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STOCHASTIC MODELLING OF THE DIFFUSION COEFFICIENT FOR 

CONCRETE 

Palle Thoft-Christensen 1 

ABSTRACT: In the paper, a new stochastic modelling of the diffusion coefficient D is presented. 

The modelling is based on a physical understanding of the diffusion process and on some recent 

experimental results. The diffusion coefficient D is strongly dependent on the w/c ratio and the 

temperature. A deterministic relationship between the diffusion coefficient and the w/c ratio and the 

temperature is used for the stochastic modelling. The w/c ratio and the temperature are modelled by 

log-normally and normally distributed stochastic variables, respectively. It is then shown by Monte 

Carlo simulation that the diffusion coefficient D may be modelled by a normally distributed stochastic 

variable. The sensitivities of D with regard to the mean values and the standard deviations are 

evaluated. 

1. INTRODUCTION: 

Corrosion of the reinforcement is the major reason for deterioration of reinforced concrete 

structures in many countries. Modelling the corrosion process is very complex and it is often 

based on observations or speculations rather than a clear understanding of the physical and 

chemical processes behind the corrosion process. 

Corrosion initiation period refers to the period of time during which the passivation of 

steel is destroyed and the reinforcement starts corroding actively. Fick's law of diffusion can 

represent the rate of chloride penetration into concrete, as a function of depth from the 

concrete surface and as a function of time 

dC(x, t) = D d 2C(x, t) 
dt dx2 

(1) 

where C(x,t) is the chloride ion concentration, as %by weight of cement, at a distance of x m 

from the concrete surface after t seconds of exposure to the chloride source. D is the chloride 
2 

diffusion coefficient expressed in m /sec. If Ccr is assumed to be the critical chloride corrosion 

concentration and d is the thickness of concrete cover, then the corrosion initiation period 

T corr can be calculated by 

T =£(crf-I(Ccr-Co))-2 
corr 4D C; -Co 

1 Aalborg University, Aalborg, Denmark 
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where C0 is the equilibrium chloride concentration on the concrete surface, as % by weight 

of cement, erf is the error function. 

It follows from (2) that the time to corrosion imitation is inversely proportional in D. It is 

therefore of great interest to get a good estimate of D . According to extensive experimental 

investigations (1 ], [2] it can be concluded that the most important factors are the water/cement 

ratio w/c, the temperature <I>, and the amount of e.g. silica fume s.f. The experiments show 

that the diffusion coefficient D increases significantly with w/c as well as with the 

temperature <I> . The influence of w/c and the temperature <I> may be explained by the 

chloride binding. Only the free chloride is important for the diffusion coefficient D. With 

increased w/c ratio less chloride is bound and therefore D is increased. The strong influence of 

the temperature is mainly caused by thermal activation of the diffusion process, but may als.o 

be due to a reduced chloride binding when the temperature is increased. The purpose of the 

paper is to use the experimental results in [1] and [2] to make an improved stochastic 

modelling of the diffusion coefficient D, se also [3] and [ 4]. 

2. THE CORROSION PROCESS 

In principle, reinforced concrete is an excellent type of structure from a corrosion point of 

view, since the alkaline environment in the concrete maintains a passive film on the surface of 

the reinforcement, and this film protects the reinforcement against corrosion. However, if the 

concrete is penetrated by e.g. water or carbon dioxide, then this passive film breaks down and 

the reinforcement is open to corrosion [5]. 

Steel Concrete 

e 

· : · Passive 

Figurel. Chloride-induced corrosion 

The chloride-induced corrosion is schematically illustrated in figure 1. An anodic region is 

established, where the passive film is broken down and an electrochemical cell is formed. The 

passive surface is the cathode, and the electrolyte is the pore water in the concrete. At the 

anode the following reactions take place: 

Fe---;.. Fe+++ 2e-

2 
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Fe+++2(0H)-~ Fe(OH)z 

4Fe(OH)2+2H20+02 ~ 4 Fe(OH)J 

(3) 

Chloride ions er- activate the unprotected surface and form an anode. The chemical 

reactions are 

FeClz+ 2HzO~ Fe(OHh+ 2HCL (4) 

It follows from (3) and ( 4) that two rust products Fe(OH)2 and Fe(OH)3 are produced. The 

different types of rust products are interesting to study because they have great influence on 

corrosion cracking, since the volume of the rust products corresponding to 1 cm3 steel varies a 

lot [6]. 

Corrosion product Colour Volume, cm~ 

Fe30 4 Black 2.1 

Fe(OH)2 White 3.8 

Fe(OH)3 Brown 4.2 

Fe(OH)3, 3Hz Yellow 6.4 

Table 1. Volume of corrosiOn products, from [6]. 

