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Abstract— In this contribution, a multi-variate probability
density function (pdf) is derived and used to describe the normal-
ized direction–(i.e. azimuth and elevation)–delay power spectral
density of individual dispersed components in the response of the
propagation channel. This pdf maximizes the entropy under the
constraint that its first and second moments are specified. We
use a SAGE algorithm, as an approximation of the maximum-
likelihood method, to estimate the parameters of the component
direction–delay power spectral densities from measurement data.
The experimental results show that the proposed pdf and the
SAGE algorithm form altogether an effective tool to characterize
direction-delay dispersion in the propagation channel.

Index Terms— Propagation channel, direction–delay power
spectrum, SAGE algorithm.

I. INTRODUCTION

Due to the heterogeneity of the propagation environment,
the received signal at the receiver (Rx) of a radio commu-
nication system can be modelled as the superposition of a
number of components originating from waves propagating
along specific propagation paths. Each component may be
dispersive in delay, direction of departure (DoD), direction of
arrival (DoA), Doppler frequency and polarization. Dispersion
of individual components in these dimensions significantly
influences the performance of communication systems using
MIMO (multiple-input multiple-output) techniques [1].

In conventional parametric models for the MIMO wideband
propagation channel, such as [2, Chapter 3], [3] and [4],
dispersion of individual components is modeled using a cluster
of multiple specular components estimated from measurement
data. The cluster parameters, such as the nominal direction and
direction spread, can be calculated for each cluster from the
parameter estimates of the specular components assigned to
this cluster. However, as shown in [5], the extracted dispersion
parameters (e.g. azimuth) of the specular components do not
accurately characterize the true dispersive behavior of the orig-
inal component when this component is dispersed. This phe-
nomenon limits the reliability of channel models derived based
on specular components estimated from measurement data
collected in real environments. Therefore, in order to design
more realistic channel models we need appropriate parametric
models characterizing dispersion of individual components, as

well as efficient estimators of the parameters entering these
models.

In recent years, various algorithms have been proposed
for the estimation of the dispersive characteristics of in-
dividual components in the channel response [1], [6], [7],
[8]. These algorithms estimate the parameters describing the
power spectral density (psd) of individual components. In real
environments, a component psd can be irregular due to the
heterogenous physical and electromagnetic properties of the
scatterers with which the waves generating this component
interact. The center of gravity and spreads of a component
psd are considered as the characteristic dispersion parameters.
The algorithms proposed in these contributions estimate these
parameters by approximating the component psd with a certain
probability density function (pdf), e.g. in azimuth–of–arrival
(AoA) [6], [7], [8] and in AoA and azimuth of departure
(AoD) [1]. The values of the parameter estimates obtained
by using these algorithms depend on the underlying pdfs.
However, no rationale behind the selection of the pdfs is given
in these contributions. Furthermore, the performance of these
algorithms has not been investigated using measurement data.

In order to obtain accurate estimates of the dispersion
parameters, a rationale relying on the maximum-entropy (ME)
principle [9] is proposed in [10], [11], [12] for the selec-
tion/derivation of the pdfs characterizing component psds. This
rationale utilizes the assumptions that each component psd
has fixed center of gravity and spreads, and moreover, no
information is available for any other properties, such as the
exact shape and number of local maxima, of the component
psd. The center of gravity and the spreads of a component psd
are described by the first and second moments of a pdf. Thus,
using the ME principle we derive a pdf which satisfies the
constraint of fixed first and second moments, while maximizes
the entropy of any other constraint. The estimates of the dis-
persion parameters obtained by modeling the component psd
with this entropy-maximizing pdf provide the “safest” results
in the sense that, they are more accurate than the estimates
computed using a pdf subject to any constraint that is invalid in
real situations. Based on this rationale, a bivariate von-Mises-
Fisher pdf and a Fisher-Bingham-5 (FB5) pdf are derived for

ISCCSP 2008, Malta, 12-14 March 2008 225

978-1-4244-1688-2/08/$25.00 c©2008 IEEE



modeling the component psd in AoA and AoD [10] and in
elevation and azimuth [11], [12] respectively. Experimental
investigations using measurement data demonstrate that these
characterizations are applicable in real environments.

