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ABSTRACT

The paper describes a computational system for exhaus-
tive but compact description of repeated motivic patterns in
symbolic representations of music. The approach follows
a method based on closed heterogeneous pattern mining
in multiparametrical space with control of pattern cyclic-
ity. This paper presents a much simpler description and
justification of this general strategy, as well as significant
simplifications of the model, in particular concerning the
management of pattern cyclicity. A new method for auto-
mated bundling of patterns belonging to same motivic or
thematic classes is also presented.

The good performance of the method is shown through
the analysis of a piece from the JKUPDD database. Ground-
truth motives are detected, while additional relevant infor-
mation completes the ground-truth musicological analysis.

The system, implemented in Matlab, is made publicly
available as part of MiningSuite, a new open-source frame-
work for audio and music analysis.

1. INTRODUCTION

The detection of repetitions of sequential representations in
symbolic music is a problem of high importance in music
analysis. It enables the detection of repeated motifs and
themes 1 , and of structural repetition of musical passages.

1.1 Limitation of previous approaches

Finding these patterns without knowing in advance their
actual description is a difficult problem. Previous approa-
ches have shown the difficulty of the problem related to the
combinatorial explosion of possible candidate patterns [2].
Some approaches tackle this issue by generating a large set
of candidate patterns and applying simple global heuris-
tics, such as finding longest or most frequent patterns [3,8].
Similarly, other approaches base the search for patterns on

1 Here motif and theme are considered as different musicological in-
terpretations of a same pattern configuration: motifs are usually shorter
than themes.
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general statistical characteristics [5]. The problem is that
there is no guarantee that this global filtering leads to a se-
lection of patterns corresponding to those selected by mu-
sicologists and perceived by listeners.

1.2 Exhaustive mining of closed and cyclic patterns

In our research, we endeavour to reveal the factors under-
lying this structural explosion of possible patterns and to
formalise heuristics describing how listeners are able to
consensually perceive clear pattern structures out of this
apparent maze. We found that pattern redundancy is based
on two core issues [6]:

• closed pattern mining: When a pattern is repeated,
all underlying pattern representations it encompasses
are repeated as well. In simple string representation,
studied in section 2 2 , these more general patterns
correspond to prefixes, suffixes and prefixes of suf-
fixes. The proliferation of general patterns, as shown
in Figure 1, leads to combinatorial explosion. Re-
stricting the search to the most specific (or “maxi-
mal”) patterns is excessively selective as it filters out
potentially interesting patterns (such as CDE in Fig-
ure 1), and would solely focus on large sequence rep-
etitions. By restricting the search to closed patterns
– i.e., patterns that have more occurrences than their
more specific patterns –, all pattern redundancy is fil-
tered out without loss of information. [6] introduces
a method for exhaustive closed pattern mining.

• pattern cyclicity: When repetitions of a pattern are
immediately successive, another combinatorial set
of possible sequential repetitions can be logically in-
ferred [2], as shown in Figure 2. This redundancy
can be avoided by explicitly modelling the cyclic
loop in the pattern representation, and by general-
ising the notion of closed pattern accordingly.

By carefully controlling these factors of combinatorial
redundancy without damaging the non-redundant pattern
information, the proposed approach in [6] enables to out-
put an exhaustive description of pattern repetitions. Pre-
vious approaches did not consider those issues and per-
formed instead global filtering techniques that broadly miss
the rich pattern structure.

2 The more complex multiparametric general/specific transformations
are studied in section 3.
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Figure 1. Patterns found in a sequence of symbols. Below
the sequence, each row represents a different pattern class
with the occurrences aligned to the sequence. Thick black
lines correspond to closed patterns (the upper one is the
maximal pattern), grey lines to prefixes of closed patterns,
and thin lines to non-closed patterns.
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Figure 2. Closed patterns found in a cyclic sequence of
symbols. The occurrences of the pattern shown in thick
lines do not overlap, whereas those shown in thin lines do.

