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Efficient Desynchronization of

Thermostatically Controlled Loads
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University, Denmark (e-mail: dimon@es.aau.dk).

∗∗ Department of Mechanical and Aerospace Engineering, University of
California, San Diego, California (email: srsridharan@eng.ucsd.edu)

Abstract: This paper considers demand side management in smart power grid systems contain-
ing significant numbers of thermostatically controlled loads such as air conditioning systems,
heat pumps, etc. Recent studies have shown that the overall power consumption of such systems
can be regulated up and down centrally by broadcasting small setpoint change commands
without significantly impacting consumer comfort. However, sudden simultaneous setpoint
changes induce undesirable power consumption oscillations due to sudden synchronization of
the on/off cycles of the individual units. In this paper, we present a novel algorithm for
counter-acting these unwanted oscillations, which requires neither central management of the
individual units nor communication between units. We present a formal proof of convergence of
homogeneous populations to desynchronized status, as well as simulations that indicate that the
algorithm is able to effectively dampen power consumption oscillations for both homogeneous
and heterogeneous populations of thermostatically controlled loads.

1. INTRODUCTION

With growing penetration of renewable energy sources in
modern power grids, demand side management has been
gaining attention as a means of achieving better balancing
between supply and demand (Mohsenian-Rad et al. [2010],
Strbac [2008], Short et al. [2007]). Indeed, it appears
that the higher intermittency and lack of dispatchability
associated with increased dependence on renewable energy
sources can be taken care of more effectively by electrical
loads than by conventional generators, which are typically
not designed for fast up- and down regulation (Strbac
[2008], Klobasa [2010]).

Various technologies are currently being considered in the
context of demand side management; coordinated charging
of batteries, e.g., in electric vehicles (Mets et al. [2010]),
deliberate scheduling of loads with flexible deadlines (Pe-
tersen et al. [2012]) as well as allowing local consumers
with slow dynamics (large time constants) to store more
or less energy at convenient times and thereby adjusting
the momentary consumption (e.g., Moslehi and Kumar
[2010]), among others. In particular, so-called thermostati-
cally controlled loads (TCLs), such as deep freezers, refrig-
erators, local heat pumps etc., are showing great potential
in this context, since they account for a large volume of
consumption in most countries with significant renewable
penetration—for instance, as of 2009, about 87 percent of
all US homes were equipped with air conditioning. 1
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Thus, at least in theory, manipulating the operating condi-
tions of large populations of units slightly while avoiding
discomfort to end users appears to be attractive, given
that it can be achieved simply by broadcasting setpoint
changes. Control strategies based on this principle were
considered in Callaway [2009], Kundu et al. [2011], Per-
fumo et al. [2012] and Bashash and Fathy [2012], among
others. In these strategies, subtle changes in the thermo-
stat setpoint temperature (less than a degree Celcius) are
transmitted to all the participating consumers simultane-
ously. Such small variations in the thermostat setpoints are
expected to remain almost unnoticed by the customers,
but if a sufficiently large number of units are shifted in
the same direction, the overall power consumption can be
shifted quickly by significant amounts, allowing to com-
pensate for power production fluctuations in the grid.

There is an intrinsic problem with this approach, how-
ever. When the setpoint is changed concurrently in a
large number of TCLs, their on/off cycles tend to become
synchronized, which leads to large unwanted fluctuations
(damped oscillations) in the overall power consumption
Callaway [2009], Kundu et al. [2011]. If the entire popu-
lation of TCLs consists of identical units (homogeneous),
it is possible to counteract the fluctuations by means of
a centralized control law. In the much more realistic case
of non-identical (heterogeneous) units, on the other hand,
the fluctuations are far harder to remove using central-
ized control strategies. To the authors’ knowledge, the
only solution strategy presented in the literature so far is
Kundu and Sinitsyn [2012], where a strategy in which the
individual TCLs deliberately slow down their transition in
order to avoid synchronization was proposed.

In this paper, we propose a novel, decentralized algo-
rithm for avoiding synchronization without having to ac-



tively communicate between units. The algorithm pro-
posed here is fundamentally different from the one pre-
sented in Kundu and Sinitsyn [2012]) in that it first adjusts
the temperature bands in which the TCLs operate to
achieve early (randomized) desynchronization, and then
makes use of a technique inspired by contention-based
media access protocols to adaptively adjust the on/off
cycles to achieve as little synchronization among units
as possible. We present a formal proof of convergence of
homogeneous populations to this desynchronized status,
as well as simulations that indicate that the algorithm is
able to effectively dampen power consumption oscillations
for both homogeneous and heterogeneous populations of
thermostatically controlled loads.

