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Estimation of Modal Parameters and their Uncertainties 

P. Andersen & R. Brincker 

Department o f Bui/ding Technology and Structural Engineerin g 
Aalborg University 

Sohngaardsholmsvej 57, DK-9000 Aalborg 
Denmark 

ABSTRACT 

In this paper i t is shown how to estimate the modal parameters as well 
as their uncertainties using the prediction error method o f a dynamic 
system on the basis of output measurements only. The estimation 
scheme is assessed by means of a simulation stud y. As a part of the 
introduction, an example is given showing how the uncertainty 
estimates can be used in applications such as damage detection. 
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System response vector process 
Discrete-time Gaussian white noise vector process 
Sampling interval 
Auto-Regressive coefficient matrix 
Moving Average coefficient matrix 
State matrix 
Stochastic input matrix 
Observation matrix 
Matrix o f eigenvectors o f the state matrix 
Matrix o f mode shapes 
Natura! eigenfrequencies 
Damping ratios 
Diagonal matrix containing di stinet eigenvalues 
Vector o f stacked parameters o f an ARMA V model 
Hessian matrix o f a parameter vector e 
Covariance matrix of e based on a estimate eN 

l INTRODUCTION 

The estimation of the dynamic properties o f linear and time-invariant 
systems has been applied for various reasons in a variety o f engineer­
ing tields. This extraction of dynamic information is known as modal 
analysis since the dynamics is usually represented by the so-called 
modal parameters. However, modal analysis is usually confined to an 
in vestigation o f the expected val u es o f the modal parameters. In such 
an analysis they have often been treated as delerministic parameters 
instead of a realization of some stochastic variables. In applications 
where the change of the modal parameters is of interest, the extra 
information about the quality of the estimates is essential. Such an 
application could e.g. be damage detection, where a damage is 
believed to be detected i f one or more o f the estimated modal parame­
ters change significantly with time, and if this change eannot be 
explained by e.g. a change o f extra mass on a s trueture or changes in 
the ambient environment. However, the problem is how to define a 
significant change of a modal parameter. Thi s problem can be solved 
in a statistical sense if the estimates are treated as realizations of 
stochastic variables, see Andersen et al. [l] and Kirkegaard et al. [2]. 
DitTerent statistical tests exist for testing whether two realizations with 
a certain probability are outcomes o f the same stochastic variables. l f, 
with a signitkant contidence, it can be rejected that two realizations 
are outcomes of the same stochastic variable the i t can be concluded 
that a significant change has occurred. 

In this paper, it is the intention to show how to obtain information 
about the uncertainties of estimated modal parameters. This can be 
accomplished by assuming the estimated modal parameters to be 
realizations of Gaussian stochastic variables. The modal parameter 
estimates are then assumed to correspond to the mean values o f these 
stochastic variables. lt will be shown how to estimate these mean 
values by calibration of a linear and time-invariant discrete-time 
parametric model to time series data. The associated covariance matrix 
c an then be estimated afterwards. Two methods for estimation o f the 
covariance matrix will be presented. Finally, the performance o f these 
methods will is tesled by a simulation study. 

1.1 The ARMA V Model 

The estimation of modal parameters is based on the assumption that 
the dynamic system shows linear and time-invariant behaviour. The 
dynamic behaviour of an ambient excited system is usually modelled 
by a second-order differential equation system, see e. g. Andersen [3] 

My(t)+Cj(t)+Ky(t) = w(t), w(t)EN!D(O,W) (l) 

M, C and K are the mass, viscous damping and stiffness matrices. y(t) 
is the dispiacement vector. w(t) is continuous-time Gaussian white 
noise with zero mean and an intensity deseribed by the matrix W. In 
Andersen [3] and Andersen et al. [4], i t is shown how torepresent such 
a system by a discrete-time Auto-Regressive Moving Average Vector 
(ARMA V) model. Assume that the continuous-time system is observed 
at discrete time instances k using a sampling interval T. If the 
continuous-time system consists o f np/2 degrees o f freedom (DOF) and 
if p dispiacements are observed and external measurement noise is 
present, a model having covariance equivalent system response at all 
discrete time step s t k= k T is o f the form 

y(tk) +Aiy(tk-1) + ... +Any(tk_n) 

e(tk) +C1e(tk_ 1) + ... +C"e(tk-n), e(tk)ENID(O,A) (2) 

