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Abstract

From the parameters (n, k, t, λ, µ) of a directed strongly regular
graph (dsrg) A. Duval (1988) showed how to compute the eigenvalues
and multiplicities of the adjacency matrix, and thus the rank of the
adjacency matrix. For every rational number q, where 1

5 ≤ q ≤ 7
10 ,

there is feasible (i.e., satisfying Duval’s conditions) parameter set for
a dsrg with rank 5 and with k

n = q.
In this paper we show that there exist a dsrg with such a feasible

parameter set only if k
n is 1

5 ,
1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 . Every dsrg with rank 5

therefore has parameters of a known graph. The proof is based on an
enumeration of 5× 5 matrices with entries in {0, 1}.

1 Introduction

A directed strongly regular graph with parameters (n, k, t, λ, µ) is a k-regular
directed graph on n vertices such that every vertex is on t 2-cycles (which
may be thought of as undirected edges), and the number of paths of length
2 from a vertex x to a vertex y is λ if there is an edge directed from x to y
and it is µ otherwise. Thus the adjacency matrix A satisfies

A2 = tI + λA+ µ(J − I − A) and AJ = JA = kJ.
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It is usually assumed that 0 < t < k. These graphs were introduced by
A. Duval [4], who also shoved that the spectrum of A may be computed from
the parameters.

In some cases 0 is an eigenvalue of large multiplicity and then the rank
of A is small. In [8], we proved that there exists a dsrg with parameters
(n, k, t, λ, µ) and with adjacency matrix of rank 3 if and only if the param-
eters are either (6m, 2m,m, 0,m) or (8m, 4m, 3m,m, 3m), for some integer
m, and there exists one with rank 4 if and only if (n, k, t, λ, µ) is either
(6m, 3m, 2m,m, 2m) and (12m, 3m,m, 0,m), for an integer m. For rank 3,
this was proved independently in [6].

The main theorem in this paper is a characterization of parameters with
rank 5.

Theorem 1 There exists a directed strongly regular graph with parameters
(n, k, t, λ, µ) and with adjacency matrix of rank 5 if and only if the parame-
ter set is one of the following: (20m, 4m,m, 0,m), (36m, 12m, 5m, 2m, 5m),
(10m, 4m, 2m,m, 2m), (16m, 8m, 5m, 3m, 5m), (20m, 12m, 9m, 6m, 9m), or
(18m, 12m, 10m, 7m, 10m), for some positive integer m.

Note that in these results we assume that t < k. A dsrg with t = k,
eigenvalue 0 and with rank r is an undirected complete r-partite graph, that
exists for every r ≥ 2. In the following table we list the possible values of
k
n

for which there exists a dsrg with rank r ≤ 5, including r−1
r

that we get
when t = k. We see that then the list is symmetric around 1

2
for each r ≤ 5.

It would be interesting to know if this is also true for r ≥ 6.

Rank Values of k/n
2 1

2

3 1
3
, 1

2
, 2

3

4 1
4
, 1

2
, 3

4

5 1
5
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 4

5

For the proof of the if part of Theorem 1 we refer to known constructions.
Duval [4] proved that if for one of the six families of parameters sets there ex-
ists a dsrg for m = 1 then there exists a dsrg for every parameter set in that
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family. This construction replaces each vertex by a set of m independent
vertices, and it works when t = µ. Graphs with parameters (20, 4, 1, 0, 1)
and (10, 4, 2, 1, 2) were also constructed by Duval. A dsrg with parame-
ters (20, 7, 4, 3, 2) was constucted in [10]. Its complement has parameters
(20, 12, 9, 6, 9). A dsrg with parameters (18, 5, 3, 2, 1) and the complemen-
tary dsrg with parameters (18, 12, 10, 7, 10) was constructed in [5]. A dsrg
with parameters (36, 12, 5, 2, 5) was constructed in [3]. In [7] we constructed
dsrgs with parameters (4r−4, 2r−3, r−1, r−2, r−2), for every r ≥ 3. The
complement has parameters (4r−4, 2r−2, r, r−2, r) and it has rank r. This
proves that a (16, 8, 5, 3, 5) exists and that for every r ≥ 3 there is a dsrg
with rank r and k

n
= 1

2
. In several of these cases, there exist (many) non-

isomorphic graphs. In fact some constructions of directed strongly regular
graphs with low rank involve some degree of randomness, see e.g. [1].

