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University of Aalborg 
Sohngaardsholmsvej 57 
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ABSTRACT 

The design of a measurement program devoted to param­
eter identification of structural dynamic systems is consid­
ered. The design problem is formulated as an optimization 
problem to minimize the total expected cost that is the cost 
of failure and the cost of the measurement program. All the 
calculations are based on a priori knowledge and engineer­
ing judgement . One of the contribution of the approach is 
that the optimal number of sensors can be estimated. This 
is shown in an numerical example where the proposed ap­
proach is demonstrated. The example is concerned with 
design of a measurement program for estimating the modal 
damping parameters in a simply supported plane, vibrating 
beam model. Results show optimal number of sensors and 
their locations. 

NOMENCLATURE 

C : The total expected cost. 

CF: Cost of failure . 

CM: Cost of measurement program. 

Go : Cost of planning and instrumentation. 

C1 : Cost per sample record. 

C2: Cost of an additional sensor. 

T m: Measuring time. 

PF: Probability of failure. 

Z: Experiment design variables . 

n z: Number of the experiment design variables. 

n : Number of random variables in X . 

X: Random vector of correlated and non-normal vari­

ables. 

x: Realization of random vector X. 

g(x, p): Failure function . 

p: Deterministic parameters. 

T: Transformation. 

U: Random vector of normally distributed variables. 

u: Realization of random vector U. 

(3; : Element reliability index. 

(3": System reliability index. 

il>( · ): Normal distribution function: 



Pm ( · ): m-dimensional normal distribution function. 

p: Correlation coefficient matrix. 

11-x: Expectation of X. 

C-x: Covariance matrix for X. 

B: Vector of unknown parameters. 

n9: Number of parameters in 7i. 

e: Estimate of B. 
C 8 : Covariance matrix for e. 

J: Fisher Information Matrix. 

E: Expectation operator. 

p('fr jB): Joint conditional probability density function of mea­
surements fim. 

N: Number of measurements. 

N,: Number of measurement points. 

m: Number of significant failure modes. 

o-9: Standard deviation of e. 
73:: Conditional reliability index vector. 

P:: Conditional correlation coefficients. 

El: Bending stiffness. 

M: Mass per unit length. 

Cd: Viscous damping coefficient. 

t: Time parameter. 

z: Space parameter. 

L: Length of beam. 

8: The Dirac delta function. 

Oij: The Kronecker function. 

y(z, t): Deflection of the beam. 

P( z, t ): The load on the beam. 

ii(t): Realization of the stochastic load process {V(t)}. 

qi ( t): Generalized coordinate. 

rPi(z): Mode shape. 

(i: Modal damping ratio. 

D: Fatigue damage. 

TL: Expected lifetime. 

O" s: Standard deviation of stress process. 

T0 : Mean period of a stress cycle. 

f( ·): Gamma function. 

k: Parameter in the SN-curve. 

K: Parameter in the SN-curve. 

u( Zi, t ): Realization of the stochastic measurement noise pro­
cess {Y(zi, t)}. 

a-: Variance of the measurement noise. 

l.INTRODUCTION 

The experiment design problem in dynamic system iden­
tification is to ~hoose the experimental conditions so that 
the information provided by the experiment is maximized. 
The choice of experimental conditions for dynamic systems 
is known to have a significant bearing upon the achievable 
accuracy in parameter estimation experiments. In general, 
determination of the optimal experiment design, choice of 
the experimental conditions, leads to a highly complex op­
timization problem, requiring the simultaneous choice of 
identification algorithm, model and parameterisation, sen­
sor type and location, actuator type and location, input ex­
citation signal etc. Representative and excellent surveys of 
this area of are given in e.g. Goodwin et al. [1], Zarrop [2], 
Mehra [3] and Goodwin [4] . Generally, comparing different 
experimental designs is based on the estimator covariance 
matrix. Scalar functions of this estimator covariance matrix 
are used as experiment design criteria. In order to reduce 
the overall complexity of the experiment design problem, it 
can be assumed that the choice of identification algorithm 
is restricted to the class of efficient estimators, e.g. the 
maximum likelihood estimator. This uncouples the choice 
of identification algorithm from the overall experiment de­
sign since for any efficient estimator the covariance of the 
parameter estimates is a minimum. This minimum covari­
ance can be estimated in terms of the Cramer-Rao lower 

bound or equivalently the inverse of the Fisher Information 
Matrix, see e.g Goodwin et al. [1]. 

