.

The signal propagates in the graph in the following way.
Each transmitter emits a signal that propagate via the edges of
the graph. The signals observed by a receiver vertex is the sum
of the signals arriving via the incoming edges. The scatterers
sum up the signals arriving via the incoming edges and re-
emit the sum-signals via the outgoing edges. When a signal
propagates along an edge, or interacts with a scatterer, the
signal undergoes dispersion in time, depending on the length
of the edge and the particular scattering mechanisms. The joint
mechanism of propagating along an edge and interaction with
a scatterer is assumed linear, thus the time dispersion of the
signal can be represented as a convolution with an impulse
response or, in the Fourier domain, as a multiplication with a
transfer function.

C. Model of the Propagation Mechanisms

In the following we discuss a model where the propagation
along the edges is assumed to be non-dispersive in delay in
the sense that the impulse response of each edge is merely
a scaled and delayed Dirac impulse. Let ge and τe denote
respectively the complex gain and propagation time of edge
e. Thus the edge transfer functions Ae(f) takes the form

Ae(f) = ge · exp(j2πτef), e ∈ E . (1)
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The complex gain ge includes the gain due to the propagation
loss along edge e and the scattering coefficient due to the
interaction at term(e). This scatterer model is suitable in sit-
uations where the electromagnetic properties of the scatterers
are constant over the bandwidth of the transmitted signal.
In the sequel a method for determining the edge gains and
attenuations is described.

The propagation time τe of a signal propagating along edge
e = (v, v′) in E can be calculated from the coordinates of v
and v′ as

τe =
|rv − rv′ |

c
, (2)

where c ≈ 3 · 108 m/s is the speed of light (in vacuum) and
| · | is the Euclidean norm. The power gain |ge|2 of e ∈ E is
defined as

|ge|2 =
(

g

1 + |rv − rv′ |
)2

· 1
dego(v) . (3)

For large edge lengths |rv − rv′ |, (3) behaves like the stan-
dard inverse squared distance power law. Notice that since
dego(v) = 0 if and only if e 	∈ E , and the term 1+|rv−rv′ | ≥
1, the gain |ge|2 is finite for all e ∈ V2. The definition (3)
ensures that the power leaving a vertex is always smaller than
the power entering the vertex. The phase of ge can be chosen
according to some appropriate model. As an example, when a
multiuser systems is modelled, this phase can be assumed to
be uniformly distributed on the interval [0; 2π). However, if
the transmitters and receivers forms arrays, then more careful
modelling of the phases is necessary.

D. Modelling Systems With Antenna Arrays

Considering a system where the transmit antennas are
spatially grouped such that they form an array, it is customary
to make the so-called ‘small-scale characterisation’. This as-
sumption states that the overall geometry of each propagation
path is the same for all antenna elements of one antenna array.
This corresponds to a propagation graph where all elements of
an array share the same visibilities. We can distinguish ‘small’
and ‘large’ arrays as follows:

An array A ⊆ Vt of transmit vertices is a small array, if,
and only if, for any edge e = (v, v′) from a transmitter vertex
v ∈ A to a receiver or scatterer vertex v′ ∈ Vs ∪ Vr the set
of edges {(v′′, v′) : v′′ ∈ A} is a subset of E . If an array is
not small then it is a large array. The generalisation of the
definition to include receive antennas is obvious.

In the situation depicted in Fig 1, the transmit an-
tennas Tx1,Tx2,Tx3 and Tx4 form an array A =
{Tx1,Tx2,Tx3,Tx4}. As can be seen from the figure, edge
(Tx1,Rx1) exists. Since there is not an edge (Tx4,Rx1) in
the graph, the array A is a large array. It can be checked that
the sub-array {Tx1,Tx2,Tx3} form a small array.

It should be noticed that not all practical arrays are small
(see [11] for an example). However, by applying appropriate
restrictions on the edge-set of the graph, the propagation
graphs can be used to model both small and large arrays. For
a small array A, it seems to be natural to assume that the edge

gains of the set of edges which connects the elements of A to
a particular vertex v 	∈ A all have the same phase.