2 Preliminaries

Duval [4] proved the following conditions for the existence of a dsrg.

Theorem 2 Suppose that there exists a directed strongly regular graph with
parameters (n, k, µ, λ, t).

Then the parameters satisfy

k(k + (µ− λ)) = t+ (n− 1)µ (1)

and
0 ≤ λ < t, 0 < µ ≤ t, −2(k − t− 1) ≤ µ− λ ≤ 2(k − t). (2)

The eigenvalues of the adjacency matrix are

k > ρ =
1

2
(−(µ− λ) + d) > σ =

1

2
(−(µ− λ)− d),

for some positive integer d, where d2 = (µ−λ)2 +4(t−µ). The multiplicities
are

1, −k + σ(n− 1)

ρ− σ ,
k + ρ(n− 1)

ρ− σ , (3)

respectively.

3



We say that (n, k, µ, λ, t) is a feasible parameter set if the conditions (1)
and (2) are satisfied and the multiplicities in (3) are positive integers, and we
say that (n, k, µ, λ, t) is a realizable parameter set if there exists a directed
strongly regular graph with these parameters.

From Theorem 2 it follows that we have an eigenvalue ρ = 0 if and only
if d = µ − λ, i.e., t = µ. If 0 is an eigenvalue of the adjacency matrix then
the rank of the adjacency matrix is the sum of multiplicities of non-zero
eigenvalues, i.e.,

rank = 1 +
k + ρ(n− 1)

ρ− σ = 1 +
k

µ− λ = 1 +
k

d
.

Thus we define the rank of a feasible parameter set with t = µ to be 1 + k
µ−λ

(even if no directed strongly regular graph exists with these parameters).
If the rank of a dsrg and the value of k

n
is known then we can find the

parameters.

Proposition 3 If (n, k, t, λ, µ) are the parameters of a dsrg with rank 5 and
with k

n
= a

b
where a and b are relatively prime integers then

(n, k, t, λ, µ) = (
(r − 1)b2

c
m,

(r − 1)ab

c
m,

ra2

c
m,

(ar − b)a
c

m,
ra2

c
m),

for some positive integer m, where c is the greatest common divisor of ((r −
1)b2, (r − 1)ab, ra2, (ar − b)a, ra2).

Proof Using that 1 + k
d

= r, d = µ−λ, µ = t, k
n

= a
b

and equation 1, we get
(n, k, t, λ, µ) = ( b

a
(r− 1)d, (r− 1)d, a

b
rd, (a

b
r− 1)d, a

b
rd), where d is an integer

satisfying that all parameters are integers. Replacing d by abm
c

we get the
required result. �

In [9], we proved from Theorem 2 that for a positive integer r there exists
a feasible parameter set (n, k, µ, λ, t) with rank r and with k

n
= q if and only

if q is a rational number in the interval [1
r
, 2r−3

2r
].

However, we also proved in [9] that there are only finitely many values of
k
n

for which there exists a k-regular directed graph on n vertices.
We say that a {0, 1} matrix is k-regular if it has exactly k ones in each

row and in each column.
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Theorem 4 ([9]) For any positive integer r the set of values of k
n

, for which
there exists a k-regular n× n matrix of rank r is finite.

In particular, if there is a k-regular n× n matrix of rank 5 then

k

n
∈
{1

5
,
1

4
,
2

7
,
1

3
,
3

8
,
2

5
,
3

7
,
4

9
,
1

2
,
5

9
,
4

7
,
3

5
,
5

8
,
2

3
,
5

7
,
3

4
,
4

5

}
.

The result for rank 5 was based on computer enumeration of all 5 × 5
{0, 1}-matrices with rank 5.

The idea of the proof of Theorem 1 is that a large k-regular matrix with
low rank is forced to have many identical rows (Section 3), but the adjacency
matrix of a dsrg can not have too many identical rows (Section 4).

3 Regular rank 5 matrices

Lemma 5 A k-regular n× n matrix with rank 5 and k
n

= 4
7

or k
n

= 3
7

has a
set of 2

7
n identical rows or a set of 2

7
n identical columns.