However, when designing a measurement program the fi­
nancial cost of the measurement program also has to be 
taken into account. The acquisition of additional informa­
tion, such as performing a full-scale measuring of a struc­
ture will of course require the time, energy, and financial re­
sources. The increased cost for this new information should 
be included or reflected in design of a measurement pro­
gram. The increased cost may be justified if it eliminates a 
significant part of the uncertainty, thus leading to a lower 
expected probability of failure of the structure. 

In this paper a method to determine an optimal measure­
ment program devoted to parameter identification of struc­
tural dynamic systems is formulated. The problem is for­
mulated as an optimization problem where the objective 
function is the total expected costs that is the costs of fail­
ure and costs of the measurement program. The cost func­
tion is introduced to make a trade-off between benefit of 
the new information achieved from the experiment and the 
costs of the measurement program. One of the main contri­
butions of the method is that the optimal number of sensors 
can be estimated. The method is especially developed for 
dynamically sensitive structures where the reliability of the 
structural system is sensitive to the dynamic parameters. 
In section 2 the optimization proble1p is formulated where 

I 

j 



structural reliability theory is briefly presented since the 
formulation is based on reliability methods. The connec­
tion between the design variables and the total expected 
cost due to failure is established using modern reliability 
methods. Next, in section 3, the calculation procedures are 
presented and finally, in section 4, an example is given us­
ing the proposed method. The example is concerned with 
optimal design of a measurement program for optimal iden­
tification of the damping parameters in a vibrating beam. 
The design variables are number of sensors and location of 
sensors. 

2. RELIABILITY BASED DESIGN OF A MEASURE­
MENT PROGRAM 

2.1 Optimization Problem 

In order to design an optimal measurement program it is 
suggested to minimize the total expected cost including cost 
of failure and the cost of the measurement program. The 
optimization problem of an optimal measurement program 
is formulated as 

m~n 

s.t Z1 < z. < z~ 
'- 1- 1 

i = 1, 2, ... ,N. 

(1) 

(2) 

where Z is a vector containing N. design variables, e.g. 
sampling rate, number of sensors, location of sensors etc. 
C F is the the cost of failure and CM is the cost of the 
measurement program. The expected total cost C is the 
objective function . PF is the updated probability of fail­
ure after the measurements have been performed. As con­
straints upper and lower limits on the design variables Z 
are given. 

2.2 Modelling of the Cost function 

One of the difficulties with the above optimization problem 
is how C F and CM may be modelled. 

"When a structure fails it is necessary to pay various costs 
such as repair costs, reconstruction costs, clean-up costs, 
loss of income, costs due to loss of social prestige and pos­
sible deaths. The total cost of failure CF may range from 
e.g. 2 to 5 times the initial cost of a structure, see e.g. 
Marshal! [5] 

The costs of obtaining the new information CM is to cover 
not only the sample records but also the cost of statisti­
cal analysis of the information and an appropriate share of 
costs of planning. A simple and useful function for the cost 
of a measurement program is CM = Co + C1 Tm + C2 N, 
see Ang et al. [6] . C0 may be interpreted as representing 
the cost of the instrumentation and planning. cl may be 
interpreted as an additional cost per sample record with 
the length T m • C2 is the cost of an additional sensor. In 
some cases a more complicated cost function can be used, 

e.g. when a learning effect is introduced in the statistical 
analysis. 