In this contribution, we consider a single-input multiple-
output (SIMO) scenario where the propagation channel is
dispersive in DoA (i.e. azimuth and elevation of arrival)
and delay. We propose to characterize the component DoA–
delay psd by a multi-variate pdf. The applicability of this
characterization method is evaluated using measurement data.
With proper modifications, the characterization method can
be used to describe dispersion of individual components in
DoD (i.e. azimuth and elevation of departure) and delay in a
multiple-input single-output (MISO) scenario.

The organization of this contribution is as follows. In
Section II, the signal model for SIMO channel sounding is
presented. Section III introduces the derived pdf characterizing
the shape of the component DoA–delay psd. In Section IV,
the SAGE estimators of the parameters of the psd are briefly
described. Section V presents the results from experimental
investigations. Finally, concluding remarks are addressed in
Section VI.

II. SIGNAL MODEL AND ASSUMPTIONS

In this section, we introduce the signal model for SIMO
channel sounding and state our assumptions on dispersion in
DoA and delay in the propagation channel.

A. Signal Model for SIMO Channel Sounding

The channel sounder considered here has a single antenna
in the Tx and M antennas in the Rx. We focus on a scenario
where the propagation channel is dispersive in delay τ ∈ R

and DoA Ω. Here, Ω is defined to be a unit vector with initial
point anchored at the origin O of a coordinate system located
in the vicinity of the Rx array. The end point of Ω lies on a
unit sphere S2 centered at O [13]. The DoA Ω is uniquely
specified by the azimuth of arrival φ ∈ [−π, +π) and the
elevation of arrival θ ∈ [0, π] according to

Ω = e(φ, θ)
.
=

⎡
⎣cos(φ) sin(θ)

sin(φ) sin(θ)
cos(θ)

⎤
⎦ . (1)

Following the nomenclature in [13], in one measurement
period the continuous-time (complex baseband representation
of the) output signal of the mth Rx antenna reads

Ym(t) =

∫ +∞

−∞

∫
S2

cm(Ω)u(t− τ)H(Ω, τ)dΩdτ

+ Wm(t), (2)

where cm(Ω) denotes the response of the mth Rx antenna,
u(t) represents the transmitted signal, and H(Ω, τ) is referred
to as the DoA-delay spread function of the propagation
channel. The noise component Wm(t) in (2) is a circularly
symmetric, spatially and temporally white complex Gaussian
process with spectral height σ2

w.

In a scenario with D components, H(Ω, τ) can be decom-
posed as

H(Ω, τ) =
D∑

d=1

Hd(Ω, τ), (3)

where the summand Hd(Ω, τ) represents the DoA-delay
spread function of the dth component.

Replacing H(Ω, τ) in (2) with the sum in (3), Ym(t) can
be recast as

Ym(t) =

D∑
d=1

Sd,m(t) + Wm(t), (4)

where Sd,m(t) is the dth component in the received signal, i.e.

Sd,m(t) =

∫ +∞

−∞

∫
S2

cm(Ω)u(t− τ)Hd(Ω, τ) dΩdτ. (5)

B. Assumptions for the DoA-Delay Spread Functions

We assume that the component spread function Hd(Ω, τ),
d ∈ {1, . . . , D} are uncorrelated complex (zero-mean) orthog-
onal stochastic measures, i.e.

E[Hd(Ω, τ)∗Hd′(Ω′, τ ′)] =

Pd(Ω, τ)δdd′δ(Ω−Ω
′)δ(τ − τ ′), (6)

where (·)∗ denotes complex conjugation, δ·· and δ(·) represent
the Kronecker delta and the Dirac delta function respectively,
while

Pd(Ω, τ) = E[|Hd(Ω, τ)|2] (7)

is the DoA–delay power spectrum of the dth component.
Identity (6) implies that the DoA-delay spread functions of
different components are uncorrelated.