1.3 New approach

In this paper, we propose a simplified description and mod-
elling of this exhaustive pattern mining approach. In sec-
tion 2, we present the problem of closed pattern mining on
the simple case of monoparametric string analysis, intro-
duce a simplified algorithmic implementation, and present
a new way to simply justify the interest of the approach. In
section 3, the approach is generalised to the multidimen-
sionality of the musical parametric space. Section 4 dis-
cusses pattern cyclicity and presents a new simple model
that solves this issue. In section 5, the interest of the method
is shown through the analysis of a piece of music from the
JKUPDD database.

2. CORE PRINCIPLES OF THE MODEL

2.1 Advantages of incremental one-pass approach

As explained in the previous section, testing the closed-
ness of a pattern requires comparing its number of occur-
rences with those of all the more specific patterns. Previous
computer science researches in closed pattern mining (one
recent being [9]) incrementally construct the closed pat-
terns dictionary while considering the whole document to
be analysed (in our case, the piece of music). This requires
the design of complex algorithms to estimate the number
of occurrences of each possible pattern candidate.

We introduced in [6] a simpler approach based on an in-
cremental single pass throughout the document (i.e., from
the beginning to the end of the piece of music), during
which the closed pattern dictionary is incrementally con-
structed: for each successive note n in the sequence, all

patterns in the subsequence ending to that note n are ex-
haustively searched for. The main advantage of the incre-
mental approach is based on the following property.

Lemma 2.1 (Closed pattern characterisation). When fol-

lowing the incremental approach, for any closed pattern

P , there exists a particular moment in the piece of music

where an occurrence O of P can be inferred while no oc-

currence of any more specific pattern can be inferred.

Proof. There are three alternative conditions concerning
the patterns more specific than P :

• There is no pattern more specific than P . In this
case, the observation is evident.

• There is only one pattern S more specific than P .
For instance, in Figure 3, S = ABCD is more spe-
cific than P = CD. Since P is closed, it has more
occurrences than S, so there exists an occurrence of
P that is not occurrence of S.

• There are several patterns S1, . . . , Sn more specific
than P . For instance, in Figure 1, S1 = ABCDE
and S2 = ABCDECDE are both more specific than
P = CDE. As soon as two different more specific
patterns S1 (one or several time) and S2 (first time)
have appeared in the sequence, pattern P can be de-
tected, since it is repeated in S1 and S2, but S2 is not
detected yet, since it has not been repeated yet.

As soon as we detect a new pattern repetition, such that
for that particular occurrence where the repetition is de-
tected, there is no more specific pattern repetition, we can
be sure that the discovered pattern is closed.

When considering a given pattern candidate at a given
point in the piece of music, we need to be already informed
about the eventual existence of more specific pattern occur-
rences at the same place. Hence, for a given note, patterns
need to be extended in decreasing order of specificity.

To details further the approach, let’s consider in a first
simple case the monoparametric contiguous string case,
where the main document is a sequence of symbols, and
where pattern occurrences are made of contiguous sub-
strings. In this case, ‘more general than’ simple means ‘is
a subsequence of’. In other words, a more general pattern
is a prefix or/of a suffix of a more specific pattern. Let’s
consider these two aspects separately:

• Since the approach is incremental, patterns are con-
structed by incrementally extending their prefixes (in
grey in Figure 1). Patterns are therefore represented
as chains of prefixes, and the pattern dictionary is
represented as a prefix tree. In this paradigm, if a
given pattern P is a prefix of a closed pattern S, and
if both have same number of occurrences, the prefix
P can still be considered as a closed pattern, in the
sense that it is an intermediary state to the constitu-
tion of the closed pattern S.
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Figure 3. Closed patterns found in a sequence of sym-
bols. The occurrence during which a pattern is discovered
is shown in black. Dashed extensions indicate two possible
pattern extensions when integrating the last note.

• The closedness of a pattern depends hence solely on
the patterns to which it is a suffix. Thanks to the
incremental one-pass approach, these more specific
patterns are already inferred. The only constraint to
be added is that when a given note is considered,
the candidate patterns should be considered in de-
creasing order of specificity, i.e. from the longest to
the shortest (which are suffixes of the longer ones).
For instance, in Figure 3, when analysing the last
note, E, there are two candidate patterns for exten-
sion, ABCD and CD. Since we first extend the most
specific pattern ABCDE, when considering then the
more general pattern CD, extension CDE is found as
non-closed and thus not inferred.

