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ESTIMATION OF MODAL PARAMETERS AND THEIR UNCERTAINTIES 

P. Andersen 
Department of Building Technology and Structural Engineering 
Aalborg University, Denmark 

ABSTRACT: In this paperitis shown how to estimate the modal parameters as well as their uncertainties using the prediction 
error method of a dynarnic system on the basis of output measurements only. The estimation scheme is assessed by means 
o f a simulation stud y. As a part o f the introduction, an example is gi ven showing how the uncertainty estimates c an b e u s ed 
in applications such as damage detection. 

l INTRODUCTrON 

The estimation of the dynamic properties of linear and 
time-invariant systems has been applied for various reasons 
in a variety of engineering fields . This extraction of 
dynamic information is known as modal analysis since the 
dynamics is usually represented by the so-called modal 
parameters. However, modal analysis is usually confined to 
an investigation of the expected values of the modal 
parameters. In such an analysis they have often been treated 
as deterrninistic parameters instead of a realization of same 
stochastic variables. 

In this paper, it is the intention to show how to obtain 
information about the uncertainties of estimated modal 
parameters. This can be accomplished by assuming the 
estimated modal parameters to be realizations of Gaussian 
stochastic variables. The modal parameter estimates are 
then assumed to correspond to the mean values of these 
stochastic variables. It will be shown how to estimate these 
mean values by calibration of a linear and time-invariant 
discrete-time parametric model to time series data. The 
associated covariance matrix can then be estimated after­
wards. Two methods for estimation of the covariance 
matrix will be presented. Finally, the performance of these 
methods will betested by a simulation study. 

1.1 An Example - Damage Detection 

In applications where the change of the modal parameters 
is of interest, the extra information about the quality of the 
estimates is essential. Such an application could e.g. be 
damage detection, where damage is believed to be detected 
if one or more of the estimated modal parameters change 
significantly with time, and if this change eannot be 
explained by e .g. a change of extra masson a structure or 
changes in the ambient environment. 

However, the problem is how to define a significant 
change of a modal parameter. This problem can be solved 
in a statistical sense if the estimates are treated as realiza­
tions of stochastic variables, see Andersen et al. [1], 
Kirkegaard et al. [2] and Doebling et al. [3]. 

Different statistical tests exist for testing whether two 
realizations with a certain probability are outcomes of the 
same stochastic variables. If, with a significant confidence, 
it can be rejected that two realizations are outcomes of the 
same stochastic variable then it can be conelurled that a 
significant change has occurred. 

1.2 The ARMA V Model 

The estimation of modal parameters is based on the 
assumption that the dynamic system shows linear and time­
invariant behaviour. The dynamic behaviour of an ambient 
excited system is usually modelled by a second-order 
differential equation system, see e.g. Andersen [4] 

Mji(t) +Cj(t) +Ky( t ) = w(t ) , w(t)E NID( O, W ) (l ) 

M , C and K are the mass, viscous damping and stiffness 
matrices.y(t) is the dispiacement vector. w(t) is continuous­
time Gaussian white noise with zero mean and an intensity 
deseribed by the matrix W. 
In Andersen [4] and Andersen et al. [5], it is shown how 

to represent such a system by a discrete-time Auto-Regres­
sive Moving Average Vector (ARMA V) model. Assume 
that the continuous-time system is observed at discrete time 
instances k using a sampling interval T. If the continuous­
time system consists of np/2 degrees o f freedom (DOF) and 
if p dispiacements are observed and external measurement 
noise is present, a model having covariance equivalent 
system response at all discrete time steps tk=kT is of the 
form 

y(tk) +A,y( tk-1) + ... +Any ( tk-n) = 
e(tk) +C1e(tk_1) + ... +Cne(tk-n) , e(tk)E NID( O,A) (2) 

This model consists of an nth order auto-regressive matrix 
polynomial, and a moving average matrix polynomial of 
similar arder, where n=np!p. All coefficient matrices of the 
polynomials are of the dimension p x p. The discrete-time 
dispiacement vector y(tJ is of dimension p x l. The 
discrete-time Gaussian white noise e(tJ has the same 
dimension. Further, e(tJ has zero mean and a second-order 
moment deseribed be the covariance matrix A. 