Invoking (3), (6) and (7), we can easily show that the spread
function H(Ω, τ) of the propagation channel is a complex
zero-mean orthogonal stochastic measure, i.e.

E[H(Ω, τ)∗H(Ω′, τ ′)] = P (Ω, τ)δ(Ω−Ω
′)δ(τ − τ ′), (8)

where

P (Ω, τ) =

D∑
d=1

Pd(Ω, τ) (9)

is the DoA-delay power spectrum of the propagation channel.
The component power spectrum Pd(Ω, τ) can be written as

Pd(Ω, τ) = Pd · fd(Ω, τ), (10)

with Pd and fd(Ω, τ) representing respectively, the total
average power and the (normalized) direction–delay power
spectral density (psd) of the dth component.
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III. THE DIRECTION-DELAY POWER SPECTRAL DENSITY

In this subsection, we use the Maximum Entropy (ME) ra-
tionale proposed in [10], [11] to derive a pdf for modeling the
component DoA-delay psd fd(Ω, τ). We make the assumption
that each component psd has its fixed center of gravity and
spreads in DoA and in delay. These parameters are represented
by the first and the second moments of the pdf. The sought
pdf maximizes the entropy under the constraint that its first
and second moments are specified.

An ME pdf fME(Ω, τ) of the direction variable Ω and the
delay variable τ under the constraint that its first and second
moments are specified, has the form [14]

fME(Ω, τ) ∝ exp

{[
Ω− Ω̄

τ − τ̄

]
T

[
A c

cT −b

] [
Ω− Ω̄

τ − τ̄

]}
, (11)

where Ω̄ represents the mean direction with azimuth φ̄ and
elevation θ̄, i.e. Ω̄ = e(φ̄, θ̄), τ̄ denotes the mean delay,
[·]T represents the transpose operation, A ∈ R

3×3 describes
the spread of fME(Ω, τ) in direction, b ∈ R determines the
concentration of fME(Ω, τ) in delay, and c ∈ R

3 describes
the dependence of the spread of fME(Ω, τ) in direction and
in delay.

The parameters A, c and b arising in (11) are all free
parameters. We now determine these parameters under the
assumption that the conditional pdfs of (11) with respect to
delay and direction coincide with the Gaussian pdf and the
FB5 pdf respectively. These two pdfs are selected specifically
because they also maximize the entropy with specified first
and second moments.

The Gaussian pdf for the variable delay reads

f(τ) ∝ exp{−b(τ − τ̄)2}. (12)

The FB5 pdf reads [15]

fFB5
(Ω) ∝ exp{κγT

1Ω + ζ[(γT

2Ω)2 − (γT

3Ω)2]}, (13)

where κ ≥ 0 and ζ ∈ [0, κ/2) are respectively the concentra-
tion parameter and the ovalness parameter of the distribution
on the unit sphere S2, while γ1, γ2 and γ3 ∈ R

3 are unit
vectors. The matrix Γ

.
= [γ1, γ2, γ3] is uniquely determined

by the three angular parameters φ̄, θ̄ and α according to

Γ =

⎡
⎣sin(θ̄) cos(φ̄) − sin(φ̄) cos(θ̄) cos(φ̄)

sin(θ̄) sin(φ̄) cos(φ̄) cos(θ̄) sin(φ̄)
cos(θ̄) 0 − sin(θ̄)

⎤
⎦

·

⎡
⎣1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

⎤
⎦ , (14)

where θ̄ and φ̄ coincide with respectively the elevation and
the azimuth of the mean direction, i.e. the first moment of
fFB5

(Ω). The angle α describes tilt of the pdf on S2. An
illustrative description of the meanings of γ1, γ2 and γ3 can
be found in [15].

