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Abstract: Due to the unknown dead-time coefficient, the time-delay system identification
turns to be a non-convex optimization problem. This paper investigates the identification of a
simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic
Algorithm (GA) technique. The quality and performance of the GA-based identification are
compared with those based on extended Least-Mean-Square (LMS) methods, subject to the
consideration of different types of time-delay systems, excitation signals, Signal-to-Noise Ratios,
and different evaluation criteria. The obtained results exhibit that the GA technique has a very
promising capability in handling this type of non-convex system identification problem.

Keywords: Time-delay system, parameter identification, genetic algorithms, FOPDT

1. INTRODUCTION

The identification of time-delay system is always a chal-
lenging task, even for the simplest time-delay system,
named First-Order-Plus-Dead-Time (FOPDT) system.
Due to the unknown dead-time coefficient, this type of
identification problem often turns to be a non-convex op-
timization problem (Bjorklund and Ljung (2003); Orlov et
al (2003)).

Illustrative Example: We consider a continuous-time FOPDT
system which is described by its transfer function G(s) =
3e−2s

s+1 . In order to simplify the illustration, hereby we
assume the system’s time constant is precisely known
beforehand, but the system’s dead-time (denoted as Td)
and DC-gain (denoted as K) are unknown, subject to
a condition that we have some pre-knowledge about the
boundaries of these unknown parameters, e.g., K ∈ [1, 4]
and Td ∈ [0, 15]. The considered system is excited by a
pseudo white noise signal and both the system’s input
and response are measured with a reasonable sampling
frequency and afterwards filtered by a common low-pass
filter. Define a cost function for the parameter identifica-
tion as a standard quadratic form as

C(Td,K)=̂
N∑

k=lmax

(y(k)− ŷ(Td,K)(k))
2,

whereN indicates the number of samples and there isN �
lmax, and lmax=̂�Td/Ts� is an integer representing the
largest potential delay steps w.r.t. the sampling period Ts.
y(k) is the kth sampled (filtered) response and ŷ(Td,K)(k) is
the estimated kth sampled response based on the filtered
input signal. The cost function C(Td,K) subject to the
considered parameter boundaries is plotted in Figure 1.

Fig. 1. Cost function surface w.r.t. different Td and K

The non-convex problem due to the unknown dead-time
coefficient can be clearly observed.

The most common and easiest way to estimate the sig-
nals’ delay is to use the cross-correlation analysis (Bjork-
lund and Ljung (2003)). In order to estimated a time-delay
system, some experimental approaches, such as using sys-
tem’s specific response curve, have been proposed and ex-
tensively used over decades (Åström and Hägglund (1995);
Richard (2003)). In general, the identification quality
and performance of these signal or experimental -based
approaches heavily depend on the excitation feature, mea-
sured signals’ quality and the Signal-to-Noise-Ratio (SNR)
level (Ljung (1999)). From a model-based point of view,
because the time-delay feature exhibits itself inside the
independent time index of state/input/output variables,
some specific mathematical operator (or excitation signal)
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is often needed so as to be able to bring this parameter
explicitly out of the time index before any identifica-
tion algorithm can proceed further. This specific math-
ematical operator can be realized through an integrator
(Wang and Zhang (2001)) or a derivative filter (Ahmed et
al (2006)) applied on both sides of the system’s differential
equation model. Correspondingly, some recursive LMS-
based procedures to simultaneously estimated all unknown
system coefficients (incl. the dead-time) have been pro-
posed in (Ahmed et al (2006); Wang and Zhang (2001)).
From a theoretical point of view, Orlov et al (2003)
proposed some conditions to check the identifiability of
linear time-delay systems. Moreover, an adaptive identi-
fier is proposed for online identification purpose. How-
ever, none of above mentioned methods can get rid of
the potential non-convex problem. Yang et al (1997)
proposed a combined GA and RLS approach for online
identification of linear time-delay systems. Each iteration
of this proposed method consists of two sequential steps:
The binary coded GA is used to estimated the system
delay and afterwards the RLS method is employed to
estimated the other system parameters. However, there is
still no guarantee the solution can converge to the global
optimum, even though we could claim that the emphasis
of this work is mainly for online purpose. By employing
a modified crossover operator within a real coded GA,
Shin et al (2007) discussed the FOPDT and SOPDT
model estimation based on system’s step response using
the GA technique. However, the proposed approach can
not extend to handle other type of excitations, as well as
there is no discussion about the algorithm’s robustness.