2.2 Algorithmic details

Following these principles, the main routine of the algo-
rithm simply scans the musical sequence chronologically,
from the first to the last note. Integrating a new note con-
sists in checking:

• whether pattern occurrence(s) ending at the previous
note can be extended with the new note,

• whether the new note initiates the start of a new pat-
tern occurrence.

The extension of a pattern occurrence results from two al-
ternative mechanisms:

Recognition the new note is recognised as a known exten-
sion of the pattern.

Discovery the new note continues the occurrence in the
same way that a previous note continued an older
occurrence of the pattern: the pattern is extended
with this new common description, and the two oc-
currences are extended as well.

Concerning the discovery mechanism, the identification
of new notes continuing older contexts can be implemented
using a simple associative array, storing the note following
each occurrence according to its description. This will be
called a continuation memory. Before actually extending
the pattern, we should make sure that the extended pattern
is closed.

2.3 Specific Pattern Class

Searching for all closed patterns in a sequence, instead of
all possible patterns, enables an exhaustive pattern analysis
without combinatorial explosion: all non-closed patterns

can be deduced from the closed pattern analysis. Yet, the
set of closed patterns can remain quite large and the ex-
haustive collection of their occurrences can become cum-
bersome. [6] proposes to limit the analysis, without any
loss of information, to closed patterns’ specific classes,
which correspond to pattern occurrences that are not in-
cluded in occurrences of more specific patterns. For in-
stance, in Figure 3, the specific class of CD contains only
its first occurrence, because the two other ones are super-
posed to occurrences of the more specific pattern ABCDE.

We propose a simpler model for the determination of
specific class of closed patterns. Non-specific occurrences
are regenerated whenever necessary. Because occurrences
of a given pattern are not all represented, the notes follow-
ing these occurrences are not memorised, although they
could generate new pattern extensions. To circumvent this
issue, the extension memory related to any given pattern
contains the extensions not only of that pattern but also of
any more specific pattern.

3. MULTIPARAMETRIC PATTERN MINING

The model presented in the previous section searches for
sequential patterns on monoparametric sequences, com-
posed of a succession of symbols taken from a given al-
phabet. Music cannot be reduced to unidimensional para-
metric description.

3.1 Parametric space

The problem needs to be generalised by taking into account
three main aspects:

• Notes are defined by a hierarchically structured com-
bination of parameters (diatonic and chromatic pitch
and pitch class, metrical position, etc.).

• Notes are defined not only in terms of their absolute
position on fixed scales, but also relatively to a given
local context, and in particular with respect to the
previous notes (defining pitch interval, gross con-
tour, rhythmic values, etc.). These interval represen-
tations are also hierarchically structured. Gross con-
tour, for instance, is a simple description of the inter-
pitch interval between successive notes as “increas-
ing”, “decreasing” or ”unison”. Matching along gross
contour enables to track intervallic augmentation and
diminution. For instance, in the example in section
5, the first interval of the fugue subject is either a
decreasing third or a decreasing second. The actual
diatonic pitch interval representation differs, but the
gross contour remains constantly “decreasing”.

• A large part of melodic transformations can be un-
derstood as repetitions of sequential patterns that do
not follow strictly all the parametric descriptions, but
only a subset. For instance, a rhythmical variation
of a melodic motif consists in repeating the pitch se-
quence, while developing the rhythmical part more
freely.



[6] proposes to integrate both absolute note position
and relative note interval into a single parametric space.
This enables to define a motive and any occurrence as a
simple succession of parametric descriptions. [6] also shows
the importance of heterogeneous patterns, which are made
of a succession of parameters that can each be defined on
different parametric dimensions. For instance, the subject
of the fugue analysed in section 5 is heterogeneous, as it
starts with a gross contour interval followed by more spe-
cific descriptions. In the multiparametric paradigm, a pat-
tern G is more general than a pattern S if it is a suffix of
S and/or the successive parametric descriptions of the pat-
terns are equal or more general than the related parametric
descriptions in pattern P .