Under the assumption that the pdf fME(Ω, τ) in (11) has
the conditional direction pdf (13) and the conditional delay

Azimuth [◦]

D
el

ay
[s

]

Elevation [◦]

θ̄ [◦] φ̄ [◦] τ̄ [ms] κ ζ α [◦] β [◦] η b

0 0 58 100 0.01 60 270 1000 40000

Fig. 1. 3 dB-spread surface of the azimuth–elevation–delay psd calculated
using (15) with the parameter setting given above.

pdf (12), the sought pdf (11) is calculated to be

fME(Ω, τ) ∝ exp{κΩ̄
T

Ω + Ω
TA(τ, ζ, α, β)Ω − b(τ − τ̄ )2

− 2ηgT(Ω− Ω̄)(τ − τ̄)}. (15)

In (15), the matrix A is a function of the delay τ , the ovalness
coefficient ζ, as well as the angles α and β that jointly
describe how fME(Ω, τ) is tilted in the direction–delay space,
η describes the dependence between the spread in direction
and in delay, and

g =

⎡
⎣ sin φ̄ cosβ − sin θ̄ cos φ̄ sinβ

− cos φ̄− sin θ̄ sin φ̄ sin β
cos θ̄ sinβ

⎤
⎦ .

We assume that the component direction–delay psd fd(Ω, τ)
in (10) is well approximated by the pdf in (15), i.e.

fd(Ω, τ) = fME(Ω, τ ; θd), (16)

where θd contains the component-specific parameters

θd
.
= [Ω̄d, τ̄d, κd, ζd, αd, βd, ηd, bd].

The center of gravity of fd(Ω, τ) coincides with (Ω̄d, τ̄d),
while the shape of fd(Ω, τ) is determined jointly by the
parameters κd, ζd, αd, βd, ηd and bd.

The component azimuth-elevation-delay psd fd(φ, θ, τ) is
induced from fd(Ω, τ) via the mapping (φ, θ, τ) �→ (Ω, τ) to
be

fd(φ, θ, τ) = sin(θ) · fd(Ω, τ)
∣∣
Ω=e(φ,θ)

= sin(θ) · fME(Ω, τ ; θd)
∣∣
Ω=e(φ,θ)

. (17)

Here, sin(θ) is the Jacobian resulting from the change of
variables. Fig. 1 depicts an example of the 3 dB-spread surface{

(φ, θ, τ) : fd(φ, θ, τ) =
1

2
fd(φ̄, θ̄, τ̄ )

}
(18)

computed using (17) for the parameter setting reported in this
figure.
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34.14 m

10 m

Fig. 2. Map of the investigated propagation environment.

IV. PARAMETER ESTIMATOR USING A SAGE ALGORITHM

In a scenario with D dispersed components, the unknown
parameters in the signal model (2) can be concatenated in the
vector

θ
.
= [P1, . . . , PD, θ1, . . . ,θD]. (19)

The ML estimator of θ can be derived from the signal model
(2) [16]. However, this estimator requires the solution of a
10D-dimensional maximization problem, which is too com-
plex for implementation in real applications. As an alternative,
we resort to a SAGE algorithm [13], [12] as an approximation
of the ML estimator. Due to the limitation of space, we will
not describe the SAGE algorithm in this contribution.

V. EXPERIMENTAL INVESTIGATIONS

To assess whether the proposed characterization is appli-
cable in real situations, we use the SAGE algorithm to esti-
mate the direction-delay power spectrum (9) of a propagation
channel from measurement data collected using the MIMO
wideband channel sounder Propsound CS in the measurement
campaign described in [17], [18]. We select a measurement
conducted in an office, the premises of which are shown in Fig.
2. A description of the measurement setting can be found in
[10]. The locations of the Rx and Tx were kept fixed during the
measurement. A 50-element omni-directional antenna array
was used in the Tx. The Rx was equipped with a single omni-
directional antenna. A detailed description of the configuration
of the Tx antenna array can be found in [19, Fig. 2]. During
the measurement, people were moving in the room where the
Tx was located. These movements introduced time variations
of the channel response.