Proof Let A be a k-regular n× n matrix with rank 5. If k
n

= 4
7

then J −A
is a (n− k)-regular matrix with rank 5 and with n−k

n
= 3

7
. So let us assume

that k
n

= 3
7
.

Let M be 5×n submatrix of A of rank 5 and let C = [c1, c2, c3, c4, c5] be
a 5× 5 submatrix of M of rank 5 and with columns c1, . . . , c5. There exists
unique real numbers α1, . . . , α5 so that

∑5
i=1 αici = j5, the all 1 vector, as kj5

is the sum of all columns of M . If a1, . . . , a5 are the corresponding columns
of A then

∑5
i=1 αiai = jn. Taking dot product of this equation with jn shows

that k
∑5

i=1 αi = n, i.e, α1 + . . .+ α5 = 7
3
.

We say that two matrices are equivalent if one of them can be obtained
from the other by permuting rows and permuting columns. Using computer
we find that there are four equivalence classes of 5 × 5 {0, 1}-matrices of
rank 5 satisfying

∑5
i=1 αici = jn with α1 + . . . + α5 = 7

3
. These equivalence

classes are represented by

C1 =




1 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 1 0

0 0 1 0 1



, C2 =




1 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 1 0

0 0 1 1 0



, C3 =




1 1 1 0 0

1 1 0 1 0

1 0 1 1 0

0 1 1 1 0

0 0 0 0 1



,
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and CT
2 .

Each matrix C (other than CT
2 ) representing an equivalence class is chosen

so that the binary number C11 . . . C15C21 . . . C25 . . . C51 . . . C55 is largest. (We
assume that the rows of M are permuted similarly.)

Any additional column of M is a linear combination

5∑

i=1

βici, where β1 + . . .+ β5 = 1. (4)

The last equation is to ensure that the sum of entries in the new column of
A is k. For the matrix C = C3 this condition is not satisfied by any {0, 1}
vector other that c1, . . . , c5. Thus every column of M is identical to one of
c1, . . . , c5. As 1

3
(c1 + c2 + c3 + c4 + 3c5) = j5, column c5 appears 3

7
n times.

Also if C = C2 then every column must be identical to a column of C.
As 1

3
(c1 + c2 + c3 + 2c4 + 2c5) = j5, columns c4 and c5 each appear 2

7
n times.

If C = CT
2 then C2 is submatrix AT , therefore A has 2

7
n identical rows.

Thus we may assume that every 5×5 submatrix ofA of rank 5 is equivalent
to C1. For C = C1 the possible {0, 1} vectors satisfying equation 4 are
c1, . . . , c5, c6 = −c2 + c3 + c4 = (0, 1, 0, 0, 1)T and c7 = c2 − c3 + c5 =
(0, 0, 1, 1, 0)T . We know that the columns c1, . . . , c5 appear in M . If c6 also
appears in M then [c1 c3 c4 c5 c6] is equivalent to CT

2 . If c7 appears in M
then [c1 c2 c3 c4 c7] is equivalent to CT

2 . Thus every column of M is identical
to one of c1, . . . , c5. As 1

3
(c1 + c2 + c3 + 2c4 + 2c5) = j5, columns c4 and c5

each appear 2
7
n times in M . �

In fact a stronger result follows from the above proof.

Corollary 6 Let A be 3
7
n-regular n× n matrix of rank 5. Then either A or

AT satisfies one of the following properties.

• There is a set of 3
7
n identical rows, or

• There are two disjoint sets of 2
7
n identical rows.

Lemma 7 A k-regular n× n matrix with rank 5 and k
n

= 3
8

or k
n

= 5
8

has a
set of 3

8
n identical rows and a set of 3

8
n identical columns.

Proof There is only one equivalence class of 5 × 5 {0, 1}-matrices C =
[c1 . . . c5] of rank 5 satisfying

∑5
i=1 αici = j5 with α1 + . . . + α5 = 8

3
. This

class is represented by the matrix C = C 3
8

shown below. The columns c1 . . . c5

6



are the only {0, 1}-vectors of the form
∑5

i=1 βici with β1 + . . . + β5 = 1. As
1
3
(c1 +c2 +c3 +2c4 +3c5), any 3

8
n-regular n×n matrix with rank 5 has a set

of 3
8
n identical columns. As C is equivalent to its transpose, the same holds

for rows. �

C 3
8

=




1 1 1 0 0

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1



, C 2

7
=




1 1 0 0 0

1 0 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1



, C 4

9
=




1 1 1 0 0

1 1 0 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 1 0



.