2.3 Structural Reliability Theory 

The probability of failure PF in (1) is estimated using the 
first-order reliability methods (FORM). First order relia­
bility methods have been extensively applied in the last 
decade, where considerable progress has been made in the 
area of structural reliability theory, see e.g. Madsen et al.[7] 

A reliability analysis is based on a reliability model of the 
structural system. The elements in the reliability model 
are failure elements, modelling potential failure modes of 
the structural system, e.g. fatigue failure of a weld. Each 
failure element is described by a failure function g(x, p) = 
0 in terms of a realization x of a random vector X = 
(Xt, X2, .. , Xn), and determinististic parameters p, i.e. de­
terminististic design parameters and parameters describing 
the stochastic variables, (expected value and standard devi­
ation). X is assumed to contain n stochastic variables, e.g. 
variables describing the loads, strength, geometry, model 
uncertainty etc. Realizations x of X, where g(x, p) $ 0 cor­
respond to failure states in the n-dimensional basic variable 
space, while g(x, p) > 0 correspond to safe states. 

In first-order reliability methods (FORM) a transformation 
T of the generally correlated and non-normally distributed 

variables X into standardized, normally distributed vari-
- - --1-

abies U = (Ut,U2, .. ,Un) is defined. Let U = T (X,p). 
In the u-space the reliability index !3i is defined as 

(3) 

If the whole structural system is modelled, as a series sys­
tem, by m failure elements, and failure of the system is 
defined as failure of one failure element, then a general­
ized systems reliability index {3' of this series system can 
be estimated from, see e.g. Madsen et al. [7] 

(4) 

where 4>(-) and <Pm(·) are the normal distribution function 
and the m-dimensional normal distribution function, re­
spectively. 7J = (f3t,f32, .. ,f3m) are the reliability indices of 
the m most significant failure elements determined by the 
FORM analysis. The elements in the correlation coefficient 
matrix pare determined in the FORM analysis. The prob­
ability of failure is 

(5) 

2.4 Estimation of Covariance Matrix 



In this section we establish the connection between the 
probability of failure PF and the design variables Z. 
Above it is shown that the probability of failure can be es­
timated from a system reliability index /3" based only on 

the ~st two moments, expectation fix and covariance ma­

trix Cx· Normally, it is assumed that the random vector 
X models the following four sources of uncertainty: Inher­
ent variability, estimation error, model imperfection and 
human error. 

Inherent variability, often called randomness, may exist in 
the characteristics of the structure itself or in the environ­
ment to which the structure is exposed. 

Estimation error arises from the incompleteness of statisti­
cal data and our inability to accurately estimate the param­
eters of the probability models that describe the inherent 
variabilities. Model imperfection arises from our use of ide­
alized mathematical models to describe complex phenom­
ena. Finally, the human error uncertainty arises from errors 
made by engineers or operators in the design, construction 
or operation phases of the structure. 

-Inherent variability is essentially a state of nature and the 
resulting uncertainty may not be controlled or reduced, i.e. 
the uncertainty associated with inherent variability is some­
thing we have to live with. The uncertainty associated with 
estimation error, model imperfection and human error may 
be reduced through the acquisition of additional data, the 
use of more accurate models and implementing rigorous 
quality control measures in the design, construction and 
operation phases of a structure. 

The available statistical information, objective and subjec­
tive, on relevant variables and the set of mechanical and 
probabilistic models and their associated error estimates 
constitute the state of knowledge in a reliability problem. 
The state of knowledge is said to be perfect when com­
plete statistical information and perfect models are avail­
able; otherwise, the state of knowledge is said to be im­
perfect. Real engineering problems invariably deal with 
imperfect states of knowledge. 

The parameters we want to estimate by a full-scale measur­
ing are modelled by the vector B. B contains n"ii parameters, 

e.g. modal parameter's. The rand<_?m vector 0 is an esti­

mate of the parameter vector B. e is included in X. In 
this paper we only consider the statistical uncertainty of 
the parameter estimates which has to be expected from an 
experiment with the the design variables Z. This _!!leans 
that the connection between the covariance matrix ce for 

e due to estimation error and the desi~ variables z has to 
be established. The covariance matrix C e is a function de­
pending on the estimator assumed to be used in the exper­
iment. Here, it is assumed that the choice of identification 
algorithm is restricted to the class of efficient estimators. 
These estimators have minimum covariance of the parame-

ter estimates. The covariance can be estimated in terms of 
the Cramer-Rao lower bound, see e.g. Goodwin et al. (1] 

(6) 

where J is the Fisher Information matrix given by 

(7) 

and where log p(!r I B) 1s the joint conditional probability 
density function of the N measurements 

ym = {ym(tk),k = 1,2, .. ,N} (8) 

ym(t) is an N.-dimensional output measurement vector whic 
is a realization of a stochastic process {Ym ( t)}. N. is the 

number of measurement points. 