Thi s model consists o f annthorder auto-regressive matrix polynomial, 
and a moving average matrix polynomial of similar order, where 
n=nplp. All coefficient matrices of the polynomials are of the 
dimension p x p. The discrete-time dispiacement vector y(tk) is of 
dimension p x l. The discrete-time Gaussian white noise e(tk) has the 
same dimension. Further, e(tk) has zero mean and a second-order 
moment deseribed be the covariance matrix A. Thi s particular model 
is referred to as an ARMAV(n,n) model. lt can be represented 
equi valently by a stochastic state s pace system o f the form 

x(tH)=Ax(tk)+Be(tk), e(tk)ENID(O,A) 

y(tk) =Cx(tk) +e(tk) (3) 

wherex(tk) an np x I dimensional state vector. The state matrix A, the 
stochastic input matrix B and the observation matrix C are defined as, 
see Andersen [3] 
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The relation between the auto-regressive system matrices and the state 
spacematrices A and C aregiven by 

[An An-I Ad= -CA"0- 1
(n) 

(5) 

where O(n) is the reduced observability matrix, see Andersen et al. [l]. 

1.2 Modal Parameter Estimation 

The modal parameters can be extracted by modal decomposing A.as 

(6) 

The modal deearnposition is deseribed by the np eigenvectors, which 
are the columns of the matrix "P, and by the np eigenvalues Il; located 
in the diagonal of the matrix Il· The eigenvectors "P

1 
are constructed 

fromthemode shapes <lli and the eigenvalues Il i as 

<111 <Il "l' 

111 <111 llnp <Il "l' 
(7) "P= 

"-l <Il 
111 l 

n-1 <Il 
J.lnp np 

Themode shapes, natura! eigenfrequencies and damping ratios o f the 
continuous-time system can therefore be extracted as 

(8) 

where )=l, ... , s. Since all modes are assumed underdampedit implies 
that s = np/2. 

1.3 The Prediction Error Method 

The parameter estimates, based on N samples, and returned in fl N can 
be obtained as the global minimum point o f the eriterion function 

(9) 

The model parameter vector e is determined so that the prediction 
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error c(tk, e)= y (t k)- j( tkltk-1 ; e) is as smallas possible. j( tkltk-1; e) 
is theone-step ahead predicted system response. The parameter vector 
e can be separated into the two m x l parameter vectors fr" and ec 
which are organised in the foliowing way 

fr" = cot([A 1 •• An])' ec = cot([C1 •• Cn]) 

e = col([ fr" ec ]) 
(IO) 

where col means stacking o f all columns o f the argument matrix. The 
total number of adjustable parameters in e is as such 2m = 2np2

• The 
predictor of the ARMAV(n,n) model is defined as 

f(tkltk_ 1 ;8) = -A 1(6)y(tk_ 1) - ... -A"(e)y(tk-n) + 

C1(e)e(tk_ 1,e) + ... +C"(e)c(tk-m'e) (11) 

Thi s relation reveals that the predictor o f the ARMA V model is non­
linear, since the prediction errors themselves depend on the parameter 
vector 8. This implies that an iterative minimization procedure such as 
the foliowing Gauss-Newton search scheme has to be applied. 