This work commits an extensive investigation of the pre-
cise FOPDT system identification by using a real coded
GA enhanced with a niching technique. The quality and
performance of this GA estimation method are evaluated
with respect to two different types of time-delay systems,
five different excitation signals, three different SNRs, time-
domain and frequency-domain fitness criteria. These re-
sults are also compared with exhaustive LMS-based meth-
ods. The observations exhibit that the GA technique has
a very promising capability in handling this type of non-
convex system identification problem. The rest of the
paper is organized in the following: Section 2 formulates
the considered system identification problem; Section 3
introduces the applied GA and its parameters; Section
4 illustrates and discusses different testing scenarios and
results; and we conclude the paper in Section 5.

2. PROBLEM FORMULATION

Consider a FOPDT system, which transfer function model
is expressed as

Gf (s)=̂
K

τs+ 1
e−Tds, (1)

where K is the system’s DC-gain, τ is the system’s
time constant and Td is the dead-time coefficient. The
FOPDT system identification problem is defined as to
precisely determine the system parameters K, τ, Td of
the model (1) based on the sampled system’s input and
output sequences, denoted as {y(k)}Nk=0 and {u(k)}Nk=0,
respectively.

2.1 Discretization

The considered FOPDT model (1) can be converted into
its equivalent discrete-time version through the zero-order-
hold principle after a proper sampling period Ts is selected,
i.e.,

Hf (z)=̂
β

z − α
z−l, (2)

where β=̂K(1 − α) and α=̂e−
Ts
τ . Integer l is the best

approximation of Td subject to the predefined Ts, i.e.,
there is (l − 1)Ts ≤ Td < lTs. From (2), a discrete
prediction model can be naturally obtained as:

ŷ(k) = αŷ(k − 1) + βu(k − l − 1). (3)

2.2 Constraint Optimization Problem

The equation (3) can be used to estimated the system
output sequence based on the measured system input and
previous output signals. We define a quadratic-formed cost
function 1 as:

C(α, β, l)=̂
1

N

N∑
k=lmax+1

(y(k)− ŷα,β,l(y(k − 1), u(k − l − 1)))2 (4)

where ŷα,β,l(y(k− 1), u(k− l− 1)) is the predicted system
output at kth step, based on the measurements y(k − 1)
and u(k − l − 1) for lmax + 1 ≤ k ≤ N according to (3).

The considered (discrete) system identification problem
can be formulated into a constraint optimization problem,
i.e.,

min
(α,β,l)∈Θ

E{C(α, β, l)}, (5)

where E{.} represents the expectation operator, and Θ
represents the admissible set of the unknown parameters.
Once the problem (5) is solved, the system parameters of
the original system (1) can be derived from the solution
of (5), where the precision of the dead-time estimation is
pre-determined by the selected sampling frequency.

If the coefficient l is known, the problem (5) reduces to be
a standard Prediction Error (PE) formulation, and there
are a lot of methods available to solve this kind of problem
(Ljung (1999)), e.g., the Recursive Least-Mean-Square
(RLMS) based methods can provide an efficient solution
to that. However, it has been observed that this type
of optimization problem (5) is non-convex subject to the
unknown parameter l. Thereby, the precise identification
needs to be carefully handled. In the following, the GA-
based method is investigated to cope with this kind of
non-convex problem.

3. CONSIDERED GA AND RELEVANT
FORMULATIONS

Due to the purpose of this work is to check the GA’s appli-
cation in process system identification, instead of the in-
vestigation of any new/improved GA methods/algorithms,

1 It should be noticed that the cost function is not necessary to be
defined as a typical quadratic form if the GA is going to be applied.
Here the quadratic form is used mainly due to the fact that we will
conduct compatible comparisons between GA-based and LMS-based
identification methods.
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the standard real coded GA is selected and the quality
of GA-based identification is compared with some LMS-
based methods.