The cases 2
7

and 4
9

have similar proofs.

Lemma 8 A k-regular n× n matrix with rank 5 and k
n

= 2
7

or k
n

= 5
7

has a
set of 2

7
n identical rows and a set of 2

7
n identical columns.

Lemma 9 A k-regular n× n matrix with rank 5 and k
n

= 4
9

or k
n

= 5
9

has a
set of 1

3
n identical rows and a set of 1

3
n identical columns.

Lemma 10 A k-regular n × n matrix with rank 5 and k
n

= 1
4

or k
n

= 3
4

has
a set of 1

4
n identical rows or a set of 1

4
n identical columns.

Proof Let C = [c1 . . . c5] be a full rank 5×5 submatrix of a n
4
-regular n×n

matrix A. Then C is equivalent to one of the following 9 matrices.

C1 =




1 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



, C2 =




1 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1



, C3 =




1 1 1 0 0

1 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1



,

C4 =




1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 0



, C5 =




1 1 1 0 0

1 1 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0



, C6 =




1 1 1 0 0

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 0 0 0



,
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CT
3 , CT

4 and CT
6 . If C = C4 then no further columns satisfy equation 4, but

then c2 + c3 + c4 + c5 = j5, and column c1 does not appear, a contradiction.
Thus C4 and CT

4 can not be submatrices of A. Similarly, C6 and CT
6 can not

be submatrices of A, as the coefficient of c1 is negative. Thus every full rank
5× 5 submatrix has at most three ones in each row/column.

Suppose C = C5. Then the only solutions to equation 4 other the columns
of C5 are (1, 0, 1, 1, 0)T and (0, 0, 0, 1, 0)T . Thus in order to have k ones in
row 5, c3 must appear k times and c1 and c2 will not appear, a contradiction.

Suppose C = C3. The additional solutions to equation 4 are c6 = c1 −
c4 + c5 = (1, 0, 0, 0, 1)T , c7 = (0, 0, 1, 0, 0)T and c8 = (0, 0, 0, 1, 0)T . Since
[c1 c2 c3 c4 c6] is a rank 5 matrix with four ones in row 1, c6 does not appear.
Then column c5 must appear k = n

4
times.

We may now assume that every full rank 5 × 5 submatrix is equiva-
lent to C1 or C2. If C = C2 then the additional solutions to equation 4
are c6 = (1, 0, 0, 1, 0)T , c7 = (1, 0, 0, 0, 1)T and c8 = (0, 0, 1, 0, 0)T . Since
[c1 c2 c6 c3 c5] = C3, column c6 does not appear and column c4 then ap-
pears k times.

Suppose now that C = C1. Additional solutions to equation 4 are c6 =
c1 − c2 + c3 = (0, 1, 1, 0, 0)T , c7 = (0, 1, 0, 1, 0)T and c8 = (0, 1, 0, 0, 1)T . As
[c1 c6 c3 c4 c5] is equivalent to C2, we may assume that c6 does not appear.
Then there must be k copies of column c3. �

4 Proof of Theorem 1

In this section we will show that there are no directed strongly regular graphs
with rank 5, t < k and with k

n
∈ {1

4
, 2
7
, 3
8
, 3
7
, 4
9
, 5
9
, 4
7
, 5
8
, 5
7
, 3
4
, 4
5
}. Then the proof

of Theorem 1 follows from Theorem 4 and Proposition 3.
Note first that for a dsrg with rank r = 5, the above mentioned result

that k
n
≤ 2r−3

2r
= 7

10
, excludes k

n
= 5

7
, 3
4
, and 4

5
.

Lemma 11 If a dsrg with parameters (n, k, t, λ, µ) has a set S of vertices,
all of which have the same set N of out-neighbours (or they all have the same
set in-neighbours), then

|S| ≤ k − λ, and |S| ≤ n− 2k + t.