This particular model is referred to as an ARMAV(n,n) 
model. It can be represented equivalently by a stochastic 
state space system o f the form 

x(tk•I) =Ax( tk) +Be(tk) , e( tk) ENID( O,A) 

y( t k) =Cx( tk) +e( t k) 
(3) 

wherex(tJ isan np x l dimensional state vector. The state 
matrix A, the stochastic input matrix B and the observation 
matrix C are defined as, see Andersen [4] 
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The relation between the auto-regressive system matrices 
and the state s pace matrices A and C are given by 

[An An-t .. At]= - CAn0-1(n) 
(5) 

where O(n) is the reduced observability matrix, see 
Andersen [l]. 

1.3 Modal Parameter Estimation 

The modal parameters can be extracted from the modal 
decomposed state matrix A. 

(6) 

The modal deearnposition is deseribed by the np 
eigenvectors, which are the columns of the matrix 'P, and 
by the np eigenvalues fli located in the diagonal of the 
matrix J.l. The eigenvectors 'Pi are constructed from the 
mode shapes <I>i and the eigenvalues fli as 

Il> l !l>np 

lf= 
Ilt Cl> l flnp Cl> np 

(7) 

n-l !l> 
11! l 

n-l 
flnp !l> np 

Themode shapes, natural eigenfrequencies and damping 
ratios of the continuous-time system can therefore be 
extracted as 

.." crr• { .} _ (-z"'h"i2n"'R)r es) 
'J!' i = r i , Jlpflj - e 

where j=l, ... , s. Since all modes are assumed 
underdamped, s = np/2. 

1.4 The Prediction Error Method 

The parameter estimates, based on N samples, and 
returned in SN Can be obtained as the global minimum 

point o f the eriterion function 

(9) 

The model parameter vector 8 is determined so that the 
prediction error, defined as 

(lO) 

is as smallas possible. y (tki tk- t; 8 ) is theone-step ahead 
predicted system response. The parameter vector 8 can be 
separated into the two m x l parameter vectors {1'1 and 8c 
which are organised in the foliowing way 

6A = col([A 1 .. An ]) , ec = col([C1 •• Cn])(ll ) 

e = col([ ()A ec]) 

where col means staclcing of all columns of the argument 
matrix. The total number of adjustable parameters in 8 is as 
such 2m= 2np2

. 

The predictor of the ARMA V(n,n) model is defined as 

j(tkitk-l ;8) = -A1(6)y(tk _1) - ... - A/6)y(tk_
11

) + 

C1(6)e(tk- l ,6) + ... +C
11
(8)e(tk -nc'8) 

(12) 

This relation reveals that the predictor of the ARMA V 
model is non-linear, since the prediction errors themselves 
depend on the parameter vector 8. This implies that an 
iterative minimization procedure such as the foliowing 
Gauss-Newton search scheme has to be applied. 

N 

R( e)= L 1JI(tk,e)Q~\e)tf(tk,e) 
k=l 

N 

F(6) =L 1JI(tk,6)Q~1(6)e( tk,6) 
k=l 

l N 
QJ6) =-L e(tk,e)eT(tk,e) 

Nk • t 

(13) 

The dimensions of R(8) and F(8) are 2m x 2m and 2m x 
l, respectively. lii is a bisection constant that adjusts the 
step size. tJr(tk,8) is the gradient of the predictor (12), i.e. 
the derivative of (12) with respect to each of the adjustable 
parameters o f the ARMA V model. At each time step this 
gradient forms an 2m x p dimensional matrix. 
The estimate of the parameters of the ARMA V model can 

as such be calculated by supplying an initial parameter 
estimate. On the basis of this the prediction errors can be 
calculated, the matrix R(8) and the vector F(8) can be 
calculated. An updated estimate can then be calculated 



using (12). This method is called the prediction error 
method (PEM) since it is the prediction errors that are 
minimized, see Ljung [6]. 
For Gaussian distributed prediction errors this method is 

asymptotically efficient. A standard for the estimation 
errors of such an estimator is provided by the Cramer-Rao 
lower bound of variance. 

This standard is utilized by the model parameter covar­
iance matrix o f the difference ~between the true parameters e o 
and estimated parameters eN as N tends to infinitv, i.e. 