2.5 Calculation Procedures 

Equations ( 1 )-(7) provide the basis for designing a measure­
ment program. The calculation procedure is as follows: 

1) Estimate the covariance matrix (7) based on a struc­
tural model, a priori knowledge of data properties, 
engineering judgement, experiment~ design variables 

and a best prior mean estimate of e 
2) Calculate /3" from ( 4) based on the structural model, a 

priori knowledge of data properties, engineering judge­
ment, experimental design variables and a best prior 
mean estimate and the estimated covariance matrix for 

e. 
3) Calculate the total expected cost (1). 

4) Determine a better estimate of the design variables. 

5) Repeat 2), 3) and 4 to achieve convergence. 

6) Make a sensitivity study of the measurement program 
design for various values of the prior mean estimate of 

e. (This point will not be performed in the example.). 

The reliability calculations in this paper are performed with 
the computer program PRADSS, see S0rensen (8]. 

The non-linear optimization problem (1)- (2) can be solved 
using any general non-linear optimization algorithm. In 
this paper the optimization problems are solved using the 
NLPQL algorithm, see Schittkowski (9]. The NLPQL algo­
rithm is a effective method where each iteration consists of 
two steps. The first step is a determination of the search 
direction. The second step is a line search. Since the esti­
mation of the system reliability index is very time- consum­
ing it can be convenient to reduce the number of objective 
function calls. This can be done if instead of NLPQL an­
other optimization algorithm is used which converges faster 



in the line search. 

The munber of function calls can also be reduced if the gra­
dient which NLPQL requires is estimated semi-analytical 
and not numerical. The derivative of the objective func­
tion C with respect to a design variable Z; is 

EJC ~ (-/3~)8(-/3~)C [)CM 
EJZ; rp EJZ; F + EJZ; (9) 

where rp( ·) is the standard normal density function. The 
last term in (9) is easy to estimate analytically. The deriva­
tive of the system reliability is 

(10) 

where ue is the standard deviation of ei. The derivative 
rr · J 

#; can be estimated numerically. The derivative 
8
8 f3' 
uej 

follows from ( 4) 

8{3" 1 ~ -a =a 0/3k au · ~ (/3~) ~ ~m-t(f3k;Pk)rp(f3k) 017 _ 
~ rp ~1 ~ 

(11) 

where the correlation cofficient terms are neglected. It 
should be mentioned that convergence problems can be ex­
pected in optimization problems by neglecting the corre­
lation cofficient terms. In (11) it is assumed that the m 

significant failure modes are numbered 1, 2, .. . ,m. /3~ and 

p~ are the conditional reliability indices and correlation co­
efficients, respectively, see S0ren8en [10]. The derivative of 
the element reliability index is estimated from, see Madsen 
et al. [7] 

(12) 

where * indicates values at the design point. 

3. EXAMPLE 

In this section, an example is given to demonstrate the pro­
posed optimization procedure. The example is concerned 
with optimal sensor location for identification of the modal 
damping parameters in a simply supported plane, vibrating 
Bernoulli-Euler steel beam model, see figure 1. The design 
variables are number of sensors N, and location of sensors 
z; . The design variable vector is defined by 

- T 
Z =(N,, zt,Z2, ·· •ZN, ) ( 13) 

where T indicates a transposed vector. 

El 

A J v(t) 
r---------------------~ 

L 

Figure 1. Bernoulli-Euler beam model. 