Proof We have that |N | = k and S ∩N = ∅. Let v ∈ S and w ∈ N . Then
there are λ paths of length 2 from v to w, i.e., w has λ in-neighbours in N .
Also every vertex in S is an in-neighbour of w. Thus |S|+ λ ≤ k.
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The number of in-neighbours of v in S ∪ N is t. Thus v has k − t in-
neighbours outside S ∪N . Thus |S|+ k + (k − t) ≤ n. �

Proposition 12 A dsrg with rank 5 and k
n

= 4
7

does not exist.

Proof Suppose that (n, k, t, λ, µ) are the parameters of a dsrg with rank 5
and with k

n
= 4

7
. By Proposition 3, we have (n, k, t, λ, µ) = (49m, 28m, 20m,

13m, 20m). By Lemma 5, this graph has a set of 2
7
·49m = 14m vertices that

either all have the same out-neighbours or all have the same in-neighbours.
But this contradicts Lemma 11, as n− 2k + t = 13m. �

Proposition 13 A dsrg with rank 5 and k
n

= 1
4
, 2
7
, 3
8
, 4
9
, 5
9
, or 5

8
, does not

exist.

Proof In each case we get the parameters from Proposition 3 and apply the
first part of Lemma 11.

k
n

= 1
4
: A dsrg with parameters (64m, 16m, 5m,m, 5m) has 1

4
n = 16m >

k − λ = 15m, a contracdiction to Lemma 10.

k
n

= 2
7
: A dsrg with parameters (98m, 28m, 10m, 3m, 10m) has 2

7
n = 28m >

k − λ = 25m, a contracdiction to Lemma 8.

k
n

= 3
8
: A dsrg with parameters (256m, 96m, 45m, 21m, 45m) has 3

8
n = 96m >

k − λ = 75m, a contracdiction to Lemma 7.

k
n

= 4
9
: A dsrg with parameters (81m, 36m, 20m, 19m, 20m) has 1

3
n = 27m >

k − λ = 17m, a contracdiction to Lemma 9.

k
n

= 5
9
: A dsrg with parameters (324m, 180m, 125m, 90m, 125m) has 1

3
n =

108m > k − λ = 90m, a contracdiction to Lemma 9.

k
n

= 5
8
: A dsrg with parameters (256m, 160m, 125m, 85m, 125m) has 3

8
n =

96m > k − λ = 75m, a contracdiction to Lemma 7.

�
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Proposition 14 A dsrg with rank 5 and k
n

= 3
7

does not exist.

Proof Suppose that (n, k, t, λ, µ) are the parameters of a dsrg with rank 5
and with k

n
= 3

7
. By Proposition 3, we have (n, k, t, λ, µ) = (196m, 84m, 45m,

24m, 45m). Let A be the adjacency matrix of this dsrg. Then AT is the
adjacency matrix of a dsrg with the same parameters. By Lemma 11, a set
S of vertices with identical out- (or in-) neighbour sets has |S| ≤ k − λ =
60m < 3

7
n. Therefore by Corollary 6, using AT if necessary, we have two

disjoint sets S1 and S2 of vertices with |S1| = |S2| = 2
7
n = 56m and sets N1

and N2 with |N1| = |N2| = 84m so that every vertex in Si has out-neighbour
set Ni. Then N1 ∩ N2 = ∅, as a vertex in N1 ∩ N2 would have in-degree at
least |S1 ∪ S2| = 112m. We also have Si ∩ Ni = ∅, but since there are only
28m vertices outside N1 ∪N2, the sets S1 ∩N2 and S2 ∩N1 are non-empty.
Let v ∈ S1∩N2. A subset of N1 of exactly t = 45m vertices are in-neighbours
of v. S2 ∩ N1 is contained in this set. Thus |S2 ∩ N1| ≤ 45m, and so there
exists a vertex x ∈ S2 \ N1. Similarly there exists y ∈ S1 \ N2. Since x
and y are non-adjacent there are 45m paths from x to y of length 2. The
internal vertex of such a path belongs to N2 \S1, as S1 is independent. Thus
|N2 \ S1| ≥ 45m and so |S1 \ N2| ≥ 17m. Similarly, |S2 \ N1| ≥ 17m. But
these sets are disjoint subsets of a set of 28m vertices, a contradiction. �
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