~ ~ ~ T ~ 

P6( eN) = E[(e0-eN)(60-eN) ]. Anestimate of P6( eN) is 
provirled by the Hessian matrix as, Andersen [4] and Ljung 
[6] 

(14) 

The covariance of the auto-regressive parameters depends 
on the estimation uncertainties of the auto-regressive 
parameters as well as the moving average parameters. This 
is easy to realise from the foliowing block matrix formula­
tion of (14) 

~ [p AA(8) ~AC( 8)] 
P( 8) = .. 

P CA( 8 ) P cc( 6 ) 

[

RAA(8 ) R AC( 8 )1 
R(6) = 

RcA(6) R cc( 6) 

P M(6) =(RAA(6 ) - R AC( 6 )R ic( 6 )R d 6) )-I 

(15) 

It is therefore important to estimate the moving average 
correctly. 

2 ESTIMATION OF MODAL UNCERTAlNTIES 

In general, the change of parameterization from a set o f 
auto-regressive parameters, given in an m x l dimensional 
vector 6", to another set of pbysical parameters, given in an 
r x l dimensional vector IC, can be performed by a known 
r-dimensional functional relation 

K = j(e"') (16) 

The functional relationship between the auto-regressive 
parameters and the modal parameters is given by the 
eigenvalue problem followed by the calculation of the 
modal parameters. This means that the resulting functional 
relation between 6" and IC is higbly non-linear. 

2.1 Approximation using a l st. Order Taylor Expansion 

To obtain a practically applicable approach, (16) is 
usually linearired using a first-order )~eneralized Taylor 
expansion at the operating point (Kw,~), Andersen [5]. 

This linearization can either be performed as 

(17) 

or as 

(18) 

For simplicity, it is assumed that all modes s are under­
damperl and that mode shapes are normalized with respect 
to their pth element. There will therefore only be p-1 real 
and p-1 imaginary mode shape elements. Tbe elements of K: N 

can therefore be defined as 

fj 

- l (j 
KN 

~2 
KN 

re ( <I>j,I) 

i(: = 
N ~ = 

re ( <I>j.p- l) 
(19) 

~-· 
im( <I>j,I) 

KN 

im ( <I>j,p-I) 

J(~) and G(K:N) are Jacobian matrices of partial deriva­
tives 

af.( e"') af.( e"') 

aeA 
l 

aeA 
m 

J(e"') = 

at,< B"') at,( e"') 

aeA 
l 

ae A 
m 

(20) 

aj ;
1
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1
( K) 

aK1 aK, 
G( K) 

at~\ K) afml(K) 

a1e1 aK, 

which should both be evaluated at the operating point 
~A 

(KN ,6N). 



2.2 A Simple but Slow Approach 

The covariance matrix P..( i< N) o f the deviation o f i< N from 
the true modal parameters can be estimated by 

P/Y:N) = E[(Ko - Y:N)(Ko - Y:Nn 

= J( 8~)PAA(8N) JT( B~) 
(21) 

The estimated covariance matrix P AA(~) obtained from 
(14) can then be inserted instead of P "'1..( 8N). What remains 
is to calcu1ate the Jacobian matrix J( 8~). The first step is 
therefore to define the function K= j(ft-). 

Definition l 

D The function K= j(ft-) can be divided into 5 steps as 

Step l. [A 1 A2 . An-l An ] = asseml(&4) 

o I o o 
o o I o 

Step 2. A 

o o o I 

-An -A n-1 -An-2 -At (22) 

C = [I O o . o] 
Step 3. 'l' J1 '1'-t =A 

where asseml is a virtual fimetion that should return the 
auto-regressive parameters when given the vector (JA as 
input. assem2 is another virtual function that should return 
the vector K when given the modal parameters as input. D 

Analytical calculation of the partial derivatives of this 
fimetion is in general impossible even for smal! model 
structures, since the calculations inelude solution of a 
series of eigenvalue problems. However, a simple way to 
calculate the Jacobian is by numericaldifferentiation using 
the central difference theorem. The ith column of J(~) 
can then be calculated by 

(23) 

where P is an m x l vector whose elements all are zero 
except for the ith element P; that contains a small number. 
This number results in a small perturbation of the ith 
element of ~- The modal deearnposition and the calcula­
tion of the modal parameters must therefore be repeated 2m 
times which makes this a slow approach. A more campre­
hensive description of this approach is given in Andersen 
[4]. 