3.1 Real-coded GA and its parameters

The real coded GA is adopted here regarding to the fact
that it is natural and efficient to deal with a contin-
uous searching space (Deb and Agrawal (1995)). The
unknown system parameters, except the dead-time coef-
ficient, are real-valued encoded, and the dead-time coef-
ficient is integer-valued encoded. The binary tournament
selection is employed to choose which chromosomes to sur-
vive and mate, according to the pre-defined cost function
(4). The selected chromosomes generate the offsprings ac-
cording to the Simulated Binary Crossover (SBX) operator
and the polynomial mutation (Deb (2000)) with relevant
parameters listed in Table 1.

Table 1. Parameters in the used GA

Parameter Value

Maximal generations 450
Population size 45
Tournament size 2
Crossover probability 0.95
Mutation probability 0.1
SBX distribution index 1
Mutation distribution index 1
Niching shape parameter 1
Number of Elitism 2
Number of real coded parameters 2
Number of integer coded parameters 2
RVCP lower boundary 0
RVCP upper boundary 10
IVCP (Dead time) lower boundary 0
IVCP (Dead time) upper boundary 120

According to the SBX approach (Deb (2000)), two off-
springs o1 and o2 can be generated from parents p1 and p2
through

o1(i) = 0.5[(p1(i) + p2(i))− βqi|p1(i)− p2(i)|],
o2(i) = 0.5[(p1(i) + p2(i)) + βqi|p1(i)− p2(i)|], (6)

where o(i)/p(i) indicates the ith gene of offspring/parent,
and βqi is determined according to

βqi =

⎧⎪⎨
⎪⎩

(αgui)
1

η+1 , if ui ≤ 1

αg
,

(
1

2− αgui
)

1
η+1 , otherwise

(7)

where ui is a uniformly distributed random number from
the interval [0, 1], η is the non-negative SBX distribution

index. αg = 2 − β
−(η+1)
b and βb is obtained through

βb = 1 + 2
(p2−p1)

λ, with λ = min{(p1 − pL), (pU − p2)}
subject to the assumption that p1 < p2, where pL/pU is
the lower/upper boundary of the coded variable.

According to Deb (2000), the polynomial mutation gen-
erates an offspring from a parent through

o(i) = p(i) + δΔm, (8)

where Δm is the maximal perturbation allowed in the
solutions, and δ is determined as

δ =

{
(2u+ (1− 2u)(1− δ̄)ηm+1)

1
ηm+1 − 1 if u ≤ 0.5

1− (2(1− u) + 2(u− 0.5)(1− δ̄)ηm+1)
1

ηm+1 otherwise

Fig. 2. Exponential relationships between τ and α, K and
α, β with Ts = 0.05sec

where ηm is the non-negative mutation distribution index,

and δ̄ = min{(p−pL),(pU−p)}
pU−pL

. u is a uniformly distributed

random number from the interval [0, 1].

The fitness sharing in Sareni and Krähenbühl (1998), as
a selected Niching technique, is employed to maintain the
population diversity. Furthermore, the Elitism (top 2 best)
is also used in order to keep the extremal best population.
For further more details about the adopted GA, we refer
to Seested (2013).

3.2 Searching Spaces

The real coded GA can be employed to handle the op-
timization problem (2) to identify the discrete system’s
parameters firstly. However, some of our preliminary in-
vestigation discovered that often some poor results in
the accuracy of the original (continuous-time) parameter
identification are observed, especially with large time-
constant systems. The later analysis turned out that this
could be due to the exponential relationship between the
original parameter τ and the discrete-time parameter α.
For instance, the τ and α relationship is illustrated in
Figure 2 under the assumption of Ts = 0.05sec. It can
be observed that α only has the range of (0, 1), and when
α moves close to 1, a small deviations of α can have a
huge impact on the deviation of τ . The similar relationship
exists between K with α and β as well as shown in Figure
2. Thereby, in order to avoid the above mentioned problem,
the searching spaces are defined directly based on the
original (continuous-time) system parameters.