3. THE DIFFUSION COEFFICIENT 

The diffusion coefficient D is not a real physical constant for a given concrete structure since 

it depends on a number of factors. According to extensive experimental investigations [1] , [2] 

it can , as mentioned earlier, be concluded that the most important factors are the 

water/cement ratio w/c, the temperature <I>, and the amount of e.g. silica fume s.f. In figure 2 

is shown the diffusion coefficient D as a function of the water-cement ratio w/c and the 

temperature <I> °C for cement pastes with 0% silica fume. It is clear from figure 2 that the 

diffusion coefficient D increases significantly with w/c as well as the temperature <I> • In the 

example illustrated in figure 2 the minimum value of D is 0.31xl0-12 m% corresponding to 

w/c = 0.2 and the temperature <I> = 4°C. The maximum value of D is 80.00xl0-12 m2/s 

corresponding to w/c = 0. 70 and <I> = 35 °C. In figure 3 the contour lines for the same data 

are shown. The diffusion coefficient D (10-12 m2/s) as a function of the water-cement ratio w/c 

is shown in figure 4, and the diffusion coefficient D (10-12 m2/s) as a function of the 

temperature <I> is shown in figure 5. Taking into account the chloride binding also improves 

the modelling of the chloride ingress profiles. 

3 



IFIP Working Conference, Osaka, Japan, March 2002 

O.iffu~lon Co~fflcl~n(D 
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. c; 

Figure 2. The diffusion coefficient D (10-12 m2/s) as a function of the water-cement ratio w/c 

and of the temperature to C (Celsius). 
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Figure 3. The diffusion coefficient D (10-12 m2/s) as a function of the water-cement ratio w/c 

and the temperature (f) oc (Celsius). 

It follows from figures 2 and 3 that it is of great importance to get good estimates of w/c and 

(f). The w/c value to be used is the original w/c value when the concrete was produced. If the 

original value of w/c is not available, then it can be estimated by testing thin sections of the 

concrete. Estimation of the temperature W is more complicated, since the temperature usually 

varies a lot. As a first estimate it is suggested to use an equivalent value based on information 

of the variation of the temperature during the year at the site of the structure. 

4 
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Figure 4. Diffusion coefficient D (10-12 m2/s) as a function of the w/c ratio for different values 

of the temperature et> (C). 
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Figure 5. Diffusion coefficient D (10-12 m2/s) as a function of the temperature et> (C) for 

different values of the w/c ratio. 

The addition of silica fume is of great importance for the chloride ingress. Silica fume 

additions reduce the chloride ingress because of changes in the pore structure, see table 2, [1]. 

w/c 0.3 0.5 

% s.f. 0 3 6 10 20 0 3 6 10 20 

D (10-" mz/s) 3.8 2.0 0.42 0.12 0.05 22 13 4.2 1.6 0.30 

Table 2. The diffusion coefficient D as a function of % s.f. for two values of w/c 

and et> =20 °C. 

The data above clearly indicate that site information is needed to make e.g. an estimation 

of the remaining life cycle or any estimation where the diffusion coefficient is involved. This 

has clearly been confirmed by several authors e.g. in [11 ], where important information of the 

5 
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distribution of the diffusion coefficient D in Japan is shown. Figure 6 shows the mean air 

temperature <I> and the w/c ratio in Japan. As expected, the temperature is much higher (21-

250C) in the southern part of Japan than in the northern part (4-9°C). The w/c ratio has a 

smaller variation, but the highest ratios are in the Kanto area where also the temperature <I> is 

relatively high. 

. .. •fi 
' ,;:_, ,\ 

. .,: 

f 
.r' 

~~~tt ~..t A~~ 
~~~~~* ;:;~ ;:ol 

-t~·-H 
1§1111 ~:'1' .:J2 

Figure 6. Mean air temperature <I> and w/c ratio in Japan, figures 3 and 5 in [11]. 

The distribution of the diffusion coefficient Din Japan is shown in figure 7. The D values 

in the Kanto Area are relatively high in good agreement with the temperature and w/c ratios 

shown in figure 5. 

~ ' · •'' 

-2 .. ~ 

z.a-21 
2.7·<!.1 

3. [-;"i:!) 

3.6-

Figure 7. Distribution of diffusion coefficient D ( cm2/year) in Japan, figure 15 in [11]. 
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4. BINDING MODIFIED DIFFUSION LAW 

Fick's law for diffusion was used as early as 1970 for calculation of the diffusion coefficients 

for various concrete compositions [7]. Since then, Fick's law has been the basis for chloride 

ingress modelling, but a large number of modifications have been introduced [1]. Fick's 

diffusion law has e.g. been modified taking into account binding of chloride by assuming that 

the free chloride follows Fick's law [1 ], [2]. It is also assumed that the chloride binding 

follows a Freundlich isothermal equation [8] 

(5) 

where cb [mg/n-gel) is the bound chloride, er [mol Cl/1 solution] and a and f3 are empirical 

constants. The chloride binding significantly modifies the shape of the chloride ingress 

profiles as well as the calculated chloride diffusion coefficient D. In figure 8 the principal 

difference between chloride ingress profiles with and without binding is shown. Without 

bonding the profile is strongly concave and with binding the profile is almost linear. 

