Aalborg Universitet

ZZT-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations

Pedersen, Christian Fischer; Andersen, Ove; Dalsgaard, Paul

Publication date: 2009

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Pedersen, C. F., Andersen, O., & Dalsgaard, P. (2009). ZZT-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations. Poster presented at Interspeech, Brighton, United Kingdom.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Motivation and contribution

Current research has proposed a non-parametric speech waveform representation (rep) based on zeros of the z-transform (ZZT) [1]. Empirically, the ZZT rep has successfully been applied in discriminating the glottal and vocal tract components in pitch-synchronously windowed speech by using the unit circle (UC) as discriminant [1]. Further, similarity between ZZT reps of windowed speech, glottal flow waveforms, and waveforms of glottal flow opening and closing phases has been demonstrated [1]. Therefore, the underlying cause of the separation on either side of the UC can be analyzed via the individual ZZT reps of the opening and closing phase waveforms; the waveforms are generated by the LF glottal flow model (GFM) [1]. The present study demonstrates this cause and effect analytically and thereby supplements the previous empirical works; moreover, it demonstrates that immiscibility is periodically variant under changes in frame lengths; lengths that maximize or minimize immiscibility are presented.

LF glottal flow model (GFM)

Definition 1 LF glottal flow (derivative) model [2] $e_o(t) = E_0 e^{\alpha t} \sin(\omega_g t), \qquad t_0 \le t \le t_e$ $e_c(t) = -\frac{E_e}{\epsilon t_a} \left(e^{-\epsilon(t-t_e)} - e^{-\epsilon(t_c-t_e)} \right), \quad t_e < t \le t_c$ $t_0 \le t \le t_e$ $t_c < t \le T$ $e_s(t) = 0,$

Let $e_o(t)$, $e_c(t)$ and $e_s(t)$ denote the opening, closing and shut phase respectively. The discretized equivalents of $e_o(t)$ and $e_c(t)$ are $e_o = (eo_n)_{n=0}^{N-1}$ and $ec = (ec_n)_{n=0}^{N-1}$ respectively.

Zeros of the z-transform (ZZT)

Definition 2 *Zeros of the z-transform* The zeros of the z-transform of a sequence $(x_n)_{n=0}^{N-1} \subset$ \mathbb{R} are defined as $z_1, z_2, ..., z_m \in \mathbb{C} \setminus \{0\}$ such that $X(z_i) = \sum_{n=0}^{N-1} x_n z_i^{-n} = 0$ for $1 \le i \le m$.

The ZZT-transformation is denoted ρ : $\mathbb{R} \mapsto \mathbb{C}$, $\rho((x_n)_{n=1}^N) = (z_m)_{m=1}^{N-1-k}$, where x is a polynomial coefficient sequence ordered in descending powers, *z* is a sequence of non-zero zeros, and *k* is the multiplicity of a zero at zero.

References

- [1] B. Bozkurt, Zeros of the z-transform (ZZT) representation and chirp group delay processing for the analysis of source and filter characteristics of speech signals, Ph.D. dissertation, Faculté Polytech. de Mons, Belgium, Oct. 2005.
- [2] G. Fant, J. Liljencrants and Q. Lin, A four-parameter model of glottal flow, STL-QPSR, vol. 26/4, pp. 1-13, 1985.
- [3] A.L. Cauchy, *Exercises de mathematique*, Oeuvres 2, vol. 9, 1829.
- [4] Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, 2002.
- [5] H.P. Hirst and W.T. Macey, Bounding the Roots of Polynomials, The College Mathematics Journal, vol. 28/4, Mathematical Association of America, 1997.

ZZT-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations C.F. Pedersen, O. Andersen, P. Dalsgaard Dept. of Electronic Systems, Aalborg University, {cfp,oa,pd}@es.aau.dk

Cauchy bound (CB)

Let p(a, z) denote a univariate polynomial with variable $z \in \mathbb{C}$ and coefficients $(a_n)_{i=0}^{N-1} \subset \mathbb{R}$.

Theorem 1 *Cauchy bound* [3] All zeros of a complex polynomial,

$$p(a,z) = z^n + \sum_{k=0}^{n-1} a_k z^k$$

lie in the disk $|z| < \lambda$ *where* $\lambda = 1 + \max_{0 \le k \le n-1} \{|a_k|\}$

Theorem 2 *Cauchy bounded annulus* [4]

Let p(a, z) be a polynomial with zeros $z_1, ..., z_m$ ordered as $0 < |z_1| \le \dots \le |z_m|$. Let λ^* denote the CB of p(a, z)and λ_* the CB of $z^m p(a, 1/z)$. Then the following inequalities hold,

$$\frac{1}{\lambda_*} \le |z_1| \le \frac{1}{(2^{1/m} - 1)\lambda_*} \quad and$$
$$(2^{1/m} - 1)\lambda^* \le |z_m| \le \lambda^*$$

Thm. 3 and 1 are equivalent, but thm. 3 yield a tighter bound in the present analysis.