3.1 Structural Model of Vibrating Beam 

We assume that the equation of motion for the beam is 
given by 

EIEJ4y(z, t) C ay(z, t) MEJ 2 y(z, t) = P( ) 
EJz4 + d at + EJt2 z,t (14) 

where y( z, t) is the deflection of the beam at time t and dis­
tance z from its end. L is the beam length, M is the beam 
mass per unit length, cd is the viscous damping coefficient 
per unit length and El is the bending stiffness of the beam. 
The beam load is modelled as a motion v(t) normal to the 
beam axis at the right base. This means that 

P(z,t) = -±Mv(t) (15) 

where v( t) is a realization of a zero-mean stationary Gaus­
sian stochastic process {V(t)} with a covariance given by 

(16) 

where o is the Dirac delta function . "What we have assumed 
is that the stochastic load is white noise with variance 1. 

We assume that the solution for the displacement y( z , t) is 

00 

y(z,t) = Lqi(t)</>j(z) (17) 
j=l 

where qj(t) is a generalized coordinate and </>j (z ) is the 
mode shape of the j'te mode. See e.g. Lin [11] for a solution 
for qj(t) and </>j(z). Here, three mode shapes are taken into 
account. This means that the parameter vector 7i is defined 
by 

(18) 

where (; is the modal damping of the ith mode and T de­
notes the transposed of the parameter vector. The first 
three flexible modal frequencies are given in Hertz as fol­
lows, 0.31, 1.23 and 2.77. 

3.2 Reliability Modelling 

The beam is modelled as a series system with 7 fatigue fail­
ure elements placed equidistantly. Each fatigue failure ele­
ment is modelled by using the Palmgren-Miner rule in com­
bination with SN-curves. The stress process is assumed to 
be zero-mean Gaussian narrow-banded. Here we don' t have 
a narrow-banded process but the total damage is calculated 
as an equivalent narrow-banded damage. Then the accu­
mulated fatigue damage D can be written, see Wirsching 
[12] 



I. 

j 
I 

(19) 

where TL is the expected lifetime. Here we use T£=25 years. 
u. is the standard deviation of the stress process and To is 
th~ mean period of a stress cycle. 
r(-) is the gamma function. k and K are parameters in the 
SN- curves. Here k is modelled as a constant, k=3, and K is 
modelled as a random variable as LN(6400MPa, 1024MPa) 
where LN signifies a log-normal distribution. Stress con­
centration is neglected. Now the fatigue failure function 
can be written for a. given location z; 

g(z;,p, x) = -ln(D) = -ln(TL) + ln(To(z;)) + ln(K) 
k 

- kln(2v'2) -/n(f(l + 2))- kln(u.(z;)) (20) 

The random variables in S are modelled with a log-normal 
distribution, mean values (0.03) and vari~ces estimated 
from the estimator covariance matrix for 9, see next sec­
tion. In the reliability calculations the K's variables for 
different failure elements are assll}lled to be uncorrelated. 
Each of the random variables in 6 is assumed fully corre­
lated between the failure elements. 

3.3 The Estimator Covariance Matrix 

The estimator covariance matrix for 6 is now established 
using the Fisher Information Matrix (7). 

We assume that y(z, t) is directly measurable at the spatial 
points z;. The observation ym(z;, t) is described by the 
measuring equation 

ym(z;,t) = y(z;,t) +v(z;,t) (21) 

where v(z;, t) denotes measurement noise a.t location z;. It 
is assumed that the noise is a space uncorrelated stationary 
Gaussian white noise process {T(z;, t)}. The covariance is 

(22) 

where 

8;; and 8( t 1 -t2 ) denote the Kronecker and Dirac delta func­
tions, respectively. u2 is the variance of the measurement 
noise at the ith measurement point. Assuming the same 
variance at each measurement point is a. usual simplifying 
assumption. Here we use a variance of the measurement 
noise corresponding to a noise to signal ratio at 0.44. The 
noise to signal ratio is defined as the ratio between the stan­
dard deviation of the noise and the standard deviation of 
the response process at 0.5 L. 

Based on a set of N. observations over [0, T m] the Fishe_r 

Information Matrix J associated with identification of 8 
using the measurement vector in (21) is given by 

J = f: .!_ {T"' (&y(z;,t))T(8y(z;,t))dt 
i=l u 2 lo 89 89 

(23) 

~ is here estimated by numerical differentation. The 
88 • ul d response y( z, t) is found from ( 17) based on a snn ate 

realization of the load process {V(t)}. Tm is the measuring 
period. 

