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ZZT-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations
C.F. Pedersen, O. Andersen, P. Dalsgaard

Dept. of Electronic Systems, Aalborg University, {cfp,oa,pd}@es.aau.dk

Motivation and contribution
Current research has proposed a non-parametric speech waveform representation (rep) based on zeros of
the z-transform (ZZT) [1]. Empirically, the ZZT rep has successfully been applied in discriminating the
glottal and vocal tract components in pitch-synchronously windowed speech by using the unit circle (UC)
as discriminant [1]. Further, similarity between ZZT reps of windowed speech, glottal flow waveforms,
and waveforms of glottal flow opening and closing phases has been demonstrated [1]. Therefore, the
underlying cause of the separation on either side of the UC can be analyzed via the individual ZZT reps
of the opening and closing phase waveforms; the waveforms are generated by the LF glottal flow model
(GFM) [1]. The present study demonstrates this cause and effect analytically and thereby supplements
the previous empirical works; moreover, it demonstrates that immiscibility is periodically variant under
changes in frame lengths; lengths that maximize or minimize immiscibility are presented.

LF glottal flow model (GFM)
Definition 1 LF glottal flow (derivative) model [2]
eo(t) = E0e

αtsin(ωgt), t0 ≤ t ≤ te
ec(t) = −Ee

εta

(
e−ε(t−te)−e−ε(tc−te)

)
, te < t ≤ tc

es(t) = 0, tc < t ≤ T

Let eo(t), ec(t) and es(t) denote the opening, clos-
ing and shut phase respectively. The discretized
equivalents of eo(t) and ec(t) are eo = (eon)N−1

n=0

and ec = (ecn)N−1
n=0 respectively.
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Zeros of the z-transform (ZZT)
Definition 2 Zeros of the z-transform
The zeros of the z-transform of a sequence (xn)N−1

n=0 ⊂
R are defined as z1, z2, ..., zm ∈ C \ {0} such that
X(zi) =

∑N−1
n=0 xnz

−n
i = 0 for 1 ≤ i ≤ m.

The ZZT-transformation is denoted ρ : R 7→ C,
ρ((xn)Nn=1) = (zm)N−1−k

m=1 , where x is a polynomial
coefficient sequence ordered in descending pow-
ers, z is a sequence of non-zero zeros, and k is the
multiplicity of a zero at zero.

Cauchy bound (CB)
Let p(a, z) denote a univariate polynomial with
variable z ∈ C and coefficients (an)N−1

i=0 ⊂ R.

Theorem 1 Cauchy bound [3]
All zeros of a complex polynomial,

p(a, z) = zn +
n−1∑
k=0

akz
k

lie in the disk |z| < λ where λ = 1 + max
0≤k≤n−1

{|ak|}

Theorem 2 Cauchy bounded annulus [4]
Let p(a, z) be a polynomial with zeros z1, ..., zm ordered
as 0 < |z1| ≤ ... ≤ |zm|. Let λ∗ denote the CB of p(a, z)
and λ∗ the CB of zmp(a, 1/z). Then the following in-
equalities hold,

1
λ∗
≤ |z1| ≤

1
(21/m − 1)λ∗

and

(21/m − 1)λ∗ ≤ |zm| ≤ λ∗

Thm. 3 and 1 are equivalent, but thm. 3 yield a
tighter bound in the present analysis.

Theorem 3 Alternative Cauchy bound [5]
All zeros of a n’th degree complex polynomial,

p(a, z) = zn +
n−1∑
k=0

akz
k

lie in the disk |z| ≤ λa where
λa = max

{
1,
∑n−1
i=0 |ai|

}
Subscript a denotes alternative CB.

Analysis of opening phase
ZZT representation of eo (cf. def. 1)
zm = eαρ(xp), zm 6= 0, eα±ik, m ∈ [1;N − 2]
where

p(xp, z) = sin(k)zN−sin(kN)z + sin(k(N − 1)),
k = ωg = π/tp

Lower Cauchy bound of the ZZT rep.
If λ−1
∗ (N) > 1 for the ZZT rep., all zeros lie outside

the UC (cf. th. 2). As eα is just a real scaling of the
zeros of p(xp, z), λ−1

∗ (N) of p(xp, z) can be analysed
in isolation heeding

eα(h=1) > (1/λ−1
∗ (N)⇔ α > ln(λ∗(N))

Sampling period h = 1 (cf. ZZT rep. above).
The global minima points of λ−1

∗ (N) are

lim
N→a±

∣∣∣ sin(k)
sin(k(N−1))

∣∣∣ =∞
lim

N→a±

∣∣∣ sin(kN)
sin(k(N−1))

∣∣∣ =∞
}
⇒ lim

N→a±
λ−1
∗ (N) = 0

where a = (k + qπ)/k = 1 + qtp, q ∈ Z.
The global maxima points of λ−1

∗ (N) are∣∣∣ sin(k)
sin(k(N−1))

∣∣∣ = ∣∣∣ sin(kN)
sin(k(N−1))

∣∣∣⇒ λ−1
∗ (N) = |2cos(π/tp)|

|2cos(π/tp)|+1

where N = −1 + qtp ∨ N = tp − 1 + qtp, q ∈ Z

Numerical experiment
The LF GFM params. are set to common values,
t0 = 0.00000s tp = 0.00380s te = 0.00480s
ta = 0.00031s tc = 0.00800s Ee = 1.00000Pa
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Black line: Lower Cauchy bound. Vert. dashed line: A global min point. Vert. and
horiz. dotted lines: A global max point and the max value respectively. Grey line:
Lower bound of α. Grey region exemplifies a feasible neighbourhood for N . When
λ−1
∗ (N) → 0 ⇒ α → ∞ why N must be chosen outside a neighbourhood of

the global min points.

The illustrated feasible neighbourhood for N ,
λ−1
∗ (N) > (e−(α=543.6428)·(h=0.001) ≈ 0.58062)⇒

N ∈ [−1 + qtp − 82.68htp;−1 + qtp + 86.80htp], q ∈ Z

Analysis of closing phase
ZZT representation of ec (cf. def. 1)
zm = ρ(xp), zm 6= 0, 1, e−k, m ∈ [1;N − 1]
where

p(xp, z) = (c1 − c2)zN+1 + (c2e−k − c1)zN+

(c2 − c1e−kN )z + (c1e−kN − c2e−k),
c1 = eεte , c2 = e−ε(tc−te), k = ε

Upper Cauchy bound of the ZZT rep.
If λa(N) < 1 for the ZZT rep., all zeros lie inside
the UC (cf. th. 3).
The global minimum value of λa(N) is

λa(N) = 1
which is achieved at

N = −ln
(

1
2 −

1
2e
−ε + e−ε(tc+1)

)
/ε ≈ −ln( 1

2 )/ε

The global max point and value of λa(N) are

λa(0) = e−ε + 1 +
1− e−ε(tc+1)

1− e−εtc
≈ 2

Numerical experiment
The LF GFM params are the same as for the open-
ing phase experiment. Further, ε is estimated itera-
tively by [2],

εta = 1− e−ε(tc−te) ⇔ ε ≈ 3261.44143
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Solid line: Upper Cauchy bound of LF GFM closing phase. Vert. dashed line: A
global min point. Horiz. dashed line: The global min value.

The global min point is reached at N < tc <<
1; thus, only the opening phase constraints on N
must be considered when choosing a suitable se-
quence length.
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