The data of 200 measurement cycles were collected within
a period of 13 seconds. A measurement cycle is referred to as
the interval within which all 50 subchannels are sounded once.
Fig. 3 depicts the estimated delay power spectrum calculated
from the data.

The SAGE algorithm was used to compute an estimate
P̂ (Ω, τ) of the direction–delay power spectrum P (Ω, τ) in
(9) within the delay ranging from 100 ns to 135 ns. The
estimated number of components D̂ is set according to the
number of observed dominant local maxima of the direction-
delay Bartlett spectrum computed from the measurement data
within this delay range: D̂ = 10. Fig. 4 depicts the 3 dB-spread
surfaces (18) of the estimated component azimuth-elevation-
delay psds. The color of the surfaces codes the estimated
component power.
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Fig. 3. Estimated delay power spectrum of the received signal.

Azimuth of arrival [◦]
Delay [ns]

E
le

va
ti
on

of
ar

ri
va

l
[◦

]

N
or

m
al

iz
ed

to
ta

l
av

er
ag

e
po

w
er

[L
in

ea
r]

Fig. 4. 3 dB-spread surfaces of estimated component azimuth–elevation–
delay power spectra. The color of the surfaces codes the component power
estimates.

Fig. 5 depicts the estimated azimuth–elevation–delay power
spectrum calculated using the Bartlett beamformer [20] and
the azimuth–elevation–delay power spectrum estimate

P̂ (φ, θ, τ) = sin(θ) · P̂ (Ω, τ)|Ω=e(φ,θ)

obtained from the parameter estimates computed with the
SAGE algorithm. The notation “Bartlett(Σ)” in Fig. 5 repre-
sents the power spectrum estimate calculated using the Bartlett
beamformer applied to the covariance matrix Σ given as an
argument. For notational brevity, we call such a spectrum
“Bartlett spectrum” in the sequel. The matrices Σ̂ and Σ(θ̂)
denote respectively the sample covariance matrix and the
covariance matrix computed based on P̂ (Ω, τ).

It is apparent from Fig. 5 that the individual components in
P̂ (φ, θ, τ) are much more concentrated than the corresponding
components in both Bartlett spectra. Furthermore, the symme-
try axes of the individual components of P̂ (φ, θ, τ) are not
parallel to the azimuth and elevation axes. This asymmetry is
due to the dependence across different dispersion dimensions.
Notice that the Jacobian in (17) can also induce an artificial
tilting of the components. However, in this particular example
most of the components in P̂ (φ, θ, τ) are concentrated in an
elevation range around 90◦, i.e. over which the impact of the
Jacobian is insignificant.

It can be observed from Fig. 5 that the spectra Bartlett(Σ̂)
and Bartlett(Σ(θ̂)) are similar. However, some of the foot
prints arising in Bartlett(Σ̂) do not have their counterpart in
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Fig. 5. Bartlett azimuth–elevation–delay spectrum (first two columns) and estimated azimuth–elevation–delay power spectrum computed from the parameter
estimates returned by the SAGE algorithm (third column). Each row is plotted for the delay given to its left.
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Bartlett(Σ(θ̂)), which indicates that the number of compo-
nents D̂ specified in the SAGE algorithm is less than the true
number of components in the channel response. Furthermore,
Bartlett(Σ̂) and Bartlett(Σ(θ̂)) are slightly different in their
significant global and local maxima. A possible explanation
for this effect is that the derived pdf (17) only provides an
approximation to the effective psd of individual components.