N 

R( e)= .E ljl(tk,8)Q~1 (e)ljiT(tk,e) 
k o l 

N 

F(e) =L lj1(tk,e)Q~1 (e)c(tk,e) 
k o l 

J~ T ajT(tkltk-1 ;e) 
Q,/ e) =-L. c(tk,e)e (tk,e), ljJ(tk,e) =---"-__:__:.-

Nkol ae 

(12) 

The dimensions of the Hessian matrix R(e) and the gradient vector 
F(e) are 2m x 2m and 2m x l, respectively. T]; is a bisection constant 
that adjusts the step size.ljl(tk,e) is the gradient ofthe predictor (Il), 
i .e. the derivative o f (l l) with respect to each o f the adjustable 
parameters of the ARMA V model. At each time step this gradient 
forms an 2m x p dimensional matrix. The estimate of the parameters 
of the ARMA V model can as such be calculated by supplying an initial 
parameter estimate. On the basis of thi s the prediction errors can be 
calculated, the matrix R(e) and the vector F(8) can be calculated. An 
updated es ti mate can then be calculated using (Il). Thi s method is 
called the prediction error method (PEM) since it is the prediction 
errors that are minimized, see Ljung [5]. For Gaussian distributed 
prediction errors thi s method is asymptotically efficient. A standard for 
the estimation errors o f such an estimator is provided by the Cramer­
Rao lower bound o f variance. Thi s standard is utilized by the model 
parameter covariance matrix of the difference between the true 
para,!Deters e o a~d estim~tedT parameters eN as N tefldS to infinity, i.e. 
P6(eN) = E[(e0-8N)(e0-eN)]. An estlmate of P 6(8N) 1s prov1ded by 
the Hessian matrix as, Andersen [3] and Ljung [5] 

(13) 

The covariance of the auto-regressive parameters depends on the 
estimation uncertainties o f the auto-regressive parameters as well as 
the moving average parameters. This is easy to realise from the 
following block matrix formulation of (13) 



(14) 

It is therefore important to estimate the moving average correctly. 

2 ESTIMATION OF MODAL UNCERTAINTIES 

In general, the change of parameterization from a set of auto-regressive 
parameters, given in an m x l dimensional vector fr4, toanother set of 
physical parameters, given in an r x l dimensional vector K, can be 
performed by a known r-dimensional functional relation K =f( fr4) . 
The filnctional relationship between the auto-regressive parameters and 
the modal parameters is given by the eigenvalue problem followed by 

J( e~) and G( KN) are Jacobian matrices of parti al derivatives 

BJ/fr4) BJ/fr4) 

ae~ aeA 
m 

J(fr4) 

Bf/fr4) Bf,( fr4) 

aeA 
l 

aeA 
m 

(18) 
Bf~ 1 (K) -l Bf1 (K) 

BK, BK r 

G( K) 

Bf~(K) af~(K) 

BK, BK, 

the calculation of the modal parameters. Thi s means that the resulting 
functional relation between fr4 and K is higbly non-linear. To obtain a which should both be evaluated at the operating point (KN, e~). 
practically applicable approach, K= f( fr4) is usually linearized using 
a first-order generalized Taylor expansion at the operating point 2. I A Simple but S/ow Approach 
(K:N, e~), Andersen [4]. This linearization can either be performed as 

(15) 

or as 

(16) 

For simplicity, it is assumed that all modes s are underdamped and that 
mode shapes are normalized with respect to their pth element. There 
will therefore only be p-l real and p-l imaginary mode shape elements. 
The elements o f iCNcan therefore be defined as 

~ 
Al (j 
KN 

A2 
re (w j. l) 

KN 

KN 
A j (17) KN 

re ( 4>j,p-I ) 

IC~ 
im( 4>j. 1) 

im ( wj.p-1 ) 

The covariance matrix P/ K: N) o f the deviation o f K: N from the true 
modal parameters can be estimated by 

The estimated COVariance mat~X p AA( eN) obtained from (13) Can then 
be inserted instead of p AA( eN)' What remains is to calculate the 
Jacobian matrix J( e~). The first step is therefore to define the filnetion 
K =f(ft). 