III. THE TRANSFER MATRIX OF A PROPAGATION GRAPH

In the following we derive the input-output relation of a
propagation graph. By the definition of the propagation graph,
there are no other signal sources than the vertices in Vt. Thus
by assuming that the propagation mechanisms are linear and
time-invariant, the Fourier domain version of the input-output
relation can be written as

Y(f) = H(f)X(f), (4)

where H(f) is M2×M1 transfer matrix. The M1-dimensional
input signal X(f) is defined as

X(f) = [X1(f), . . . , XM1(f)]t, (5)

where Xm(f) is the signal emitted by transmitter Txm,
and [ · ]t denotes the transposition operator. The output signal
vector Y(f) is defined as

Y(f) = [Y1(f), . . . , YM2(f)]t, (6)

where Ym(f) is the Fourier transform of the signal observed
by receiver Rxm.

Similar, to X(f) and Y(f) we can define a vector Z(f) to
describe the signal observed at the scatterers as

Z(f) = [Z1(f), . . . , ZN (f)]t, (7)

where the nth entry denotes the Fourier transform of the signal
observed at scatterer vertex Sn.

We form the M1+M2+N dimensional complex state vector
C(f) as

C(f) = [C1(f), . . . , Cn(f), . . . CM1+M2+N (f)]t, (8)

where Cn(f) is the state variable of vertex vn. By selecting
the indexing of the vertices according to

vn ∈



Vt, n = 1, . . . ,M1

Vr, n = M1 + 1, . . . ,M1 + M2

Vs, n = M1 + M2 + 1, . . . , M1 + M2 + N,

(9)

it is seen that

C(f) = [X(f)t,Y(f)t,Z(f)t]t. (10)

Let us for a moment consider the edge e = (vn, vn′)
in E . A filtered version of the signal Cn(f) emitted by
vertex vn is observed at vertex vn′ . The signal observed at
vertex vn′ via edge e reads Ae(f)Cn(f) where Ae(f) is
the edge transfer function defined in (1). In other words,
the transfer function Ae(f) describes the propagation along
the edge e, i.e. the propagation delay, attenuation, and the
scattering coefficient at the initial vertex of e. By collecting
the edge transfer functions to a matrix using the indexing
described in (9) we obtain the weighted adjacency matrix
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A(f) ∈ C
(M1+M2+N)×(M1+M2+N) of the entire propagation

graph G:

[A(f)]nn′ =

{
A(vn,vn′ )(f) if (vn, vn′) ∈ E ,

0 otherwise.
(11)

Element n, n′ of A(f) is the transfer function from vertex vn

to vertex vn′ of G. Due to the selected vertex indexing the
weighted adjacency matrix can be partitioned as

A(f) =


 0 0 0
D(f) 0 R(f)
T(f) 0 B(f)


 , (12)

where 0 denotes a zero matrix of the appropriate dimension
and

D(f) ∈ C
M2×M1 connects transmitters to receivers (13)

R(f) ∈ C
M2×N connects scatterers to receivers (14)

T(f) ∈ C
N×M1 connects transmitters to scatterers (15)

B(f) ∈ C
N×N interconnects the scatterers. (16)

The special structure of A(f) origins from the structure of
the propagation graph. The first M1 rows are zero because,
we do not accept incoming edges into the transmitters. Like-
wise column M1 + 1, . . . , M1 + M2 are all zero since the
receiver vertices have no outgoing edges. Furthermore, since
the propagation graph contains no loops the entries of the main
diagonal of the adjacency matrix A(f) are zero. Therefore the
entries of the main diagonal of B(f) are zero.