3.2 Motivic/thematic class as “paradigmatic sheaf”

Extending the exhaustive method developed in the previ-
ous section to this heterogeneous pattern paradigm enables
to describe all possible sequential repetitions along all para-
metric dimensions. This leads to very detailed pattern char-
acterisation, describing in details the common sequential
descriptions between any pair of similar motif. However, a
more synthetic analysis requires structuring the set of dis-
covered patterns into motivic or thematic classes. Manual
motivic taxonomy of these discovered patterns has been
shown in [7].

We have conceived a method for the collection of all
patterns belonging to a same motivic or thematic class.
Starting from one pattern seed, the method collects all other
patterns that can be partially aligned to the seed, as well as
those that can be aligned to any pattern thus collected. Pat-
terns are searched along the following transformations:

• More general patterns of same length

• More specific patterns: only the suffix that have same
length that the pattern seed is selected.

• Prefixes of pattern seed can be used as pattern seeds
too: they might contain additional sets of more gen-
eral and more specific patterns of interest.

• Pattern extensions, leading to a forking of the mo-
tivic or thematic class into several possible continu-
ations

All the patterns contained in the bundle remain informative
in the way they show particular commonalities between
subset of the motivic/thematic class, as shown in the anal-
ysis in section 5.

3.3 Heterogeneous pattern mining

A parametric description of a given note in the musical
sequence instantiates values to all fields in the paramet-
ric space. Values in the more general fields are automat-
ically computed from their more specific fields. A para-
metric description of a note in a pattern instantiates values
to some fields in the space, the other indeterminate fields
corresponding to undefined parameters. Values can be as-
signed to more general fields, even if no value is assigned

to their corresponding more specific fields. Methods have
been implemented that enable to compare two parametric
descriptions, in order to see if they are equal, or if one is
subsumed into the other, and if not, to compute the inter-
section of the two descriptions.

The multiparametric description is integrated in the two
core mechanisms of the incremental pattern mining model
as follows:

Recognition As before, the observed parametric descrip-
tion of the new note is compared to the descriptions
of the patterns’ extensions. If the pattern extension’s
description fits only partially, a new more general
pattern extension is created (if not existing yet) re-
lated to the common description.

Discovery The continuation memory is structured in the
same way as the parametric space: for each possi-
ble parametric field, an associative memory stores
pattern continuations according to their values along
that particular parametric field. As soon as a stored
pattern continuation is identified with the current note
along a particular parametric field, the complete para-
metric description common to these two contexts is
computed, and the pattern extension is attempted along
that common parametric description. As before, a
pattern is extended only if the extended pattern is
closed.

4. PATTERN CYCLICITY

A solution to the problem of cyclicity introduced in sec-
tion 1.2 was proposed in [6] through the formalisation of
cyclic patterns, where the last state of the chain represent-
ing the pattern is connected back to its first state, formal-
ising this compelling expectation of the return of the pe-
riodic pattern. One limitation of the approach is that it
required the explicit construction of cyclic pattern, which
demanded contrived algorithmic formalisations. The prob-
lem gets even more difficult when dealing with multipara-
metric space, in particular when the pattern is only partially
extended, i.e., when the expected parametric description is
replaced by a less specific parametric matching, such as
in the musical example shown in Figure 4. In this case, a
more general pattern cyclic needs to be constructed, lead-
ing to the inference of a complex network of pattern cycles
particularly difficult to conceptualise and implement.

