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after the concrete tension failure peak seems to be well estimated by the model, indicating that it
seems reasonable to assume a constant frictional shear stress in the debonded zones at each side
of the crack.
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APPENDIX C:

MULTIPLE CRACKING AND ROTATIONAL CAPACITY OF LIGHTLY REINFORCED BEAMS

Prepared by F.A. Christensen, M.S. Henriksen and R. Brincker

Abstract

In this appendix a model is formulated for the rotational capacity of reinforced concrete beams
assumning rebar tension failure. The model is based on a classical approach and establishes the
load-deflection curve of a reinforced concrete beam. The rotational capacity is then obtained as
the area under the load-deflection curve divided by the yield moment of the beam. In calculating
the load deflection curve, the cracking process of the concrete is ignored. By assuming that all
cracks are fully opened, the energy dissipated during cracking of the concrete is taken into ac-
count by simply adding the total tensile fracture energy to the total plastic work obtained by the
classical analysis.

Model Formulation

Before cracking of the concrete both the concrete and the reinforcement are assumed to behave
elastically, and no slip is assumed between concrete and reinforcement. Assuming a linear variation
of the normal beam strain over the cross-section, the stress distribution is obtained by classical
beam theory.

When the tensile strength is reached at the tensile side of the beam, the concrete is assumed to
crack. Further, cracks are assumed to be formed during constant bending moment (no decrease
of the bending moment) and are allowed to extend until the level of the neutral axis. The tension
force from the reinforcement is balanced by compression stresses in the concrete. The size of the
compression zone is obtained by assuming a uniform distribution of the compression stresses and
using an equilibrium equation. At the cracked section the tensile force in the reinforcement is
transferred to the surrounding concrete by assuming a formation of two debonded zones around
the crack with constant shear friction 7;. In Figure C1 the stress distribution at a cracked section
of the beam is shown immediately before and after formation of a crack.

Calculation Procedure

The crack development is initiated when the tensile strength is reached at the tensile side of the
beam in the cross section with maximum bending moment. This corresponds to the situation
shown in Figure C1. As the load increases, cracks might form in neighbour sections. If the bend-
ing moment is equal to the cracking moment al section II a new crack will be formed at section
I1. If the bending moment is less than the cracking moment, the load is increased causing the
debonded zones to extend. By repeating this procedure cracks are formed one by one until tensile
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Figure Cl. Stress distribution in cracked and uncracked cross-section. The debonded zone with
constant shear friction stress ends at section II.

failure of the reinforcement bar. At the time a new crack is formed it is assumed that the strain
at section II in Figure Cl is the same in the concrete and in the reinforcement and that the strain
is equal to the tensile fracture strain of the concrete (e = fi/ E:)-

The load-deflection curve is found by integrating the curvature over the length of the beam. A
typical load-deflection curve is shown in Figure C2. The curvature is determined as the ratio
between the reinforcement strain and the distance from the reinforcement to the neutral axis at

the cracked sections.

The rotational capacity is calculated by integrating the load deflection curve and adding the en-
ergy dissipated in the crack formation process estimated as nA.Gr where n is the number of
cracks, A, is the cross sectional area of the beam and GF is the fracture energy of the concrete.

Model Properties

Investigating the model properties, results have been derived using the following values for the
material parameters:

£, : 500 MPa
fu : 575 MPa
Ty : 5.0 MPa
(NSC) : 3.0 MPa
(HSC) : 5.0 MPa
fo (NSC) : 60.0 MPa
fe (HSC) : 90.0 MPa
Gr : 0120 N/mm
e : 20%
& : 15.0%
210,000 M Pa
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Figure C2. Failure response curve for 100 x 200 x 2400 mm beam with 0.14 % reinforcement
compared with typical experimental result.

representative for the two types of concrete used in the experimental investigation, see Appendix A.

For this kind of model, one of the most important parameters is the amount of reinforcement
strain hardening described by the ratio f./f,. If no strain hardening is present, i.e. if the ratio
fu/fy = 1, at each crack, only one point (the point situated just between the concrete tensile
failure crack faces) can be in the state of yielding. Thus, since the length of the zone over which
yielding takes place tends to zero when the ratio tends to 1, the rolational capacity tends to
zero. Furthermore, in this case only one crack will be formed reducing the possibilities of energy
dissipation even further. The results clearly support these considerations. Figure C3 shows that
the rotational capacity is highly dependent upon the ratic f./f,.