The evaluation of each selected chromosome consists of
two sequential steps: Step one is to convert the original
system (1) into its corresponding discrete version (2)
subject to the selected parameter values; Step two is
to calculate the cost function (4) under these specific
parameters. Each chromosome representing the original
system parameters is evaluated by this calculated cost.
This approach could slightly slow down the computation
speed, however, the payback is a much better accuracy
in the original parameter identification, as well as faster
convergence rate.

3.3 Exhaustive LMS-Based Methods

The optimization problem (5) is a mixed integer nonlinear
programming problem with the non-convex feature. If the
original dead-time Td is known beforehand, the problem
(5) can be easily solved by some standard linear system
methods, e.g., by using the LMS method. Thereby, in order
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to evaluate the GA identification quality and performance,
an Exhaustive LMS-based (ELMS) method is proposed
in the following. The basic idea of the ELMS approach
(Yang Sun (2011)) is to enumerate all possible dead-
time values within its possible range, and for each possible
valve, a LMS solution for (5) with a known l is achieved,
along with the corresponding specific cost calculated from
(4). The specific l together with its corresponding LMS
solution which leads to the minimal cost among all pos-
sibilities, is claimed to be the best system identification
solution.

In order to cope with any potential disturbance caused
by colored noises, the Exhaustive Instrumental Variable
LMS (E-IV-LMS) solution is also derived. In the following,
sometimes we abbreviate the ELMS solution as LS solution
and IV-ELMS solution as IV solution.

4. TESTING RESULTS AND DISCUSSIONS

The quality and performance of GA-based system identi-
fication are extensively studied in terms of different types
of time-delay systems, different types of excitation signals,
different Signal-to-Noise Ratio (SNR) levels, and these are
further compared with those of ELMS-based methods.

4.1 Testing Scenarios

Two type of time-delay systems are selected as shown
in (9), where G1(s) is a time-constant dominant system
with the Dead-Time to Time-Constant Ratio (DTTCR)
of one, while G2(s) is a time-delay dominant system with
the DTTCR of 10.

G1(s) =
5

s+ 1
e−s, G2(s) =

1

0.5s+ 1
e−5s. (9)

The sampling frequency is selected as 20Hz. Five different
types of excitation signals are tested respectively, they are
all generated from Matlab/Simulink signal blocks:

• (a) White noise;
• (b) A chirp signal, which uniformly sweeps its fre-
quency from 0Hz to 5Hz during the simulation;

• (c) A Binary Random Sequence (BRS), which shifts
the amplitudes between 3 and 6 with a shifting
probability of 40%;

• (d) A repeating sequence stair signal generated from
the default seed in Matlab/Simulink;

• (e) A pulse sequence generated from default pulse
block.

Three SNR levels are also considered, i.e., SNR= ∞ (noise-
free); SNR= 10 (reasonable), and SNR= 2 (poor).

4.2 Identification of G1(s) System

Different excitation signals under different SNR conditions
are used to test the GA identification of G1(s) system. The
evolution of the estimated parameters with SNR=∞ are
illustrated in Figure 3, 4 and 5, respectively. It can be
noticed that all excitation signals can lead to nearly per-
fect parameter identification. The BRS excited estimations
have some tiny estimation errors w.r.t the τ (Tp) and K,
but these errors are within 1.33% and 0.06%, respectively.
The convergence speeds along with the GA evolutions
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Fig. 3. Estimations of DC-Gain K of G1(s)
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Fig. 4. Estimations of time constant τ of G1(s)
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Fig. 5. Estimations of dead-time Td (τ) of G1(s)