The outline of the rest of the paper is as follows. Section
2 first presents the simplified TCL model we shall em-
ploy, along with the synchronization issue. Section 3 then
presents the proposed algorithm along with the aforemen-
tioned convergence result. Section 4 illustrates the feasi-
bility of the approach through two simulation examples.
Finally, Section 5 offers some concluding remarks.

2. PROBLEM SETUP

We consider a population of N individual temperature
controlled loads. The TCLs are modeled in a generic
manner, which is deliberately kept as simple as possible.
Nonetheless, as will be illustrated with a few simulation
examples, the behavior of a large population of simple
units can be fairly complex.

2.1 Model

The individual TCLs are modeled as follows. Let the
internal and ambient temperatures of the volumes (living
spaces, refrigerators, cold storages etc.) affected by the
action of the heating/cooling hardware of the i’th con-
sumer be denoted θi and θ∞,i, respectively, and assume
that the hardware is purely on/off-regulated. A simple
model for the internal temperature can then be formulated
as Malhame and Chong [1985], Callaway [2009], Bashash
and Fathy [2012]:

θ̇i(t) =
1

RiCi

(θ∞,i − θi(t)− si(t)RiPi), (1)

si(t) =







0 if si(t
−) = 1 ∧ Ti(t) ≤ Tmin,i

1 if si(t
−) = 0 ∧ Ti(t) ≥ Tmax,i

si(t
−) otherwise

(2)

for i = 1, 2, . . . , N , where Ci is the thermal capacitance of
the consumer, Ri is the corresponding thermal resistance
and Pi is the (constant) heating/cooling power supplied
by the hardware when switched on. si ∈ {0, 1} is a
binary switching variable that determines whether or not
the hardware is turned on; basically, it switches status
whenever the internal temperature encounters the limits of
a pre-set temperature span [θmin,i, θmax,i] ⊂ R (t− = t− ǫ,
where ǫ is an infinitesimal positive value). Note that both
heating and cooling systems can be modeled by (4)–(2),
by choosing the sign of the term si(t)RiPi appropriately.

The temperature limits θmin,i and θmax,i are related to the
i’th consumer’s setpoint θsp,i through the relations
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Fig. 1. Temperature and power consumption of a single
TCL

θmin,i = θsp,i −
∆

2
, θmax,i = θsp,i +

∆

2
where ∆ is the width of the temperature interval. Further-
more, the cumulative power consumption of the population
of TCLs at any given time t can be computed as

P (t) =

N
∑

i=1

Pisi(t)

ηi
(3)

where ηi is the coefficient of performance for the i’th
heating/cooling unit.

Figure 1 illustrates the characteristic behavior of a single
TCL. The parameters are chosen as R = 2◦C/kW, C = 5
kWh/◦C, P = 14 kW, η = 2.5, θsp = 20◦C, ∆ = 1◦C
and θ∞ = 28◦C, respectively. The temperature setpoint is
changed to θsp = 20.5◦C at time t = 10 h, resulting in a
slightly longer period in which the cooling power is turned
off, until the new operating interval is reached.

2.2 Population behavior

As illustrated in Callaway [2009], Perfumo et al. [2012],
Bashash and Fathy [2012] and others, the power consump-
tion of populations of units with the individual dynamics
given above can be manipulated via broadcasts of small
setpoint changes. Figure 2 shows the behavior of a pop-
ulation of 10,000 homogeneous (identical) TCLs with the
same set of parameters as in figure 1 (only the temperature
profiles of 25 TCLs are shown in the figure). The devices
are started at random temperatures unifomly distributed
within [θmin, θmax], and their on/off cycles are thus desyn-
chronized, yielding a fairly smooth power consumption
trajectory. At time t = 10 h, all the TCLs are subjected to
a common step in the setpoint of 0.5◦C. As can be seen,
the overall power consumption drops by an amount pro-
portional to the size of the step, but significant oscillations
appear in the power consumption due to synchronization
of the individual units’ on/off cycles.

Figure 3 illustrates the behavior of a population of TCLs
under the same simulation circumstances, but with Ci cho-
sen from a normal distribution with mean 5 and spread 0.5
kWh/◦C (again, only the temperature profiles of 25 TCLs
are shown in the figure). A step of 0.5◦C in the setpoint
is broadcast to all the TCLs at time t = 10 h. Notice how
the power consumption is quite smooth before the step



Fig. 2. Temperature and power consumption of a popula-
tion of 10,000 homogeneous TCLs
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Fig. 3. Temperature and power consumption of a popula-
tion of 10,000 heterogeneous TCLs

because the on/off cycles of the TCLs are desynchronized,
whereas immediately after the step the TCLs become
synchronized and the power consumption again exhibits
large fluctuations, which in this case die out slowly. The
oscillations die out faster if the parameters vary more (e.g.,
if Ci is chosen from a distribution with larger spread);
furthermore, the amplitude is relatively larger for larger
populations of units. However, qualitatively the behavior
remains the same. The oscillations are known as parasitic
oscillations and are hard to remove via centralized control
signals (Kundu and Sinitsyn [2012]).

2.3 Problem formulation

In order to reduce the aforementioned oscillations in power
consumption after the setpoint change broadcasts, it is
clearly necessary to deliberately desynchronize the TCLs
without interrupting their operation. However, a central-
ized algorithm for doing so is undesirable; it is considered
infeasible to keep close track of the internal states (tem-
peratures, set points etc.) of all the units in a centralized
manner, since doing so would require regular measurement
feedback from all the devices, which would give rise to a
very heavy communication and computational load on the
system.

Thus, we look for a low-complexity, decentralized algo-
rithm that can be implemented locally in each TCL, and
which satisfies the following requirements:

R1 The algorithm may only use local information; this
means that the TCLs may not communicate with
each other, and labels identifying each individual
TCL may not be pre-assigned

R2 Communication with the power supply utility must
be limited to broadcast from the utility; no commu-
nication originating from the TCLs is allowed

R3 The general operation of each individual TCL may
not be altered in a manner that is detrimental to
the user comfort; for example, the unit may not be
deliberately kept turned off or on long enough for the
temperature to leave the interval [θmin, θmax]

3. DESYNCHRONIZATION ALGORITHM

In the following, we present a completely decentralized
algorithm that is able to reduce the power oscillations
discussed above without violating any of the requirements
R1–R3. The only significant assumption we require to be
satisfied is that the individual TCLs have access to time
stamps of changes in the total power consumption. While
this may be considered a form of global information, its
usage is limited to identifying the times at which the im-
mediate predecessor and the immediate successor of a local
TCL changes state. It is not used to actually identify said
units; i.e., we only require local temporal information. The
information about changes in global power consumption
may either be measured locally or broadcast from the
utility, thus avoiding violating requirements R1 and R2.

The algorithm comprises two main components. Firstly,
the algorithm is reset whenever each TCL in question
receives a setpoint change θsp,i → θsp,i + δ. At this point,
each TCL immediately narrows its operation interval by a
random value α ∈ [0,∆/2], causing the dynamics of unit i
momentarily to be governed by the dynamics

θ̇i(t) =
1

RiCi

(θ∞,i − θi(t)− si(t)RiPi),

si(t) =



















0 if si(t
−) = 1 ∧ θi(t) ≤ θsp,i + δ +

∆i

2
− αi

1 if si(t
−) = 0 ∧ θi(t) ≥ θsp,i + δ −

∆i

2
+ αi

si(t
−) otherwise

This operation rapidly induces a large degree of desynchro-
nization among the population of TCLs without violating
requirement R3, as illustrated in Figure 4. However, ran-
domly choosing the temperature bounds may yield very
tight bounds, which in turn may give rise to constant
rapid on/off-switching. This is generally not desirable, so
we drive the bounds back to their original settings by
introducing the dynamics

α̇(t) = −aα(t) (4)

for some appropriately chosen a > 0, as also illustrated in
the figure.

Now, even though most of the synchronization among
the population of TCLs is likely to have disappeared
with the random shrinking of the operating interval, it
may still happen that some TCLs remain synchronized,
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Fig. 4. Illustration of TCL desynchronization algorithm
before and after a step occurring at t = tδ. The
temperature profiles θi of three TCLs indexed by
i = 1, 2, 3 are shown with full lines. The dashed lines
indicate the operating intervals [θsp,i + δ + ∆i/2 −
αi(t), θsp,i+δ−∆i/2+αi(t)]. Due to different random
values of αi, the TCLs become desynchronized after
the step even though they were completely synchro-
nized before and immediately after tδ. The operation
intervals converge exponentially back to their original
values.

or close to synchronized. The second component of the
proposed algorithm is designed to deal with any ‘left-
over’ synchronization among TCLs that are close to being
identical. Here, we make use of the fact that the behavior
of the TCLs is periodic in steady state operation. Let
the period be denoted T . Essentially, this part of the
desynchronization algorithm repeatedly forces the devices
to switch status at some point within the interval [0, T ],
and adaptively adjusts this enforced switch timing to
achieve maximal spread across the period; see Figure 5.