Definition l 

D The function K= f(fr4) can be divided in to 4 steps as 

Step I. [A 1 A 2 • An-l An] = asseml(fr4) 

o l o 

Step 2. A 

(20) 
'c= [l o o] o o l 

where asseml is a virtual function that should return the auto-regres­
sive parameters when given the vector ft as input. assem2 is another 
virtual filnetion that should return the vector K when given the modal 
parameters as input. D 

Analytical calculation of the parti al derivatives of this function is in 
general impossible even for small model structures, since the calcula­
tions inelude solution of a series of eigenvalue problems. However, a 
simple way to calculate the Jacobian is by numerical differentiation 
using the central difference theorem. The ith column of J( e~) can then 
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be calculated by 

I;< e~> = 2~[rce~ +P> - Jce~ -P>] 
l 

(21) 

where P is an m x l vector w hose elements all are zero except for the 
ith element P; that contains a smal! number. Thi s number results in a 
smal! perturbation of the ith element of e~ . The modal deearnposition 
and the calculation o f the modal parameters must therefore be repeated 
2m times which makes this a slow approach. A more comprehensive 
description of this approach is given in Andersen et al. [3]. 

2.2 An Advanced and Fast Approach 

The estimated covariance matrix PK(KN) can also be obtained in 
another way which does not re! y o n numerical differentiation. The idea 
is to construct G( KN) analytically instead of constructing J( El~) 
numerically. 

Definition 2 

D The function EJA= F 1(K) can be divided in to 7 steps as 

Step l. V1 ( 1 <1> 1 .. f ( <t>.,]=assem(K) 

Step 2. 

<1>1 <l> np 

Step 3. lf= , ~ =diag(ll) 

n-1<1> 
1-lJ l 

n-1 <l> 
llnp np 

Step 4. A =lf~lf- 1 
, C=[/ O .. O] 

Step 5. O(n) =[er (CA/ . (CAn-lf (CA"- 1/Y 
Step 6. [An An-l .. Ad= -CAn0- 1(n) 

Step 7. EJA = col([A 1 •• An]) 

(22) 

where assem is a virtual function that should return the modal 
parameters when given the vector K as input. D 

From (14) and by using the chain rule the Hessian matrix of the modal 
parameter vector K and the moving average parameters is given by 

[

G(K)R AA( 8)GT(K) 
R(K,8c) = 

RCA(6)GT(K) 

[

RKK(8) RKC(8)] 

= RCK(8) RccC8) 

G(K)R AC( 8)1 

RccC8) 
(23) 

The covariance of the modal parameter vector is therefore obtained 
from (13) as 

(24) 
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Essentially, G( KN) is constructed by parti al differentiation o f steps 2 
to 6 with respect to the parameters K, which for the jth eigenvalue are 
_t, (j, <l>p,R and <l>p.1· The mode shape subscript of the jth mode shape 
signities the real or imaginary parts o f the lth row coordinate. 

Differentiation of Step 2 

The derivatives o f step 2 with respect to Jj. (j, <l>p.R and cl>jl.l aregiven 
by 

OJ.I ( g) _J = 2rtTJ.1 -(.+i l-( of. J J J 
J 

(25) 

O, 

For simplicity the two parameters !j and (j will be substituted by one 
parameter ~j· The differentiation with respect to ~j is therefore 
differentiation with respect to _t and (j. 

Differentiation o f Step 3 

Detine 0",., as an n x m matrix filled with zeros. In the foliowing this 
matrix will be used whenever a zero matrix having dimensions 
different from p x p is needed. The derivatives of lf and~ with respect 
to ~1 , ci>JIR and cf>jl.l are then given by 

~~i = diag ( [o 1.1_1 :~; OI,np-J ]) ~ =0 
CJ<J:>j/ np,np 

onp,np-j 

(n-1) ~-2 Ol-li ci> 
Il] a~ J 

J 

IJl, 
(26) 