We propose a simpler approach: instead of formalising
cyclic patterns, pattern cyclicity is represented on the pat-
tern occurrences directly. Once a successive repetition of a
pattern has been detected, such as the 3-note pattern start-
ing the musical example in Figure 4, the two occurrences
are fused into one single chain of notes, and all the subse-
quent notes in the cyclic sequence are progressively added
to that chain. This cyclic chain is first used to track the de-
velopment of the new cycle (i.e., the third cycle, since there
were already two cycles). The tracking of each new cy-
cle is guided by a model describing the expected sequence
of musical parameters. Initially, for the third cycle, this
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Figure 4. Two successive repetitions of a pattern, at the be-
ginning of the musical sequence, characterised by a pitch
sequence (G, C, Eb, and back to G), a pitch interval se-
quence (ascending perfect fourth (+3), ascending minor
third (+2m) and descending minor sixth (-5m)), and a
rhythmical sequence made of a succession of 8th notes.
This successive repetition leads to the inference of a cyclic
chain, indicated at the bottom of the figure. When this cy-
cle is initially inferred, at note 7, the model of the cycle,
represented above “cycle 3”, corresponds to the initial pat-
tern description. At note 10, some descriptions expected
by the model (indicated in bold italics) are not fulfilled, but
a more general description is inferred (descending gross
contour (-)). Consequently, the next cycle (4)’s model is
generalised accordingly. At note 13, a new regularity is
detected, due to the repetition of pitch Ab and of descend-
ing perfect fifth (-4). Consequently, the next cycle (5)’s
model is specialised accordingly.

model corresponds to the pattern that was repeated twice
in the two first cycles.

• If the new cycle scrupulously follows the model, this
same model will be used to guide the development
of the subsequent cycle.

• If the new cycle partially follows the model (such as
the modification, at the beginning of bar 2 in Fig-
ure 4, of the decreasing sixth interval, replaced by a
more general decreasing contour), the model is up-
dated accordingly by replacing the parameters that
have not been matched with more general parame-
ters.

• If the new cycle shows any new pattern identifica-
tion with the previous cycle (such as the repetition
of pitch Ab at the beginning of cycles 4 and 5 in Fig-
ure 4), the corresponding descriptions are added to
the model.

• If at some point, the new note does not match at
all the corresponding description in the model, the
cyclic sequence is terminated.

This simple method enables to track the cyclic develop-
ment of repeated patterns, while avoiding the combinato-
rial explosion inherent to this structural configuration.

5. TESTS

The model described in this paper is applied to the anal-
ysis of the Johannes Kepler University Patterns Develop-

ment Database (JKUPDD-Aug2013), which is the train-
ing set part of the MIREX task on Discovery of Repeated
Themes & Sections initiated in 2013, and made publicly
available, both symbolic representation of the scores and
ground-truth musicological analyses [4].

This section details the analysis of one particular piece
of music included in the JKUPDD, the 20th Fugue in the
Second Book of Johann Sebastian Bach’s Well-Tempered

Clavier. The ground truth consists of the two first bars
of the third entry in the exposition part along the three
voices that constitute this fugue [1]. The third entry is
chosen because it is the first entry where the subject and
the two countersubjects are exposed altogether. To each
of these three ground-truth patterns (the subject and the
two countersubjects in this two-bar entry), the ground-truth
data specifies a list of occurrences in the score.

Figure 5 shows the thematic class related to ground-
truth pattern #1, i.e., the fugue’s subject. This is detected
by the model as one single motivic/thematic class, i.e., one
complete paradigmatic sheaf, resulting from the bundling
method presented in section 3.2. All occurrences indicated
in the ground truth are retrieved. The patterns forming
this thematic class are longer than the two-bar motif indi-
cated in the ground truth. The limitation of all subjects and
counter-subjects in the musicological analysis to two bars
stems from a theoretical understanding of fugue structure
that cannot be automatically inferred from a direct analysis
of the score.

The analysis offered by the computational model of-
fers much richer information than simply listing the occur-
rences of the subjects and countersubjects. It shows what
musical descriptions characterise them, and details partic-
ular commonalities shared by occurrences of these subjects
and countersubjects. For instance entries M1 and U1 be-
long to a same more specific pattern that describes their
particular development. L1, U1 and U3 start all with a de-
creasing third interval, and so on.

The model presented in this paper does not yet inte-
grate mechanisms for the reduction of ornamentation, as
discussed in the next section. The only melodic ornamen-
tation appearing in pattern #1 is the addition of a passing
note after the first note of occurrences L2 and L3. This
leads to a small error in the model’s results, where the first
actual note is not detected.