The state vector C(f) can be rewritten as the sum

C(f) =
∞∑

k=0

Ck(f), (17)

where Ck(f) = [Xk(f)t,Yk(f)t,Zk(f)t]t denotes the signal
contribution that has propagated along k edges. The signal
emitted by the transmitters has not propagated via any edges
and therefore X0(f) = X(f). For k = 0 we have

C0(f) = [X(f)t,0t,0t]t, (18)

and for k ≥ 1 we have the recursive relation:

Ck+1(f) = A(f)Ck(f), k ≥ 1. (19)

As a consequence of (17), the output signal vector can be
decomposed as the sum

Y(f) =
∞∑

k=1

Yk(f), (20)

where Yk(f) is the received signal component that has prop-
agated via k edges from the transmitter to the receiver. Thus
Y1(f) is the component originating from direct propagation
from the transmitters to the receivers. By direct computation
of C1(f) using (19) and (18) we see that

C1(f) = A(f)C0(f) =


 0
D(f)X(f)
T(f)X(f)


 . (21)

It follows from (21) that

Y1(f) = D(f)X(f). (22)

By inspection of the series A2(f),A3(f), . . . it is readily
recognised that

Ak(f) =


 0 0 0
R(f)Bk−2(f)T(f) 0 R(f)Bk−1(f)

Bk−1(f)T(f) 0 Bk(f)


 , k ≥ 2.

(23)
Inserting (22) and (23) into (20) and using (19) yields

Y(f) = Y1(f) +
∞∑

k=2

Yk(f) (24)

= D(f)X(f) +
∞∑

k=2

R(f)Bk−2(f)T(f)X(f) (25)

=

[
D(f) +

∞∑
k′=0

R(f)Bk′
(f)T(f)

]
X(f) (26)

=
[
D(f) + R(f)(I − B(f))−1T(f)

]︸ ︷︷ ︸
H(f)

X(f). (27)

Identity (27) is obtained using geometric series for matri-
ces [12, p. 427], which holds under the condition that the
maximum of the eigenvalue magnitudes of B(f) is less than
unity for all frequencies considered. This constraint is always
fulfilled for a propagation graph due the definition of the edge
gain (3).

Equation (19) shows the structure of the propagation mech-
anism. The radio signal is re-scattered successively in the
propagation environment. This effect results in the geometric
series in (26). From (27) we see that the transfer matrix
H(f) consists of the two following terms: D(f) representing
direct propagation between the transmitters and receivers and
R(f)(I − B(f))−1T(f) describing indirect propagation.

IV. NUMERICAL EXAMPLES

Using the analytical results from Section III we are able
to compute the transfer matrix of a particular propagation
graph. The propagation graph is fully defined by the vertex
set, the vertex locations, and the edge set of the graph. Thus, a
propagation graph can be generated stochastically by randomly
placing the vertices and generating the edges set.

In the sequel we investigate the impulse response and the
delay-power spectrum of the propagation graph model by
means of a Monte-Carlo experiment. The following scenario
is assumed:

• The region R is assumed to be a rectangular solid box.
• To simplify the discussion we consider a single-input

single-output (M1 = M2 = 1) system. The locations of
the transmitter and receiver vertices are fixed throughout
the experiment.

• The number N of scatterers is assumed constant.
• The positions of the scatterer vertices are drawn accord-

ing to a uniform distribution defined on R.
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TABLE I

PARAMETER SETTING FOR THE SIMULATION

Parameters Values
R [0, 5] × [0, 10] × [0, 3.5] m3

rTx [1.8, 2.0, 0.5]T m
rRx [1.0, 4.0, 1.0]T m
N 20
g 0.8 s2

Pvis 0.8
Number of Monte Carlo runs 1000
Signal bandwidth [fmin, fmax] [2, 3] GHz
∆f 0.5 MHz
IFFT window Hanning

• We define the occurrence probability P(v,v′) of an edge
(v, v′) ∈ V2 as

P(v,v′) =




Pdir if (v, v′) = (Tx,Rx)
0 if v = v′

0 if v′ = Tx or v = Rx, and

Pvis otherwise,

where Pdir denotes the probability of the direct propaga-
tion between the transmitter and receiver. When Pdir = 0
the direct term D(f) in (27) takes the value zero corre-
sponding to a non-line-of-sight scenario. When Pdir =
1 direct propagation between transmitter and receiver
always occurs which corresponds to a line-of-sight sce-
nario. In this case D(f) is non-zero.