Generally, measured profiles are almost linear so a modelling with binding seems to be a 

great improvement. 

Cl concentration Fick' s law without binding 

Depth 

Figure 8. Chloride ingress profiles 

In [1] an example strongly supporting this conclusion is presented. A cement paste with 

w/c = 0.3 and with no additives was exposed to chlorides for 30 days at 35°. Without binding 

the diffusion coefficient is 1.5 x 10"12m2/s and with binding included the diffusion coefficient 

for the free chloride is 3.7 x 10"12m2/s. If binding is included the description is substantially 

improved. 

5. THE W/C RATIO 

The w/c ratio for an existing concrete element may be estimated using Optical Fluorescence 

Microscopy [9], [10]. Thin sections of the concrete are fluorescent impregnated and analysed 

under an optical microscope using a combination of a blue excitation filter and a yellow 

blocking filter In fluorescent light the epoxy filled air voids and cracks then appear yellow. 

Cement paste appears as shades of green and aggregates black. The shade of green of the 

cement paste depends on the capillary porosity. A sample with a low w/c ratio appears dark 

green and a sample with high w/c ratio appears light green. These shades of green are use to 

7 
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estimate the w/c ratio by comparing with the colours of a standard cement pastes where the 

w/c ratios are known. 
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Figure 9. Distribution of w/c measure in 522 thin sections by fluorescence microscopy [10] . 

In figure 9 is shown the determination of the w/c ratio of precast railroad ties performed on 

522 thin sections representing 127 ties. The average value is 0.42 and the standard deviation 

is 0.026 (the coefficient of variation is 6% ). 

6. THE TEMPERATURE t/J 

It is suggested to model the temperature Cl> as a stochastic variable based on the temperature 

at the site of the structure. The modelling should take into account that the different seasons 

effect e.g. corrosion differently. The data needed for the stochastic modelling are in most 

cases available from national meteorological institutions. 

7. STOCHASTIC MODELLING OF THE DIFFUSION COEFFICIENT D 

Based on the experimental results presented in section 3, the following formula may be used 

to approximately describe the diffusion coefficient D as a function of the w/c ratio and the 

temperature Cl> : 

D = 11.146- 31.025xw/c -1.941x Cl> + 38.212x(w/c)2 + 4.48xw/cx Cl> +0.024x Cl> 2 (6) 

As an example assume that w/c is log-normally distributed LN(0.45,0.02) and that the 

temperature Cl> is normally distributed N(10.0°C , 1.0°C ). Then by crude Monte Carlo 

simulation (10.000 samples) it may be shown that the diffusion coefficient may be modelled 

by a normally distributed stochastic variable N(8.1lx10-12 m%, l.llx10-12 m2/s) that is with a 

coefficient of variation equal to 14%, see figure 10. 

8 
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Figure 10. PDF of the diffusion coefficient D (10.12 m2/s). 

The diffusion coefficient D is, as expected strongly sensitive to the mean values of w/c and 

<!> as shown in figure 11. In the diagram to the left, w/c is log-normally distributed 

. LN(E[w/c],0.02) and the temperature <I> is normally distributed N(l0.0°C, 1.0°C) and E[D] 

is the expected value of D. In the diagram to the right, w/c is log-normally distributed 
I 

LN(0.45,0.02) and the temperature <I> is normally distributed N(E[Temperature] , 1.0°C ). 

0.4 0.45 0.5 0.55 0.6 6 10 12 14 16 19 20 

E[w/c] E[Temperature (C)] 

Figure 11. Sensitivity analysis with regard to the mean values of w/c and of the temperature. 
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Figure 12. Sensitivity analysis with regard to the standard deviations of w/c and of the 

temperature. 

The standard deviation std[D] of the diffusion coefficient D (but not the expected value E[D]) 

is sensitive to the standard deviations of w/c and <I> as shown in figure 12. In the diagram to 

the left, w/c is log-normally distributed LN(0.45,std[w/c]) and the temperature <!>is normally 

9 
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distributed N(10.0°C , 1.0°C ). In the diagram to the right, w/c is log-normally distributed 

LN(0.45,0.02) and the temperature «<> is normally distributed N(lO cc, std[temperature] ). 

8. CONCLUSIONS 

In the paper the importance of taking into account the site dependency of the diffusion 

coefficient is emphasized. The diffusion coefficient D depends on several parameters. The 

two most important parameters seem to be the w/c ratio and the temperature. In the paper a 

stochastic modeling of D based on recent experimental results is presented using crude Monte 

Carlo simulation. The dependency of the w/c ratio and the temperature is included. 
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