3.4 Results 

The optimization problem (1)-(2) is solved sequentially for 
varying N.. It is assumed that the cost function can be 
modelled as follows 

C0 = 106 DKK., C1 = 500 DKK. C2 = 105 DKK. 

C F may vary between 105 - 109 D K K. 

First, in order to demonstrate the design problem (1)-(2) 
values of probability of failure to be expected after full­
scale measurments by two sensors are shown in figure 2 as 
a function of the sensor location. 

Figure 2. PF against location of two sensors. 

Figure 2. shows that our optimization problem has many 
local minima and a caution about local minima should be 
given. Therefore, the optimization problem (1)-(2) has to 
be solved with a range of different initial values of the de­
sign variables Z. Due to symmetry of the problem we face 
symmetrical minima. It is also seen that the optimization 
problem is flat near the minima. This causes difficulties in 
the precise choice of optimal design on the one hand, but 
it also means that some imperfections in the design or in 
the practical positioning of sensors result in relatively small 
increase of error. 

The optimal locations for N. = 1 - 5 sensors are shown in 
figure 3. 



N. Zt Z2 za Z4 Z5 

1 0.168 L 
2 0.168 L 0.5 L 
3 0.168 L 0.5 L 0.5 L 
4 0.168 L 0.5 L 0.5 L 0.5 L 
5 0.168 L 0.5 L 0.5 L 0.5 L 0.5 L 

Figure 3: The optimal location of sensors 

The optimal sensor location 0.168 L can also be 0.832 L 
due to symmetry. 

It is seen from figure 3 that the optimal location of sensor 2-
5 is at 0.5 L. One could have expected different locations of 
the sensors. The reason why we don't get different locations 
is due to the reliability modelling on the beam model. The 
,estimate of the system reliability depends mainly of the 
fatigue failure element placed at 0.5 L. For this fatigue 
failure element the stress process is estimated based on first 
and third mode. The second mode shape is zero at 0.5 L. 
Since the system reliability index mainly depends on the 
first and the third mode the measurement points are placed 
where the most information about the damping parameters 
of first and third mode can be obtained. 

Figure 4 shows which values of probability of failure have 
to be expected after full-scale measurements have been per­
formed with different number of optimally located sensors. 

0.020 

~ 0.015 

-= & ... 
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» 0.010 
::= . 

:a 
"' .Q 

E ll.. 0.005 

0. 000 +---,.---,---,....:===='=!==--.--~ 
0 2 4 

Number of Sensors 
5 6 

Figure 4. Pp against different number of optimally located 
sensors. 

From figure 4 one can see that the increase of the number 
of sensors leads to a decrease of the probability of failure. 
However, the decrease is small for N. > 2. One can now 
ask, "How many sensors should be used in a full-scale mea­
suring". The increased cost of an additional sensor may 
be justified if it eliminates a significant part of the un­
certainty, thus leading to a lower expected probability of 
failure of the structure. Therefore, · the increased cost of 
an additional sensor should be reflected in a measurement 
program design method as proposed in this paper. 

Optimal solutions ofthe optimization problem (1)-(2) against 
different number of optimally located sensors are shown in 
figure 5 for various cost offailure Cp. 
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Figure 5. The total expected cost C against different num­
ber of sensors. 

It is seen, as expected, that the optimal number of sensors 
increases when C F increases, which means that acquisition 
of more information is, of course, more relevant wheJJ. the 
cost of failure increases. 

4. CONCLUSIONS 

Design of an optimal measurement program is formulated 
as an optimization problem to minimize the total expected 
costs due to failure costs and cost of the measurement pro­
gram. The approach is based on modern reliability theory. 
The calculations are based on the a priori knowledge of the 
data properties and engineering judgement. An example 
concerned with optimal sensor location for estimating the 
modal damping parameters in a simply supported plane, 
vibrating Bernoulli-Euler beam model is given. Tentative 
results indicate that the method works e.g to estimating op­
timal number of sensors and their location. However, to 
prove the pratical value of this approach, more complex 
examples should be investigated. 
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