The thematic class related to ground-truth pattern #2,
which is the first countersubject, is extracted in the same
way, forming a paradigmatic sheaf. The pattern class given
by the model corresponds mostly to the ground truth. Here
again, some occurrences present similar extensions that are
inventoried by the model, although they are ignored in the
ground truth. The last occurrence, which is a suffix of the
pattern, is also detected accordingly. On the other hand,
the second last occurrence is not properly detected, once
again due to the addition of passing notes.

Pattern #3, which is the second countersubject, is more
problematic, because it is only 7 notes long. Several other
longer patterns are found by the model, and the specificity
of pattern #3 is not grounded on characteristics purely re-
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Figure 5. Entries of the subject in Bach’s Fugue, as found
by the model. The fugue has three voices: upper (U), mid-
dle (M) and lower (L). In each entry is slurred the part
actually indicated in the ground-truth description of the
subject. The model proposes a longer description of the
subject, that is particularly developed in M1 and U1.

lated to pattern repetition. As aforementioned, the ground-
truth selection of these three patterns are based on prin-
ciples related to fugue rules, namely the synchronised it-
eration of the three patterns along the separate voices. It
seems questionable to expect a general pattern mining al-
gorithm non-specialised to a particular type of music to be
able to infer this type of configuration.

6. CONCLUSION

The approach is incremental, progressively analysing the
musical sequence through one single pass. This enables
to control the structural complexity in a way similar to the
way listeners perceive music.

Gross contour needs to be constrained by factors re-
lated to local saliency and short-term memory. The integra-
tion of more complex melodic transformation such as or-
namentation and reduction is currently under investigation.
Motivic repetition with local ornamentation is detected by
reconstructing, on top of “surface-level” monodic voices,
longer-term relations between non-adjacent notes related
to deeper structures, and by tracking motives on the result-
ing syntagmatic network. More generally, the analysis of

polyphony is under study, as well as the application of the
pattern mining approach to metrical analysis. The system,
implemented in Matlab, is made publicly available as part
of MiningSuite

3 , a new open-source framework for audio
and music analysis.
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The research is continued in the context of the European
project Learning to Create (Lrn2Cre8), which acknowl-
edges the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Frame-
work Programme for Research of the European Commis-
sion, under FET grant number 610859.

8. REFERENCES

[1] S. Bruhn. J.S. Bach’s Well-Tempered Clavier: in-

depth analysis and interpretation, Mainer Interna-
tional, Hong Kong, 1993.

[2] E. Cambouropoulos. Towards a General Computa-

tional Theory of Musical Structure, PhD thesis, Uni-
versity of Edinburgh, 1998.

[3] E. Cambouropoulos. “Musical parallelism and melodic
segmentation: A computational approach,” Music Per-

ception, 23(3), pp. 249–268, 2006.

[4] T. Collins. MIREX 2013: Discovery of Repeated
Themes and Sections, 2013. http://www.music-

ir.org/mirex/wiki/2013:Discovery of Repeated Themes

& Sections Accessed on 14 August 2014.

[5] D. Conklin, and C. Anagnostopoulou. “Representation
and Discovery of Multiple Viewpoint Patterns,” Pro-

ceedings of the International Computer Music Confer-

ence, 2001.

[6] O. Lartillot. “Efficient Extraction of Closed Motivic
Patterns in Multi-Dimensional Symbolic Representa-
tions of Music,” Proceedings of the International Sym-

posium on Music Information Retrieval, 2005.

[7] O. Lartillot. “Taxonomic categorisation of motivic
patterns,” Musicae Scientiae, Discussion Forum 4B,
pp. 25–46, 2009.

[8] D. Meredith, K., Lemström, and G. Wiggins. “Algo-
rithms for discovering repeated patterns in multidimen-
sional representations of polyphonic music,” Journal of

New Music Research, 31(4), pp. 321–345, 2002.

[9] J. Wang, J. Han, and C. Li. “Frequent closed sequence
mining without candidate maintenance,” IEEE Trans-

actions on Knowledge and Data Engineering, 19:8,
pp. 1042–1056, 2007.

3 Available at http://code.google.com/p/miningsuite/.


	2115B4EE-191C-453B-83B0-AB8A7C191859: On