One would expect the results of the model to be rather sensitive to the value of the shear friction
stress 7;. However, this is not the case, Figure C4. Generally it can be stated that the rotational
capacity decreases with increasing friction stress, although the influence is small. The energy dis-
sipation due to yiclding and debonding decreases with increasing values of the shear friction stress,
but at the same time the number of cracks increases, and thus, the contribution from dissipation
of energy in the concrete tensile cracks increases.

Figure C5 shows the results for a normal strength concrete and a high strength concrete. As it
appears from the figure, increasing the concrete strength decreases the rotational capacity for all
values of the reinforcement ratio.

For the value of shear friction stress used here, 7; = 5M Pa, the model only shows a small size
effect. For larger values of 7;, introducing a relatively larger contribution from concrete tensile
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fracture energy dissipation, somewhat larger size effects are observed, see the results in the main
part of the chapter. However, the results in Figure C6 clearly show that the rotational capacity
is non-sensitive to the size, but highly sensitive to the deformation capacity of the steel. For the
low deformation capacity steel the value of the ultimate strain was reduced to ¢, = 2.0%, approxi-
mately equal to the failure strain of the cold deformed bars used in the experimental investigation,
see Appendix A.

All Figures C3-C6 show how the rotational capacity is influenced by the reinforcement ratio. When
reinforcement tensile failure controls the failure of the beam the rotational capacity is increasing
with increasing reinforcement ratio.

Comparing with Ezperimental Results

Figure C7 and C8 show how the model compares with experimental results for the rotational
capacity. In Figure C7 the case of normal strength concrete is shown.

In case of reinforcement ratios of 0.14% and 0.25% the model results fit the experiments well,
whereas in some cases of 0.39% reinforcement ratio the experiments show that reinforcement ten-
sile failure is no longer the dominating failure mode and therefore the model over-estimates the
rotational capacity. The experimental results show, as the model, that the rotational capacity is
higher in the case of normal strength concrete.
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Figure C3. Rotational capacity as a function of the reinforcement ratio for different strain hard-
ening properties A), B), C) and D) of the reinforcement.
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Figure C4. Rotational capacity as a function of the reinforcement ratio for different values of the
debonding shear friction stress 7;.
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Figure C5. Rotational capacity as a function of the reinforcement ratio for normal strength con-
crete and high strength concrete.
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Figure C8. Comparison between rotational capacities obtained from model and from experiments

(high strength concrete).
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APPENDIX D:

FRACTURE MECHANICAL MODEL FOR ROTATIONAL CAPACITY OF HEAVILY REIN-
FORCED CONCRETE BEAMS

Prepared by M.S. Henriksen, R. Brincker and G. Heshe

Abstract

In this appendix the flexural behaviour of reinforced concrete beams is investigated by analytical
methods originally introduced by A. Hillerborg. A simple analytical model is presented which de-
scribes the bending moment-curvature relation for normal and over-reinforced beams taking into
account the strain localization within the compression zone of the concrete. The strain softening
part of the stress-strain curve for the concrete is described as a stress-deformation relation which
is dependent on the length over which the compression failure extends along the beam axis. On
the basis of the moment curvature relation estimated by the model, the load-deflection curve is
calculated, and the rotational capacity is obtained as the total plastic work divided by the yield
moment of the beam. The results of the model are obtained assuming a linear compression soft-
ening curve with different values of the critical compression deformation and the fracture zone
length. The results are compared with experiments.

Introduction

In the past ten vears a lot of research has been carried out in the field of compression failure
of reinforced concrete structures. After development of different crack models for the fracture
in tension like the Fictitious Crack Model, Hillerborg was one of the researchers that began to
investigate the softening behaviour of the fracture in compression [1],[2] and [3].

Hillerborg had already shown that the softening behaviour in tension was size-dependent, and in-
spired by the work of van Mier (4], Hillerborg got the idea of using the model for tension softening
on compression failure. This led to a simple model describing the uniaxial stress-strain relation
for concrete based on fracture mechanical concepts, Figure D1. The strain localization within
the compression zone was taken into account by defining a characteristic length dependent on the
depth of the compression zone.

Van Mier and Vonk at the Stevin Laboratory carried out different experimental studies on the full
range behaviour in compressive loading of different concrete cubes as well as performed micro-
mechanical modelling of the compression softening [4],[5]. Recent studies of the behaviour in
compression of both normal strength concrete {45 M Pa) and high strength concrete (90 M Pa)
have been presented by Jansen and Shah [6], who performed experimental investigations on cylin-
ders with constant diameter and different depths to examine the effect of specimen depth on
compressive strain softening of concrete, see Figure D2. Their results show that the post-peak
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Figure D1. Basic idea of stress-strain relation in compression by Hillerborg [1].

behaviour including the post peak energy dissipation is relatively insensitive to the depth of the
cylinder specimen.