Table 2. Estimation accuracies (%) regarding
to G1(s), where Tp = τ

for all excitations are also very fast - settling down after
around 150-200 generations. From the first two columns in
Table 2, it can be observed that the ELMS based methods
(LV and IV) also commit perfect performances and ac-
curacies. When the SNR decreases, the GA performance
and accuracy start to decrease depending on what type
of excitations. These estimation accuracies under different
SNR levels are listed in Table 2.
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Table 3. Estimation accuracies (%) regarding
to G2(s), where Tp = τ

0 50 100 150 200 250 300 350 400 450

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Tf2 Gain Results − SNR2

Generations

Ga
in

BinaryRandomShifting
Chirp
RepeatingSequenceStair
Pulse
WhiteNoise
Optimal

Fig. 6. Estimations of DC-Gain K of G2(s)
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Fig. 7. Estimations of time constant τ of G2(s)

4.3 Identification of G2(s) System

The accuracies of GA estimation of G2(s) system under
different SNRs are listed as the third column in Table 3.
Again, all excitation signals lead to perfect estimations
under the noise free condition. When the SNR decreases,
the GA estimation performance and accuracy start to de-
crease. In general, the GA estimations of G2(s) have better
accuracies than those corresponding to G1(s) estimations
when the SNR becomes poor (e.g., SNR= 2). The GA
performances under SNR= 2 are illustrated in Figure 6, 7
and 8, respectively. It can be noticed that the chirp signal
leads the best performance and accuracy. The repeating
sequence stair and BRS lead to slowest convergence rates.

4.4 Comparison with ELMS Methods

The accuracies of the GA identification are compared with
those generated from the ELMS method and E-IV-LMS
method, as shown in Table 2 and 3 for different systems.
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Fig. 8. Estimations of dead-time Td of G2(s)

Noise Free Case When the system measurements are
noise free, all algorithms show perfect accuracies. The
largest estimation error is the time constant estimation
based on BRS excitation using GA method, which is 1.33%
for G1(s) system and 3.65% for G2(s) system, respectively.

SNR= 10 Case Some estimation errors appear with all
algorithms in spite of which excitation signal.

For the estimation of G1(s), in general, the accuracies
derived from the E-IV-LMS method is marginally bet-
ter than those from the ELMS method, while both are
marginally better than those from the GA method. The
largest error - 13.21% from the GA method is the esti-
mation error of time constant subject to pulse sequence
excitation. However, GA method provides almost perfect
dead-time Td estimations except that there is 5% error
based on pulse sequence excitation.

For the estimation of G2(s), the accuracies derived from
the GA method are overall slightly better than those
from the E-IV-LMS method, and E-IV-LMS method is
marginally better than ELMS method. The largest estima-
tion error - 28.92% is from the ELMS method for time con-
stant estimation subject to BRS excitation. Furthermore,
the GA method provides perfect dead-time Td estimations
for all excitations. In terms of MSE and dead-time esti-
mations, the estimations of G2(s) by using all algorithms
subject to any excitation show better accuracies than the
corresponding situations of G1(s).

SNR= 2 Case When the SNR decreases down to 2, the
accuracies from all algorithms decrease as well, but with
different percentages.

For the estimation of G1(s), the GA method provides the
best dead-time estimation no matter which excitation is
used. The ELMS method provides dead-time estimation
errors from 5% − 15% for all excitations except the chirp
signal. In terms of MSE, the chirp signal is the best
excitation for both cases of SNR= 10 and 2. Roughly, the
estimation errors for K and τ of all algorithms subject to
any excitation are more or less doubled comparing with
the corresponding situations when SNR= 10.

For the estimation of G2(s), the GA method achieves over-
all best results, and the E-IV-LMS method is marginally
better than the ELMS method. The largest error derived
by GA is 18.64% (for Tp under signal (d)), the largest
error derived by E-IV-LMS is 45.88% (for Tp under signal
(c)) while that derived by ELMS method is 98.78% (for
Tp under signal (c)). Compared with the situation when
SNR= 10, the estimation errors using GA method are
roughly doubled subject to any excitation when SNR= 2,
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Table 4. Estimation accuracies (%) regarding
to G1(s), where Tp is τ

while the estimation errors using both LMS-based meth-
ods are more or less 3-4 times. This indicates the GA
method is more robust than the others subject to different
noise disturbances.