2.3 An Advanced and Fast Approach 

The estimated covariance matrix P"( i<N) can also be 
obtained in another way which does not rely on numerical 
differentiation. The idea is to construct G( i< N) analytically 
instead o f constructing J( e~) numerically. 

Definition 2 

D The function (JA = j"1(K) can be divided in to 7 steps as 

Step l. V1 ( 1 <I> 1 . . f , (_, <I>·' J= as s em( K) 

Step 2. 

<I> l <f>np 

flt <I> ] flnp <f> np 
Step 3. 'P = , J1 =diag(fl) 

n- l <f> 
fl t l 

n-l <f> 
fl np np 

Step 4. A ='I'J.l'l' -1
, C =[I O . . O) 

Step 5. O( n) =[er (CA l . (CAn-2l (CA"-1l jT 

Step 6. [An An-t . . At) = -CAn0 -1( n) , 

Step 7. øA = col([A 1 • • A n]) 

(24) 

where assem is a virtual function that should return the 
modal parameters when given the vector K as input. D 

From (15) and by using the chain rule the Hessian matrix 
of the modal parameter vector K and the moving average 
parameters is given by 

G(K)RAA( 8)GT( K) 
R(1e,8c) = 

R cA(8)GT(K) 

= [RKK( 6) RKc(8)] 
R CK( 8 ) R cc( 8) 

G( K)RAc( 8 )] 

R cc(8) 
(25) 

The covariance of the modal parameter vector is therefore 
obtained from (14) as 

Essentially, G(KN) is constructed by partial differentiation 
of steps 2 to 6 with respect to the parameters K, which for 
the jth eigenvalue are ~. (j, <flji,R and <fljiJ· The mode shape 
subscript of the jth mode shape signifies the real or imagi­
nary parts of the lth ro w coordinate. 

Differentiation of Step 2 

The derivatives of step 2 with respect to~. ( j, <flji,R and ~u 
aregiven by 



a11 . ( g) _J = 2nT11 . -(.+i l-(. 
af. J J ' 

J 

(27) 

For simplicity the two parameters Jj and (j will be substi­
tuted by one parameter ~t The differentiation with respect 
to ~j is therefore differentiation with respect to Jj and (t 

Differentiation of Step 3 

Define On.m as an n x m matrix filled with zeros. In the 
foliowing this matrix will be used whenever a zero matrix 
having dimensions different from p x p is needed. The 
derivatives of 1f' and Il with respect to ~j• <lljt.R and <llju are 
then given by 

a,., ( [ a11j ]] a~j = diag ol,j-1 a~j ol,np-j 

onp,np-j 

(n-1) n-zalljcll 
11, a~. ' 

1 

q> l 
(28) 

Il j <i> t 
o /-1,1 

onpJ-1 onp,np-j ' <i>t = 

n-1 op-t. l 
Il j q> l 

*l 

Il j 1jT l 
o l-1.1 

onpJ- 1 onp,np-j ' *l = 

n - 1 
llj *l 

op - /,1 

Differentiation of Step 4 

For simplicity the real and imaginary parts <ll11.R and <ll1u of 
the mode shape coordinates will be replaced by one 
pararneter Xjl· The derivatives of A with respect to ~j and x11 
are then given by 

(29) 

Differentiation of step 5 

The derivatives of O(n) with respect to ~1 and xjl are based 
the differentiation of increasing integer powers of A. The 
differentiation of A m, m= l, 2, ... is given by 

(30) 

The differentiation of O(n) then follows straightforwardly 

(3 1) 

Differentiation of Step 6 

Finally, the differentiation of the auto-regressive parame-
ters with respect to ~j and xj/ given by 

[
aAn aAn-l aA1] = 
a~1 a~j · · a~j 

- ( Ca~in +[A n An-l .. A ]aO(n )) o-l(n) 
l a~. 

1 

(32) 

What remains in order to construct the derivatives a~/a~i 
and a~ !axi1is to stack the derivatives of the auto-regres­
sive matrix coefficients obtain in (32). The matrix G(iCN) 
can then be constructed by looping over all pararneters of 
iCN, and the covariance in (26) can be calculated. 