()l{' 
onpj-1 

J.ljljl/ 

onp,np-j 
act>J,,R 

IJl, 

n-1 
Il; IJl, 

lJ!, 

()l{' 
onpj-1 

ll/'li, 
onp,np-j 

(Jef> j/,/ 
, lJ!, 

n-1 
Il j ljJ l 

Differentiation of Step 4 

For simplicity the real and imaginary parts cf>p,R and cf>jl./ of the mode 
shape comdinates will be replaced by one parameter Xp· The deriva-



ti ves of A with respect to ~j and Xiiare then given by 

(27) 

Differentiation of step 5 

The derivatives of O(n) with respect to ~i and Xii are based the 
differentiation of increasing integer powers of A. The differentiation 
of A"', m= J, 2, ... is given by 

(28) 

The differentiation of O(n) then follows straightforwardly 

o o 
caA c aA 

aO(n) = 
a~j aO(n) = 

a x j/ 
(29) 

a~j a x j, 
CaAn-1 aAn-1 

C--
a~j axj, 

Differentiation o f Step 6 

Finally, the differentiation of the auto-regressive parameters with 
respect to ~j and Xiigiven by 

[
aA" aAn-l aA 1 l = 

a~j a~j · · a~; 

-( caA" +[A 
a~. " 

l 

[
aA" aA 11 _ 1 aA 11 = 

ax, ax, · · ax, 
.l .l .l 

(30) 

-( caA" +[A A .. A ]aO(n)) o-l(n) 
a Il n-1 l ax 

Xp il 

What remains in order to construct the derivatives a()AJa~. and 
aeA l ax l is to stack the derivatives o f the auto-regressive ~atrix 
coefficierits obtain in (30). The matrix G(iCN) can then be constructed 
by looping over all parameters of iCN, and the covariance in (24) can 
be calculated. 

3 A SIMULATION STUDY 

In order to demonstrate the performance o f the two approaches and to 
compare the computational time needed in each case a simulation 
stud y has been performed. The system response of a Gaussian white 
noise excited 2 DOF linear system has been simulaled 500 times. The 
natura! eigenfrequencies and the damping ratios of the two modes are 
presented in table l, whereas the mode shape comdinates of the two 
modes are presented in table 2. 

Mode# jj [Hz] (j [%] 

l 1.75 0.63 

2 2.66 1.08 
Tab] e l. Modal parameters of the Simulated system. 

Channe!# 1.75 [Hz] 2.66 [Hz] 

l 1.388+i0.003 -0.721+i0.003 

2 l l 
Table 2. Mode shapes both normahzed wnh respect to channel 2. 

Gaussian white noise has been added as extemal disturbance. The level 
o f this disturbance is l 0% of the standard deviation o f the undisturbed 
system response. On the basis of each simulation an ARMAV(2,2) 
model has been calibrated using the non-linear prediction error 
method. The standard deviations o f the modal parameters have then 
been estimated using the two estimation approaches. The standard 
deviations obtained from the two approaches are plotled together with 
the sampled standard deviations. For simulation number i all estimates 
from l to i have been used to calculate the sampled standard devia­
tions. Therefore, the associated curve for the first number of simula­
tions will show some transient behaviour. 

Mode 1#1 - Eigenfrequency- Approach 1 
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~os 
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Simulation Number 

Mode 1#1 - Eigenfrequency- Approach 2 

'N 
~1.5 
.2 

·! 1 o 
'E 
1B 
@ 0.5 
iii 

o 
o 50 100 150 200 250 300 350 400 450 500 

Simulation Number 

Figure l: Estimated and sampled standard deviations o f the natura] eigenfrequency of 
mode l. 
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Mode #2 - Eigenfrequency - Approach 1 

0~--~-----L----~----~--~-----L----L---~----~--~ 

o 50 100 150 200 250 300 350 400 450 500 
Simulation Number 

Mode #2 - Eigenfrequency - Approach 2 

Simulation Number 

Figure 2: Estimated and sampled standard deviations of the natura! eigenfrequency of 
mode 2. 