Several researchers have examined the influence on compression softening behaviour when chang-
ing the depth of test cylinders and when using intermediate layers between the loading plate and
the cylinder, but it seems to be a lack of investigations on the influence of changing the diameter.
A so-called Compressive Damage Zone model has also been established by Markeset taking into
account also localized shear deformation and deformation due to splitting cracks [7].

In this investigation, the length, over which the compression failure extends along the beam axis, 1s
introduced as a characteristic length proportional to the depth of the compression zone I, = Bh.
and the softening 1s assumed to be linear. Thus, the model contains two parameters describing
the basic fracture mechanical properties of the model: the characteristic length parameter 8 and
a critical softening deformation w.. In the following the influence of the parameters w,. and f§ on
the full range behaviour of different model beams is analysed, and, based on the load-deflection
curves, the rotational capacity is estimated as the total plastic work divided by the yield moment
of the beam.

Basic Assumptions of the State of Compression Failure

When a reinforced concrete beam is loaded to ultimate compression failure and an unloading starts

taking place, the critical cross-section is assumed to pass through three different states of failure
see Figure D3. ’

The continuum state for the critical cross-section describes an elastic state for the concrete where
the concrete stresses o, < f. for all points in the cross-section. Varying the concrete strain €. from
zero to the peak strain £y, the depth of the compression zone A, will be constant. In this phase
the reinforcement is assumed to be in an elastic state corresponding to o, < f,.

The condition of fracture zone growth is satisfied when the concrete stress in the compressed edge
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Figure D2. Influence of specimen length on concrete cylinder uniaxial compressive stress-strain
curve, (diameter 100 mm). Left: Normal strength concrete (45 MPa). Right: High strength
concrete (90 M Pa). According to Jansen and Shah [6].

of the cross-section reaches the concrete compression strength. At this condition a fracture zone
will start developing. When the fracture zone is fully developed, i.e. when the compression stress
at the top of the beam has dropped to zero, the length of the fracture zone along the beam axis is
assumed to be I, where I, is defined as a characteristic length. The material within the fracture
zone follows a softening branch and outside this zone an unloading takes place. The characteristic
length could be assumed to be dependent on either the depth of the compression zone or on the
width of the cross-section.

It is well known that the final compression failure of cylinders is often a so-called "cone-failure”
where the concrete fails in a compression-shear mode with the development of slip-planes at an
angle v typically around 4 2 30°. Thus, for a cylinder with radius r, the characteristic length
might be defined as I tan(y) = 2r, and then taking the approximation tan(y) = 0.5 we get
.y & 4r, see Figure D4.

Following this idea, the failure mode of the compression zone of a beam is assumed to be a similar
compression-shear mode with the development of slip-planes at a certain angle to horizontal. Now,
assuming that the slip-planes will start at the point where the strain is zero, the characteristic
length becomes proportional to the depth A, of the compression zone, thus I, = Sk.. Assuming
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Figure D3. Full range behaviour for a reinforced concrete beam.

Figure D4. Definition of the parameter § describing the length of the failure zone. Left: Cone
failure of a cylinder in compression. Right: Assumed failure mode in the compression zone of a
beam in bending.
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Figure D6. The stress and strain distribution for the critical cross-section.

that the slip-planes develop at an angle similar to the cylinder failure gives the estimate § = 4,
Figure D4.

However, the relation I,z = fh. is only expected to be valid on the assumption that the depth of
the compression zone is small compared to the width & of the beam. If the beam width becomes
substantially smaller than the depth of the compression zone, it is more reasonable to assume a
failure mode where vertical slip-planes develop, and thus, for this case it should be assumed that
the characteristic length is proportional to the width b of the beam. In the following however, the
relation [, = Fh. will be used.

Using the approach of a characteristic length [, the softening deformation can be represented as
a strain, and thus, the full range behaviour of both concrete and reinforcement can be represented
by a stress-strain relation, Figure D5.

In the state of crack extension a part of the material in the compression zone has totally failed
and a "real crack” is formed. The final failure develops as the crack extends downwards through
the beam.