In short, each TCL records the switch timings of the
immediately preceding and the immediately succeeding
TCLs; then it sets the new enforced switch time to the
mean of the switch times of the succeeding and preceding
TCLs, i.e.,

tk+1 =
tprev + tprev

2
(5)

where tk+1 ∈ [0, T ] denotes the time of the enforced switch
within the following period, modulo T .

The enforced switch timings are initially distributed ran-
domly; the TCL which randomly obtains the smallest
value will then not be able detect a switch prior to its
own. When it recognizes this fact, it sets its own switch
timing to 0 and maintains it at that value (modulo T ); it
is thus not necessary to assign a global label to the first
and/or last TCL a priori.

Let xj
k denote the time of the j’th forced transition,

modulo T , at iteration k; that is, 0 = x1
k < x2

k < · · · <
xN
k < T . We gather these switch timings in a vector

xk ∈ [0, T ]N .We can then prove the following asymptotic
result:

Theorem 1. If all switch timings for i = 1, . . . , N are
updated according to (5), the globally attracting switch

0

t

tprev tn tnext T

θ

θmin

θmax

0

t

tprev tn tnext T

P

Fig. 5. Illustration of TCL desynchronization algorithm.
The top figure shows the temperature profile of a
TCL with (thick full line) and without (thick dashed
line) enforced switching at time t = tn. The thin
dashed lines show parts of the temperature traces
of the preceding and succeeding TCLs. Their switch
times are recorded by the local TCL as tprev and tnext,
respectively. The bottom figure shows the relevant
part of the corresponding power traces.

timing state x∗ (modulo T ) is described by

x∗ mod T =

[

0
T

N
,
2T

N
, . . . ,

T (N − 1)

N

]
′

. (6)

Proof: The algorithm described above for the evolution of
the state (time) dynamics requires that each state be the
mean value of the prior and next state with the caveat that
theN ’th element should update its value based on the next
pulse i.e. the value of the first state element in the next
time instant. Hence, we first extend the state vector by
placing the new value of the first state into the fictitious
N + 1 th dimension of the state vector x to generate a
new state vector, denoted x̃. The update dynamics of the
enforced switch times can be written as

x̃k+1 =
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x̃k

=Γx̃k. (7)

which implies that

lim
k→∞

x̃k = lim
k→∞

Γkx̃0

Using eigenvalue decomposition, we may write the afore-
mentioned limit as

lim
k→∞

x̃k = lim
k→∞

EΛkE−1x̃0 (8)



where Λ ∈ R
(N+1)×(N+1) is a diagonal matrix of eigen-

values of Γ and E ∈ R
(N+1)×(N+1) contains the corre-

sponding eigenvectors. Γ has two repeated unit eigenvalues
with linearly independent eigenvectors γ and 1− γ, where
1 ∈ R

N+1 is a vector of one-elements and

γ =

[

1 1−
1

N
1−

2

N
. . . 0

]T

(9)

The remaining eigenvalues are of absolute magnitude less
than 1, implying that all except two of the diagonal
elements in the eigenvalue matrix Λk tend to zero as
k →∞. Hence, in order to obtain the limiting value of the
state dynamics, it remains only to utilize the eigenvectors
corresponding to the unit eigenvalues to obtain the limit
in (8).

Partition the eigenvector matrices as follows

E = [e1 e2 · · · eN+1] , E−1 = [ẽ1 ẽ2 · · · ẽN+1]
T

and let e1 and eN+1 denote the eigenvectors corresponding
to the unit eigenvalues, i.e., e1 = γ, eN+1 = 1 − γ. It is
now possible to verify from the structure of Γ and the
partitioning of E and E−1 that

ẽT1 = [ 1 0 · · · 0 ] , ẽTN+1 = [ 0 0 · · · 1 ] , (10)

Finally, substituting e1 = γ, eN+1 = 1− γ into (8) we get

lim
k→∞

Γk = [γ 0 · · · 0 1− γ] . (11)

Thus it is seen that the asymptotic limit of the state is
dependent only on the first and last elements of the state
vector x̃. As these are fixed at 0 and T respectively, the
statement of the theorem follows as desired. ✁

It is of interest to note that if Γ had been a positive (or
irreducible) matrix, the Perron-Frobenuis theorem would
have been an elegant approach to obtain the steady state
matrix directly. However, in this case, owing to the zero
entires and the lack of strong connectivity of the graph
associated with Γ (a necessary and sufficient condition for
irreducibility), the above more involved proof is required.