Mode #1 - Damping Ratio- Approach 1 
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Simulation Number 

Mode #1 - Damping Ratio- Approach 2 
0.14 ,-----,-------,------,-----,------,------,------,-----,------,-----, 

0.02 [_----='------'-------'-------,-L----:c':::----:c::::--:::C:----,-'-::------,L:--__ ! 
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Figure 3: Estimated and sampled standard deviations of the damping ratio of mode l. 
Mode #2 - Damping Ratio - Approach 1 

0.02 L_ __ --::' ____ _J. ____ --,L ____ _J_ ____ _L ____ _J._ ____ _L_ ____ ~ 

c 
-~ 0.1 .,. 
~ 0.08 
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.!'l 
(/) 0.04 
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Mode #2 - Damping Ratio - Approach 2 

0.02 L_ __ --::'----~------,L-----'-------'-------'-------'--------'-----J._--__j 
o 50 100 150 200 250 300 350 400 450 500 

Simulation Number 

Figure 4: Estimated and sampled standard deviations o f the damping ratio of mode 2. 
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x 10-3 Mode #1- Channel##l -Real Part of ModeShape-Approach 1 
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o 50 100 150 200 250 300 350 400 450 500 

Simulation Number 

x 10~J Mode #1 - Channel 11 - Real Par1 of Mode Shape -Approach 2 
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~6 
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.Q 5 
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~4 
"E .g3 
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'"2 

1 
o 50 100 150 200 250 300 350 400 450 500 
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Figure 5: Estimated and sampled standard deviations of the real part of the mode shape 
channel l o f mode l. 

x 10-3 Mode 11 - Channel #1 -lmaginary Par1 of ModeShape-Approach 1 
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Mode #1 -Channe[ #1 - lmaginary Par1 af ModeShape-Approach 2 
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Figure 6: Estimated and sampled standard deviations of the imaginary part of themode 
shape channel l o f mode l. 

x 10-3 Mode 1#2- Channe l 1#1 - Real Par1 of ModeShape-Approach 1 
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x 10-3 Mode #2- Channe l 1#1 - Real Par1 of ModeShape-Approach 2 
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Figure 5: Estimated and sampled standard deviations o f the real part o f the mode shape 
channel I o f mode 2. 



Mode 1#2- Channel1#1 -lrnaglnary Part of ModeShape-Approach 1 
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Simulation Nurrber 

Mode #2- Channe! #1 -lmaginary Part of Mode Shape -Approach 2 
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Figure 5: Estimated and sampled standard deviations of the imaginary part of the mode 
shape channel l of mode 2. 

In this particular case the second approach is IO times faster than the 
first approach. As seen the two approaches work almost equally well, 
except for the mode shapes. In this case, the standard deviations of 
approach l are very poor. Therefore, the general condusion is that 
approach 2 should be used, since it is the fastest and gives better 
estimates o f the standard deviations. 

6 CONCLUSIONS 

The intention o f thi s paper has been to show how modal parameters 
and especially their estimation errors can be determined. The modal 
parameter estimation has been based o n calibration of ARMA V 
models to time series data using the prediction error method. Two 
approaches for estimation of modal uncertainties have been presented. 
In each approach, i t is the covariance matrix o f the modal parameters 
that has been estimated. Thi s estimation is based on a first arder Taylor 
expansion of the functional relationship between the auto-regressive 
parameters and the modal parameters. The first approach involves 
numerical differentiation of thi s functional relationship. Implementa­
tion of this approach is easy. The second approach involves the 
construction of analytical differentiation. Implementation of this 
approach is much more difficult. However, the ad vantage ofthe second 
approach is that an estimate of the covariance matrix is obtained 
significantly faster than by the first approach. The performance of the 
two approaches has been compared by means of a simulation study. 
Thi s simulation study has shown that the second approach is l O times 
faster and more accurate for the mode shapes. 
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