3 A SIMULATION STUDY 

In order to demonstrate the performance of the two 
approaches and to compare the computational time needed 
in each case a simulation study has been performed. The 
system response o f a Gaussian white noise excited 2 DOF 
linear system has been simulated 500 times. The natura! 
eigenfrequencies and damping ratios o f the two modes are 
presented in table l. 

Mode# Jj [Hz] (J [%] 

l 1.75 0.63 

2 2.66 1.08 

Table l. Modal parameters of the system used in the 
simulation study. 



Gaussian white noise has been added as extemal distur­
bance. The level o f this disturbance is l 0% o f the standard 
deviation of the undisturbed system response. On the basis 
of each simulation an ARMAV(2,2) model has been 
calibrated using the prediction error method deseribed in 
section 1.4. The standard deviations of the modal parame­
ters have then been estimated using the two estimation 
approaches. 

Because o f the Jimited space the results o f the mode shape 
estimates are ornitted. In figures l and 2, the standard 
deviations of the first and second modes are shown. The 
standard deviations obtained from the two approaches are 
plotted together with the sampled standard deviations. For 
simulation number i all estimates from l to i have been 
used to calculate the sampled standard deviations. There­
fore, the associated curve for the first number of simula­
tions will show some transient behaviour. 

~~~1~00~~~-~~~-~~~ 
Simutalion Number 

Damping Ratio - Approach 1 
0.14,..---------, 

0"02o'--1-00_2_oo-~--4oo,--~~ 
Simulation Number 

0o~~1~00~~~-300~~.oo~~~ 
Simulallon Number 

Damping Ralio - Approach 2 
0.14,..---------, 

0"02o'--1-00-~--3,.._00,--~400,--.,.'~ 
Simulation Number 

Figure l. Estimated and sampled standard deviations of the 
natura! eigenfrequency and damping ratio estimates of the 
first mode. On the left-hand side the comparison is between 
sampled results and estimated results of approach number 
l. The right-band side shows the sampled results compared 
with the estimated results o f approach number 2. 

0oL-~1~oo~~~-~~~-~.,.'~ 
SWnulation Number 

Damping Rollo- Approoc:ll1 
0.14,..---------, 

~0.12 

~ 0.1IIWI'IIl'M~~Iflll~"~ 
c!: 0.08 
t! 
~ 0.06 
l! 
(l) 0.04 

0"02o~~1~00~~~~~~~-~.,.,~ 
Simula11on Numbor 

0oL-~1~oo~200~-300~~.oo~.,.'~ 
Simula1ioo Number 

Oa!T1)ing Ratio- Approach 2 
0.14r-_..:......:_.:...._.:....__--, 

0.02L---------' 
o 100 200 300 400 ~ 

Simula1ion Number 

Pigure 2. Estimated and sampled standard deviations of the 
natura! eigenfrequency and damping ratio estimates of the 
second mode. 

In this particular case the second approach is 10 times 
faster than the first approach. As seen the two approaches 
work almost equally well. A small bias is seen between 
sampled and estimated standard deviation. This bias is 
probably caused by the first order approximation and the 
faet that the model covariance matrix is only an estimate. 

4 CONCLUSIONS 

The intention of this paper has been to show how modal 
parameters and especially their estimation errors can be 
deterrnined. The modal parameter estimation has been 
based on calibration o fARMAV models to time series data 
using the prediction error method. 

Two approaches for estimation of modal uncertainties 
have been presented. In each approach, it is the covariance 
matrix of the modal parameters that has been estimated. 
This estimation is basedon a firstorder Taylor expansion 
of the functional relationship between the auto-regressive 
parameters and the modal parameters. 

The first approach involves numericaldifferentiation of 
this functional relationship. Implementation of this ap­
proach is easy. The second approach involves the construc­
tion of analytical differentiation. Implementation of this 
approach is much more difficult. However, the advantage 
o f the second approach is that an estimate o f the covariance 
matrix is obtained significantly faster than by the first 
approach. 

The performance of the two approaches has been com­
pared by means of a simulation study. This simulation 
study has shown that the second approach is IO times 
faster, and i t indicates that the two approaches work almost 
equally well. 
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