VI. CONCLUSIONS

In this contribution, we characterized the normalized
direction-delay power spectral density of individual dispersed
components in the response of the propagation channel with
a probability density function (pdf). The proposed pdf max-
imizes the entropy under the constraint that its first and
second moments are specified. A SAGE algorithm was used
to estimate the parameters of the component direction–delay
power spectra from measurement data. The results showed
that the Bartlett spectra obtained from the reconstructed signal
covariance matrix computed using the SAGE estimation result
look similar to those calculated using the sample covariance
matrix. Furthermore, the estimated component direction-delay
power spectra are much more concentrated than their coun-
terpart in the Bartlett spectra. These results demonstrate that
the proposed pdf along with the SAGE estimator provide an
effective tool to characterize direction-delay dispersion in the
propagation channel.
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[4] N. Czink, X. Yin, H. Özcelik, M. Herdin, E. Bonek, and B. Fleury,
“Cluster characteristics in a MIMO indoor propagation environment,”
IEEE Transactions on Wireless Communications, vol. 6, no. 4, pp. 1465–
1476, April 2007.

[5] M. Bengtsson and B. Völcker, “On the estimation of azimuth distribu-
tions and azimuth spectra,” in Proceedings of the 54th IEEE Vehicular
Technology Conference (VTC2001-Fall), vol. 3, no. 12, Atlantic City,
USA, October 2001, pp. 1612–1615.

[6] T. Trump and B. Ottersten, “Estimation of nominal direction of arrival
and angular spread using an array of sensors,” Signal Processing, vol. 50,
pp. 57–69, Apr. 1996.

[7] O. Besson and P. Stoica, “Decoupled estimation of DoA and angular
spread for spatially distributed sources,” IEEE Transaction on Signal
Processing, vol. 49, pp. 1872–1882, 1999.

[8] C. B. Ribeiro, E. Ollila, and V. Koivunen, “Stochastic maximum
likelihood method for propagation parameter estimation,” in Proceedings
of the 15th IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC’06), vol. 3, Helsinki, Finland,
September, 11-14 2004, pp. 1839 – 1843.

[9] E. Jaynes, Probability theory. Cambridge University Press, 2003.

[10] X. Yin, T. Pedersen, N. Czink, and B. H. Fleury, “Parametric character-
ization and estimation of bi-azimuth dispersion of path components,”
in Proceedings of the 7th IEEE International Workshop on Signal
Processing Advances for Wireless Communications (SPAWC), Nice,
France, July 2006.

[11] X. Yin, L. Liu, D. Nielsen, N. Czink, and B. H. Fleury, “Charac-
terization of the azimuth-elevation power spectrum of individual path
components,” in Proceedings of the International ITG/IEEE Workshop
on Smart Antennas (WSA 2007), Vienna, Austria, Feb. 2007.

[12] X. Yin, L. Liu, D. Nielsen, T. Pedersen, and B. Fleury, “A SAGE
algorithm for the estimation of direction power spectrum of individual
path components,” in Proceedings of the 50th IEEE Global Telecom-
munications Conference (GLOBECOM 2007), Washinton D.C. USA,
November 2007.

[13] B. H. Fleury, “First- and second-order characterization of direction
dispersion and space selectivity in the radio channel,” IEEE Transactions
on Information Theory, no. 6, pp. 2027–2044, Sept. 2000.

[14] K. V. Mardia, “Statistics of directional data,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 37, pp. 349–393,
1975.

[15] J. T. Kent, “The Fisher-Bingham distribution on the sphere,” Journal
of the Royal Statistical Society, Series B (Methodological), vol. 44, pp.
71–80, 1982.

[16] H. Krim and M. Viberg, “Two decades of array signal processing
research: the parametric approach,” IEEE Transactions on Signal Pro-
cessing, vol. 13, pp. 67–94, 1996.

[17] N. Czink, E. Bonek, X. Yin, and B. H. Fleury, “Cluster angular spreads
in a MIMO indoor propagation environment,” in Proceedings of the 16th
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’05), vol. 1, Berlin, Germany, September, 11-
14 2005, pp. 664–668.

[18] E. Bonek, N. Czink, V. M. Holappa, M. Alatossava, L. Hentilä, J. Nuu-
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