The parameter settings are given in Table I. In each Monte
Carlo run the following steps are performed:

1) Generate scatterer positions rv, v ∈ Vs.
2) Generate the edge set E .
3) Compute the transfer function H(f) for the frequencies

f = fmin, fmin + ∆f, . . . , fmax

4) Compute the inverse Fourier transform of the transfer
function applying a Hanning window to reduce side-
lobes.

An example of an obtained transfer function for Pdir = 0, 1
and corresponding impulse response are reported in Fig. 2.
The magnitude of the transfer function for the Pdir = 0
exhibits fading over the considered frequency band, whereas
the function obtained in the Pdir = 1 case, which is about
10 dB higher, is more constant. The reported impulse re-
sponses magnitudes are roughly exponentially decaying. In the
reported case, the impulse responses exhibit a concentration
of power into “clusters”. Inspection of the vertex positions of
the particular realisation revealed that this effect is not caused
by geometrically clustering of the scatterers but is an effect of
the structure of the graph.

An estimate of the delay-power spectrum can be obtained
by computing the mean squared-magnitude of the generated
impulse response realisations. Estimates of the delay-power
spectra for Pdir = 0, 1 each obtained from 1000 realisations
of the impulse response are shown in Fig. 3. Apart from the
high-magnitude of the direct component in the Pdir = 0, 1,
both delay-power spectra in Fig. 3 show similar behaviour:
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Fig. 2. Examples of transfer functions (top) and the corresponding impulse
responses (bottom) for Pdir = 1 (thick line) and Pdir = 0 (thin line). The
dotted vertical line marks the propagation delay of the direct edge between
the transmitter and the receiver (line-of-sight). The parameter setting used in
the simulations is listed in Table I.
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Fig. 3. Delay-power spectrum computed from the Monte Carlo experiment
for Pdir = 1 (thick line) and Pdir = 0 (thin line). The dotted vertical line
marks the propagation delay of the direct edge between the transmitter and
the receiver. The parameter setting is listed in Table I.

the tails of the delay-power spectra in exhibit an exponential
decay in both cases. This exponentially decaying power, which
is not obtained by ad-hoc restrictions on the model parameters,
is a result of recursive scattering in the graph.

To investigate the finer structure of the impulse response, it
is necessary to have a better resolution in the delay domain.
Therefore, we report in Fig. 4 the absolute value of an impulse
respons obtained with Pdir = 1 using the parameter settings
given in Table I, but with the frequency range extended such
that fmax = 10GHz. The impulse response in this case
exhibits a specular-to-diffuse transition, i.e. the early part of
the profile, dominated by specular contributions, is preceded
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Fig. 4. Impulse response magnitude obtained from the model with Pdir = 1.
The parameter setting is as listed in Table I, but fmax has been set to 10 GHz.

by a diffuse tail. This shows that the model is able to jointly
treat the specular and diffuse components of the impulse
response.

V. CONCLUSIONS

A propagation model based on a stochastic propagation
graph was proposed. The propagation model proposed [1]
was extended to account for multi-input multi-output systems.
Moreover, a closed form expression for the input-output rela-
tion was obtained.

A propagation graph is defined by a set of vertices (trans-
mitters, receivers, and scatterers) and a set of edges (visibility
between vertices). These parameters can be drawn randomly
according to some joint probability density function.

Based on measurement results conventional models imple-
ment an exponentially decaying absolute impulse response
and delay-power spectrum by various assumptions. These
approaches, however, do not reflect the underlying physical
mechanisms that lead to this decaying behaviour. It was shown
by Monte Carlo simulations that assuming an inverse squared
distance power decay, the proposed model yields the often
observed exponentially decaying absolute impulse response
and delay-power spectrum. This effect stems from the structure
of the propagation graph and is not obtained by introducing
any artificial assumptions.

The realisations of the impulse response obtained from
the proposed model also exhibit a transition from specular
contributions for low delays to a diffuse part at long delays as
observed in measurements. The model can be easily extended
to include dispersion in directions of departure and arrival.
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