Theorem 3 Alternative Cauchy bound [5] All zeros of a n'th degree complex polynomial,

$$p(a,z) = z^n + \sum_{k=0}^{n-1} a_k z^k$$

lie in the disk $|z| \leq \lambda_a$ *where* $\lambda_a = max \left\{ 1, \sum_{i=0}^{n-1} |a_i| \right\}$

Subscript *a* denotes *alternative* CB.

whe $p(x_p)$

$$k =$$

If $\lambda_*^{-1}(N) > 1$ for the ZZT rep., all zeros lie outside the UC (cf. th. 2). As e^{α} is just a real scaling of the zeros of $p(x_p, z)$, $\lambda_*^{-1}(N)$ of $p(x_p, z)$ can be analysed in isolation heeding

lim $N \rightarrow a$ lim

 $\overline{sin(k($

where

SnInboM

Analysis of opening phase

ZZT representation of *eo* (cf. def. 1)

 $z_m = e^{\alpha} \rho(x_p), \ z_m \neq 0, e^{\alpha \pm ik}, \ m \in [1; N-2]$

$$\omega_q = sin(k)z^N - sin(kN)z + sin(k(N-1)),$$

$$\omega_q = \pi/t_p$$

Lower Cauchy bound of the ZZT rep.

$$e^{\alpha(h=1)} > (1/\lambda_*^{-1}(N) \Leftrightarrow \alpha > \ln(\lambda_*(N))$$

Sampling period h = 1 (cf. ZZT rep. above). The global minima points of $\lambda_*^{-1}(N)$ are

$$\lim_{N \to a^{\pm}} \left| \frac{\sin(k)}{\sin(k(N-1))} \right| = \infty \qquad \left\{ \begin{array}{c} \sin(k) \\ \lim_{N \to a^{\pm}} \left| \frac{\sin(k)}{\sin(k(N-1))} \right| = \infty \end{array} \right\} \Rightarrow \quad \lim_{N \to a^{\pm}} \lambda_*^{-1}(N) = 0$$

re $a = (k + q\pi)/k = 1 + qt_p, \ q \in \mathbb{Z}.$ The global maxima points of $\lambda_*^{-1}(N)$ are

$$\frac{(k)}{(N-1)} = \left| \frac{\sin(kN)}{\sin(k(N-1))} \right| \Rightarrow \lambda_*^{-1}(N) = \frac{|2\cos(\pi/t_p)|}{|2\cos(\pi/t_p)|+1}$$

e $N = -1 + qt_p \lor N = t_p - 1 + qt_p, \ q \in \mathbb{Z}$

Numerical experiment

Number of coefficients, N

Black line: Lower Cauchy bound. Vert. dashed line: A global min point. Vert. and horiz. dotted lines: A global max point and the max value respectively. Grey line: Lower bound of α . Grey region exemplifies a feasible neighbourhood for N. When $\lambda_*^{-1}(N) \to 0 \Rightarrow \alpha \to \infty$ why N must be chosen outside a neighbourhood of the global min points.

lustrated feasible neighbourhood for N ,	
$^{l}(N) > (e^{-(\alpha = 543.6428) \cdot (h = 0.001)} \approx 0.58062) \Rightarrow$	
$1 + qt_p - 82.68\%_0 t_p; -1 + qt_p + 86.80\%_0 t_p], q \in \mathbb{Z}$	

Analysis of closing phase

where

$$p(x_p, z) = (c_1 - c_2)z^{N+1} + (c_2e^{-k} - c_1)z^N + (c_2 - c_1e^{-kN})z + (c_1e^{-kN} - c_2e^{-k}),$$
$$c_1 = e^{\epsilon t_e}, \ c_2 = e^{-\epsilon(t_c - t_e)}, \ k = \epsilon$$

the UC (cf. th. 3).

which is achieved at

$$N = -ln\left(\frac{1}{2} - \frac{1}{2}e^{-\epsilon} + e^{-\epsilon(t_c+1)}\right)/\epsilon \approx -ln(\frac{1}{2})/\epsilon$$

e global max point and value of $\lambda_a(N)$ are

$$\lambda_a(0) = e^{-\epsilon} + 1 + \frac{1 - e^{-\epsilon(t_c+1)}}{1 - e^{-\epsilon t_c}} \approx 2$$

Numerical experiment The LF GFM params are the same as for the opening phase experiment. Further, ϵ is estimated iteratively by [2],

Solid line: Upper Cauchy bound of LF GFM closing phase. Vert. dashed line: A global min point. Horiz. dashed line: The global min value.

The global min point is reached at $N < t_c < <$ 1; thus, only the opening phase constraints on Nmust be considered when choosing a suitable sequence length.

ZZT representation of *ec* (cf. def. 1) $z_m = \rho(x_p), \ z_m \neq 0, 1, e^{-k}, \ m \in [1; N-1]$

Upper Cauchy bound of the ZZT rep. If $\lambda_a(N) < 1$ for the ZZT rep., all zeros lie inside

The global minimum value of $\lambda_a(N)$ is

$$\lambda_a(N) = 1$$

 $\epsilon t_a = 1 - e^{-\epsilon(t_c - t_e)} \quad \Leftrightarrow \quad \epsilon \approx 3261.44143$