Finally, we state the full desynchronization algorithm as
Algorithm 1, where we use the notation rand ∈ [0, T ] to
denote the operation of picking a random value from a
uniform distribution over the interval [0, T ].

4. SIMULATION EXAMPLES

Armed with Algorithm 1, we re-visit the simulation ex-
amples in Section 2. Figure 6 shows the temperature
curves of a subset of a population of 10,000 identical
TCLs, simulated under the same conditions as above, i.e.,
R = 2◦C/kW, C = 5 kWh/◦C, P = 14 kW, η = 2.5,
θsp = 20◦C, ∆ = 1◦C and θ∞ = 28◦C. The top subplot
shows the behavior without desynchronization, while the
bottom plot shows the behavior with Algorithm 1 applied.
The temperature curves clearly look more ‘jumbled’ after
the step, which indicates a greater degree of desynchro-
nization, and the operation intervals can be seen to return
to their original size after in the space of a few hours.

Figure 7 shows the corresponding power curves. The
effect of the desynchronization is very obvious almost
immediately after the step, as the amplitude of already the
first peak is less than the case without desynchronization,
and most of the oscillations are suppressed after about

Algorithm 1: Desynchronize Cooling TCL

Data: Broadcast signal indicating a setpoint change δ;
Initial operation setpoint θsp and interval width
∆; initial on/off status s ∈ {0, 1}; on/off period
time T ; constant a > 0

Result: tk yielding maximal desynchronization for
k →∞

begin
θsp ←− θsp + δ ;
t0 ←− rand ∈ [0, T ] ;
α←− rand ∈ [0,∆/2] ;
k ←− 0;
while k <∞ do

for 0 < t < T do
Measure θ(t) ;
if t < tk then

tprev ←− time of last transition before tn ;

if t = tk then
if s = 0 then

s←− 1 ;

else
s←− 0 ;

if t > tk then
tprev ←− time of first transition after tn ;

if θ(t) ≤ θsp −
∆
2 + α then

si(t)←− 0 ;

else if θ(t) ≥ θsp +
∆
2 − α then

si(t)←− 1 ;

if s = 1 then
Turn cooling power on ;

α←− αe−aǫ ;
t←− t+ ǫ ;

tk+1 ←− (tprev + tnext)/2 ;
k ←− k + 1 ;
t←− 0 ;

end

Fig. 6. Simulation with 10,000 identical TCLs subjected
to a step change at time t = 10 h. Top: no desynchro-
nization; bottom: with synchronization

one period. We also notice that there are some oscillations
remaining, which will gradually die out due to the long-
term behavior of the adaptive algorithm.
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Fig. 7. Simulation with 10,000 identical TCLs subjected
to a step change at time t = 10 h. Full line: with
desynchronization; dashed: without synchronization
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Fig. 8. Simulation with 10,000 inhomogeneous TCLs sub-
jected to a step change at time t = 10 h. Full line: with
desynchronization; dashed: without synchronization

Figure 8 shows a simulation with a heterogenous popula-
tion of TCLs. Here, as opposed to Figure 7, the parasitic
oscillations die out in the case without desynchroniza-
tion as well. However, Algorithm 1 clearly speeds up the
process, however. Note that the oscillations that can be
seen before the setpoint change is due to the initialization
of the TCL on/off states, which does not match exactly
with the steady-state distribution (the desynchronization
is not active before t = 10 h). Note also that, by changing
the setpoint of all the TCLs in the simulation by half a
degree, it was possible to reduce the mean total power
consumption by approximately 2 MW after the step.

5. DISCUSSION

This paper presented a novel algorithm for counter-acting
unwanted oscillations caused by synchronization of pop-
ulations of temperature controlled loads, which requires
neither central management of the individual units nor
communication between units. The algorithm comprises
two main part, a ‘fast’ randomization of the tempera-
ture bands within which the TCLs operate, and a ‘slow’
adaptive adjustment of enforced switch timings, which
maximizes desynchronization over time. We presented a
formal proof of convergence of homogeneous populations
to the desynchronized status, as well as simulations that
indicate that the algorithm is able to effectively dampen

power consumption oscillations for both homogeneous and
heterogeneous populations.

However, the simulations also indicate that even with ac-
tive desynchronization, it is hard to avoid large peaks right
after a common broadcast setpoint step. Thus, high-level
model-based control along the lines of the work presented
in Kundu et al. [2011], will probably be preferable to
simple steps.
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