4.5 Computation Loads

In average, the GA method usually takes about 20 sec
to accomplish one estimation procedure, while the ELMS
method only takes about one second and E-IV-LMS
method takes about 3-4 sec. Of course, the GA method can
shorten the computation time by reducing the requested
number of generations (450 in our case), as long as the
convergence can be obviously observed. Nevertheless, the
pre-filtering of the measured data is required for using the
LMS based methods, which consumed time is not taken
into account here. The GA results reported so far directly
applied all measurements without any pre-filtering.

4.6 Data Pre-filtering Impacts

The GA estimation using the data pre-filtered by a low-
pass filter (i.e., the data used by LMS-based methods) is
also studied so as to investigate whether the pre-filtering
could make GA perform better or not. The results are
listed as the first column in Table 4 and 5, respectively.
It can be observed that: for the G1(s) estimation, the
pre-filtered data result in more precise results of τ (Tp)
for signal (c), (d) and (e), but with costs of worse dead-
time estimations. There are no much differences about
estimations of K. For the G2(s) case, there is no any
positive sign observed by using the pre-filtering.

4.7 Frequency-Domain Identification

The GA system identification in frequency-domain is also
exploited under the assumption that the dead-time is
already known/identified. Firstly, the measured data is
converted into its DFT format using the FFT algorithm,
then a quadratic formed cost function in frequency-domain
is constructed as

Cf (K, τ)=̂
1

Nf

Nf∑
k=1

W (k)(|Y (k)| − |ŶK,τ (k)|)2, (10)

Table 5. Estimation accuracies (%) regarding
to G2(s), where Tp is τ

where W (k) is a frequency weighting sequence, Nf is the
length of signal’s DTF sequence. the amplitude of the kth
estimated output sample ŶK,τ (k), which is a function of
unknown parameter K and τ , is calculated according to

|ŶK,τ (k)| = K√
(2πfskτ/Nf )2 + 1

|U(k)|. (11)

where fs is the sampling frequency. The GA algorithm is
used to obtain the best estimation of K and τ through
minimizing the cost function (10). The accuracies of the
obtained results are listed as the second columns in Table
4 and 5, respectively. It can be observed that in general
the accuracies by this frequency method is not as good as
the time-domain based methods. This is mainly due to dif-
ferent emphases (cost functions). The same GA frequency
method using the pre-filtered data is also investigated, and
the results are listed as the third columns in Table 4 and
5. It can be noticed that this is the worst case comparing
with all methods studied through this work no matter for
the G1(s) or G2(s) case.

5. CONCLUSION

The real coded GA method for identifying a simple class of
time-delay systems, named FOPDT system, is extensively
investigated w.r.t. different system features, excitation
signals, SNRs and evaluation criteria. The accuracies and
performances of the employed GA are further compared
with those of exhaustive LMS-based methods. It can be
concluded that (a) GA acts almost as good as these
ELMS-based methods in general, and even better for time-
delay dominant systems in term of estimation accuracy;
(b) There is no need for GA method to pre-filter the
measured data; (c) GA always plays best in estimating
the dead-time coefficient; (d) GA method is more robust
to different SNRs; (e) It seems that estimation of Tp turns
to be the most challenging task for GA when the SNR
becomes poor, especially with excitations of (c), (d) and
(e); (f) The Tp estimation could achieve better accuracies
by using the frequency-domain evaluation criterion instead
of the time-domain one, but only for G1(s) type of time
constant dominant systems; (g) In general it seems that
the chirp signal is the best excitation, especially for using
the frequency-domain criterion.
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The obtained results exhibit that the GA technique
has a very promising capability in handling this type
of non-convex system identification problem. The pro-
posed GA method can be naturally extended to estimate
higher-order linear time-delay systems, even for nonlin-
ear time-delay systems. The same method can also be
used to obtain some low-order time-delay system model
based on measurements from a sophisticated complex sys-
tems, this part is reported in our second serial paper
(Yang Seested (2013)).
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