Modeling Flezural Behaviour

In the modeling it is assumed that the considered beains are subjected to three-point bending,
and the critical cross-section is assumed to be reinforced only by main reinforcement. Thus, the
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influence of compressive reinforcement and stirrups is not taken into account. The bending tensile
strength of the concrete is set equal to zero which means that the cross-section is assumed to be
cracked from the starl. Effects from other cracks along the beam axis as well as bond-slip effects
between the concrele and the reinforcement are not considered. For calculation of the full range
behaviour Bernuoilli’s assumption (plane cross-sections remain plane) is applied.

The model describing the full range behaviour is based on simplified linear stress-strain curves for
the reinforcement and the concrete, see Figure D5. Typical stress and strain distributions for the

critical cross-section and each of the fracture states are shown in Figure D6.

The flexural behaviour is described for the three states as non-dimensional moment-curvature
relations as follows:

The continuum state, €. < &

6M a4\ Oy
w6 = B-¢) 7 (1)

the state of fracture zone growth, ¢ < €. < w./Bh.

prpee = %+ (2-2)e+((6-52)e-(1+2(2-2)e) % ©

and the state of crack extension, ¢, = w./Bh,

6M _ W, w? weEy W 3
7, %) = (Sﬁhcef(ﬁhc)?sz)“(Zﬁhﬂsz 3ﬁhcec){ ®

where £ = h./he;.

Bending moment-curvature curves and load-deflection curves are shown for different values of w,
and § in Figure D7. Here the curvature is calculated as the angle in the strain distribution e./A,.
The results are shown for a reinforced normal strength concrete beam with reinforcement ratios
(A./bh) 0.78 %, 1.57 %, 2.45 % and 4.02 %. Values for the beam dimensions are b = 200 mm,
h = 400 mm, | = 4800 mm. The concrete parameters are f. = 60 M Pa, g0 = 0.2 % and the
reinforcement parameters are f, = 600 M Pa, E, = 2.0 x 10° MPa, e, = 10 %. Note the large
sensitivity of the modelled behaviour on the values of the two key parameters w, and f.

Load-deflection curves are obtained by integrating the curvature distribution according to the
principle of virtual work. When the curvature is integrated, it is kept constant over the charac-
teristic length, see Figure D8 where the distribution of curvature along the beam axis is shown
in the state of ultimate failure, here defined as the transition between the state of fracture zone
growth and the state of crack extension.

The rotational capacity is estimated by integrating the load-deflection curves to obtain the total
plastic work, and then dividing by the yield moment to obtain a non-dimensional parameter 0.
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The parameter @ is a direct measure of the rotational capacity of the beam.

Results for the rotational capacity are shown in Figures D9-D12 for different values of w. and
f. As expected, the rotational capacity is strongly sensitive to both parameters. Note that since
the ultimate strain of the reinforcement is incorporated in the analysis, some of the test results
correspond to reinforcement tensile failure. The reason for incorporating this rather simple ten-
sion failure in this model (no bond-slip is modeled) is to have a rough check on the capability
of the model to show a reasonable switch between the two modes of failure. The part of the
rotational capacity curves in Figures D9-D12, where the rotational capacity is increasing with the
reinforcement ratio, corresponds to reinforcement tension failure. This part of the results should
be acknowledged as less interesting (modelling for this part is given in Appendix C) than the rest
of the curve corresponding to concrete compression failure.

More details of the modelling are given in Henriksen and Brincker [8].

Comparison with Erperimental Results

The values of the rotational capacity estimated by the model are shown in Figures D13-D16 as a
function of the reinforcement ratio and compared with experimental results from Appendix A for
normal strength concrete beams with a cross-section of 100 » 100 mm, 100 x 200 mm and 200 x
400 mm and slenderness number 12. As it appears, the best agreement is oblained for the values
w, =4 mm and 3 = 8

Figure D16 shows that using the values w, = 4 mm and § = 8, the rotational capacity estimated
by the model compares reasonably well with experimental results for all the three beam sizes.
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Model results for normal strength concrete beams with w, = 4.0 mm and 8 = 4.0.
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Model results for normal strength concrete beams with w, = 1.0 mm and 4 = 8.0.
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Figure D12. Model results for normal strength concrete beams with w, = 4.0 mm and § = 8.0. Figure D14. Results for 100 x 200 x 2400 mm normal strength concrete beams.
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Figure D13. Results for 100 x 100 x 1200 mm normal strength concrete beams. Figure D15. Results for 200 % 400 x 4800 mm normal strength concrete beams.
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Figure D16. