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ESTIMATION OF MODAL PARAMETERS AND THEIR UNCERTAINTIES

P. Andersen

Department of Building Technology and Structural Engineering

Aalborg University, Denmark

ABSTRACT: In this paper it is shown how to estimate the modal parameters as well as their uncertainties using the prediction
error method of a dynamic system on the basis of output measurements only. The estimation scheme is assessed by means
of a simulation study. As a part of the introduction, an example is given showing how the uncertainty estimates can be used

in applications such as damage detection.
1 INTRODUCTION

The estimation of the dynamic properties of linear and
time-invariant systems has been applied for various reasons
in a variety of engineering fields. This extraction of
dynamic information is known as modal analysis since the
dynamics is usually represented by the so-called modal
parameters. However, modal analysis is usually confined to
an investigation of the expected values of the modal
parameters. In such an analysis they have often been treated
as deterministic parameters instead of a realization of some
stochastic variables.

In this paper, it is the intention to show how to obtain
information about the uncertainties of estimated modal
parameters. This can be accomplished by assuming the
estimated modal parameters to be realizations of Gaussian
stochastic variables. The modal parameter estimates are
then assumed to correspond to the mean values of these
stochastic variables. It will be shown how to estimate these
mean values by calibration of a linear and time-invariant
discrete-time parametric model to time series data. The
associated covariance matrix can then be estimated after-
wards. Two methods for estimation of the covariance
matrix will be presented. Finally, the performance of these
methods will be tested by a simulation study.

1.1 An Example - Damage Detection

In applications where the change of the modal parameters
is of interest, the extra information about the quality of the
estimates is essential. Such an application could e.g. be
damage detection, where damage is believed to be detected
if one or more of the estimated modal parameters change
significantly with time, and if this change cannot be
explained by e.g. a change of extra mass on a structure or
changes in the ambient environment.

However, the problem is how to define a significant
change of a modal parameter. This problem can be solved
in a statistical sense if the estimates are treated as realiza-
tions of stochastic variables, see Andersen et al. [1],
Kirkegaard et al. [2] and Doebling et al. [3].

Different statistical tests exist for testing whether two
realizations with a certain probability are outcomes of the
same stochastic variables. If, with a significant confidence,
it can be rejected that two realizations are outcomes of the
same stochastic variable then it can be concluded that a
significant change has occurred.

1.2 The ARMAYV Mode!l

The estimation of modal parameters is based on the
assumption that the dynamic system shows linear and time-
invariant behaviour. The dynamic behaviour of an ambient
excited system is usually modelled by a second-order
differential equation system, see e.g. Andersen [4]

My(1) +Cy(1) +Ky(t) = w(z) , w(r)eNID(O,W) (1)

M, C and K are the mass, viscous damping and stiffness
matrices. y(f) is the displacement vector. w(t) is continuous-
time Gaussian white noise with zero mean and an intensity
described by the matrix W.

In Andersen [4] and Andersen et al. [5], it is shown how
to represent such a system by a discrete-time Auto-Regres-
sive Moving Average Vector (ARMAYV) model. Assume
that the continuous-time system is observed at discrete time
instances k using a sampling interval 7. If the continuous-
time system consists of np/2 degrees of freedom (DOF) and
if p displacements are observed and external measurement
noise is present, a model having covariance equivalent
system response at all discrete time steps #,=kT is of the
form

Y )+ Ay )+ +A () = 5
e(1,)+Ce(t, ) +..+C,e(t, ) , e(t)eNID(0,A) (2

This model consists of an nth order auto-regressive matrix
polynomial, and a moving average matrix polynomial of
similar order, where n=np/p. All coefficient matrices of the
polynomials are of the dimension p x p. The discrete-time
displacement vector y(t,) is of dimension p x 1. The
discrete-time Gaussian white noise e(r,) has the same
dimension. Further, e(z,) has zero mean and a second-order
moment described be the covariance matrix A.

This particular model is referred to as an ARMAV(n,n)
model. It can be represented equivalently by a stochastic
state space system of the form

x(t,,,)=Ax(t)+Be(t,) , e(t,)eNID(0,A)
¥t =Cx(1)+e(t) 3)

where x(#,) isan np x 1 dimensional state vector. The state
matrix A, the stochastic input matrix B and the observation
matrix C are defined as, see Andersen [4]
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The relation between the auto-regressive system matrices
and the state space matrices A and C are given by
4, 4,., . . A]=-cA"0"'(n)
(5)
o(n)=[cT (ca) . A" A

where O(n) is the reduced observability matrix, see
Andersen [1].

1.3 Modal Parameter Estimation

The modal parameters can be extracted from the modal
decomposed state matrix A.

A=¥p¥', p=diag{y} (6)

The modal decomposition is described by the np
eigenvectors, which are the columns of the matrix ¥, and
by the np eigenvalues p; located in the diagonal of the
matrix p. The eigenvectors ¥, are constructed from the
mode shapes @, and the eigenvalues p; as

® .. &

np

¥ “I(I)l v l’lnpq)np (7)
n-1 n-1

Ky (I)] - l‘lrip (I)np

The mode shapes, natural eigenfrequencies and damping

ratios of the continuous-time system can therefore be
extracted as

_ oy _ lampggsiongy i)
©.=C¥ . (Wi} = e( i 1) ®
where j=1, ... , s. Since all modes are assumed

underdamped, s = np/2.
1.4 The Prediction Error Method

The parameter estimates, based on N samples, and
returned in 6, can be obtained as the global minimum

point of the criterion function

N

3 e(t,,0)e7(¢,,0) )

1
V. (0)=det| —
4! N

The model parameter vector 0 is determined so that the
prediction error, defined as

e(t,,0) = y(z,) - ¥z le,_;0) (10)

is as small as possible. y(z 1z, ,;0) is the one-step ahead
predicted system response. The parameter vector 0 can be
separated into the two m x 1 parameter vectors 8" and 6°
which are organised in the following way
0 = colffA, . . 4,]), 8 =colfC, .. C,]
(11)
0 = col([@A BCD

where col means stacking of all columns of the argument
matrix. The total number of adjustable parameters in 0 is as
such 2m = 2np*.

The predictor of the ARMAV (n,n) model is defined as

j(tkltk_l;e) :_Al(e).}’(fk_l) e ‘An(e)y(fk_n) i
(12)
C,(0)e(t,_,,0)+...+C (B)e(t,_ ,0)

This relation reveals that the predictor of the ARMAV
model is non-linear, since the prediction errors themselves
depend on the parameter vector 6. This implies that an
iterative minimization procedure such as the following
Gauss-Newton search scheme has to be applied.

6, =8, + ,RYBHF(B])
N

R(8)=Y ¥(z,,0)05 (0)¥7(1,,0)
k=1

N
_ -1
F(B)_; w(tk:e)QN(B)g(rk:e) (13)
N

0,(8)=LY e(z,,0)e%(1,.0)
Nk=1
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The dimensions of R(0) and F(0) are 2m x 2m and 2m X
1, respectively. p, is a bisection constant that adjusts the
step size. Y(2,,0) is the gradient of the predictor (12), i.e.
the derivative of (12) with respect to each of the adjustable
parameters of the ARMAYV model. At each time step this
gradient forms an 2m x p dimensional matrix.

The estimate of the parameters of the ARMAV model can
as such be calculated by supplying an initial parameter
estimate. On the basis of this the prediction errors can be
calculated, the matrix R(0) and the vector F(8) can be
calculated. An updated estimate can then be calculated



using (12). This method is called the prediction error
method (PEM) since it is the prediction errors that are
minimized, see Ljung [6].

For Gaussian distributed prediction errors this method is
asymptotically efficient. A standard for the estimation
errors of such an estimator is provided by the Cramer-Rao
lower bound of variance.

This standard is utilized by the model parameter covar-
iance matrix of the difference between the true parameters 0,
and estimated parameters ﬁ as N tends to infinity, i.e.
Byl BN) = E[(0,- GN)(B BN)T] An estimate of Py(0,) is
provided by the Hessian matrix as, Andersen [4] and Ljung
[6]

Py(8) = R7'(B) (14)

The covariance of the auto-regressive parameters depends
on the estimation uncertainties of the auto-regressive
parameters as well as the moving average parameters. This
is easy to realise from the following block matrix formula-
tion of (14)

. P,(8) P,(6)
P(0) =

Pea(8) Pre(6)

[R,,(0) R,(6) £15)
R(0) =

R, (0) R (0)

P, (8)=(R,,(8)~R,(OIRZ(OIR ()"

It is therefore important to estimate the moving average
correctly.

2 ESTIMATION OF MODAL UNCERTAINTIES

In general, the change of parameterization from a set of
auto-regressive parameters, given in an m x 1 dimensional
vector 8, to another set of physical parameters, given in an
r x 1 dimensional vector k, can be performed by a known
r-dimensional functional relation

x = f(6") (16)

The functional relationship between the auto-regressive
parameters and the modal parameters is given by the
eigenvalue problem followed by the calculation of the
modal parameters. This means that the resulting functional
relation between 6 and x is highly non-linear.

2.1 Approximation using a 1st. Order Taylor Expansion
To obtain a practically applicable approach, (16) is

usually linearized using a first-order generalized Taylor
expansion at the operating point (R, 0),), Andersen [5].

This linearization can either be performed as

K “ch+[-—af(eA)] (94 —é::,)
|64 =67

A
a0 a7
= &, + SO (64 - B3
or as
A af! i
o8 (2] ey
g (18)

= 8 + G(R(x - &)

For simplicity, it is assumed that all modes s are under-
damped and that mode shapes are normalized with respect
to their pth element. There will therefore only be p-1 real
and p-1 imaginary mode shape elements. The elements of &,
can therefore be defined as

5
» C,-
®
. re(CI)“)
7 '
S B EL A (19)
im((I)_j_l)
Lm((IJ - l)

J.( é‘;) and G(R,,) are Jacobian matrices of partial deriva-
tives

GO 2GRl
' oot
Jey = . e .
3 (64) (")
e a0t
' i (20)
af;'(x) f;'(x)
oK, oK,
G(x) =
(k) ()
ok, 0Ok,

which should both be evaluated at the operating point
(Ry, 0.



2.2 A Simple but Slow Approach

The covariance matrix P (R, )of the deviation of &, from
the true modal parameters can be estimated by
B (%) = E[(x; - Ry)<, - &y]
” A (21)
= J(BN}PM(BN)J (BN)

The estimated covariance matrix P M(é,.ﬂ) obtained from
(14) can then be inserted instead of P,,(0,,). What remains
is to calculate the Jacobian matrix J( f\‘,). The first step is
therefore to define the function k = f(6%).

Definition 1

O The function k = f(6*) can be divided into 5 steps as
Step 1. [A; A, . . A, A,]= asseml(8")

n-1

0 & 0 0
0 0 I 0
Step 2. A = .
0 0 0 . A
_—An A A, . _Al_ (22)

C=[100.0]
Step 3. Fp¥P'l=4

= £ o —2::f{,=i2::f,/1—c} T
Step 4. ‘I)j = C‘Pj < {pj,pj} B g( () )

Step 5. KzassemZ([f] R TR 'D_r])

where asseml is a virtual function that should return the
auto-regressive parameters when given the vector 8* as
input. assem?2 is another virtual function that should return
the vector k when given the modal parameters as input. O

Analytical calculation of the partial derivatives of this
function is in general impossible even for small model
structures, since the calculations include solution of a
series of eigenvalue problems. However, a simple way to
calculate the Jacobian is by numerical differentiation using
the central difference theorem. The ith column of J(B;)
can then be calculated by

I8 =

tep)-f&-P
R+ ) = R4, ) 23)

2P

where P is an m X 1 vector whose elements all are zero
except for the ith element P, that contains a small number.
This number results in a small perturbation of the ith
element of Q,t. The modal decomposition and the calcula-
tion of the modal parameters must therefore be repeated 2m
times which makes this a slow approach. A more compre-
hensive description of this approach is given in Andersen

[4].

2.3 An Advanced and Fast Approach

The estimated covariance matrix ﬁK(RN) can also be
obtained in another way which does not rely on numerical
differentiation. The idea is to construct G(R,) analytically
instead of constructing J( 6:,) numerically.

Definition 2

O The function 6* = f (k) can be divided into 7 steps as
Step 1. [)‘l oDy e (I).\_]:assem(vc)

Step 2. {40} = e(—Zﬂf}C,—tiZﬁfJi\,"l—C?)T
1

@

]qu)] - o Hy (I)n
Step 3. = ", m=diag(p)

@

1o o7

THS ST 3 e
Step 4. A=Pp¥", C:[I 0 ;. 0]

Step 5. O(n)=[CT (CA) . (cA"™)T (cA™ )|

Step 6. [A, A, . . A|]=-CA"07(n),

Step 7. ©* = col([A, . . A,))

where assem is a virtual function that should return the
modal parameters when given the vector k as input. O

From (15) and by using the chain rule the Hessian matrix
of the modal parameter vector k and the moving average
parameters is given by

(G()R,,(8)GT(x) G(X)R,(6)
R ,(0)

R(x,06°)

1}

R ,(8)G(x)

(R (8) R.(0)
[Ra(®) R (0)

(25)

The covariance of the modal parameter vector is therefore
obtained from (14) as

B, (x,0)=(R(6)-R {OIRZLOIRL(®))"  (26)

Essentially, G( I'EN) is constructed by partial differentiation
of steps 2 to 6 with respect to the parameters x, which for
the jth eigenvalue are f, {;, ®; z and ®;,,. The mode shape
subscript of the jth mode shape signifies the real or imagi-
nary parts of the /th row coordinate.

Differentiation of Step 2

The derivatives of step 2 with respect to f,, {;, @,z and @,
are given by
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For simplicity the two parameters f; and (; will be substi-
tuted by one parameter §,. The differentiation with respect
to &; is therefore differentiation with respect to f; and ;.

Differentiation of Step 3

Define 0,,, as an n x m matrix filled with zeros. In the
following this matrix will be used whenever a zero matrix
having dimensions different from p x p is needed. The
derivatives of ¥ and p with respect to £, ®,; and @, are
then given by

ap . ailj a[l
— = i 0. . 20 i , —— = 0
agj ' [ [ 1,j-1 ag} l,np—}l] a(bﬂ np.np

0{,_l
LTS
b
L P B 0,
ok, ’
O,
Dl
(n-1)p; %
1 28
@, o (28)
i-1,1
M, '
%.: O'W"i : Onp-np-j » 9= 1
e . 0,
n- L P~ ]
_“j I‘PI_
)| o
I-1,1
WY, '
&: on L ! 0 . ll.l‘ — L
ET) P np.Ap=j
L 0,1
- ["p-t,1]
i,

Differentiation of Step 4

For simplicity the real and imaginary parts @, and @;, of
the mode shape coordinates will be replaced by one
parameter X, The derivatives of A with respect to £; and ¥,
are then given by

.@i = 9.?.,1+‘P§E-A2?. p-l
9 ok, o,

(29)
—p-A—| P!
Cr Xt

dA _ [ o¥ Gk
axﬂ

Differentiation of step 5

The derivatives of O(n) with respect to £, and ¥, are based
the differentiation of increasing integer powers of A. The

differentiation of A" , m = [, 2, ... 1s given by

o

S 3

Gl PR WO B S B
X.'

axﬂ J=1

(30)

The differentiation of O(n) then follows straightforwardly

0 0
sow | % | a0 | 31)
9, 9x;, :
aAnfi CaAnfl
GEJ. | axﬂ |

Differentiation of Step 6

Finally, the differentiation of the auto-regressive parame-
ters with respect to §; and ¥, given by

OA, OA, A, |
% 3 = o

gA" a0(n) | H-1
deZ w A A s - 422 o)
(€% -l aer - A

(32)

oA, oA, , oA, |
Ny My My
B4, 4, . . 41222 0w

anz anr

What remains in order to construct the derivatives GBA/an
and 96/3y,,is to stack the derivatives of the auto-regres-
sive matrix coefficients obtain in (32). The matrix G(X,,)
can then be constructed by looping over all parameters of
K, and the covariance in (26) can be calculated.

3 A SIMULATION STUDY

In order to demonstrate the performance of the two
approaches and to compare the computational time needed
in each case a simulation study has been performed. The
system response of a Gaussian white noise excited 2 DOF
linear system has been simulated 500 times. The natural
eigenfrequencies and damping ratios of the two modes are
presented in table 1.

Mode # f; [Hz] ¢; [%]
1 1.75 0.63
2 2.66 1.08

Table 1. Modal parameters of the system used in the
simulation study.



Gaussian white noise has been added as external distur-
bance. The level of this disturbance is 10% of the standard
deviation of the undisturbed system response. On the basis
of each simulation an ARMAV(2,2) model has been
calibrated using the prediction error method described in
section 1.4, The standard deviations of the modal parame-
ters have then been estimated using the two estimation
approaches.

Because of the limited space the results of the mode shape
estimates are omitted. In figures 1 and 2, the standard
deviations of the first and second modes are shown. The
standard deviations obtained from the two approaches are
plotted together with the sampled standard deviations. For
simulation number i all estimates from 1 to [ have been
used to calculate the sampled standard deviations. There-
fore, the associated curve for the first number of simula-
tions will show some transient behaviour.

x 10~ Eigenfrequency - Approach 1 x 107 Eigenfrequancy — Approach 2
2 2

Standard Deviation [Hz]
b . &
Standard Deviation [Hz)
o B - @

o

o

100 200 300 400 500
Simulation Number

=]
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Damping Ratio - Approach 1 Damping Ralio — Approach 2
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012 =012
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Standard Deviation [%!
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0.02 .
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Figure 1. Estimated and sampled standard deviations of the
natural eigenfrequency and damping ratio estimates of the
first mode. On the left-hand side the comparison is between
sampled results and estimated results of approach number
1. The right-hand side shows the sampled results compared
with the estimated results of approach number 2.
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Figure 2. Estimated and sampled standard deviations of the
natural eigenfrequency and damping ratio estimates of the
second mode.

o

In this particular case the second approach is 10 times
faster than the first approach. As seen the two approaches
work almost equally well. A small bias is seen between
sampled and estimated standard deviation. This bias is
probably caused by the first order approximation and the
fact that the model covariance matrix is only an estimate.

4 CONCLUSIONS

The intention of this paper has been to show how modal
parameters and especially their estimation errors can be
determined. The modal parameter estimation has been
based on calibration of ARMAYV models to time series data
using the prediction error method.

Two approaches for estimation of modal uncertainties
have been presented. In each approach, it is the covariance
matrix of the modal parameters that has been estimated.
This estimation is based on a first order Taylor expansion
of the functional relationship between the auto-regressive
parameters and the modal parameters.

The first approach involves numerical differentiation of
this functional relationship. Implementation of this ap-
proach is easy. The second approach involves the construc-
tion of analytical differentiation. Implementation of this
approach is much more difficult. However, the advantage
of the second approach is that an estimate of the covariance
matrix is obtained significantly faster than by the first
approach.

The performance of the two approaches has been com-
pared by means of a simulation study. This simulation
study has shown that the second approach is 10 times
faster, and it indicates that the two approaches work almost
equally well.
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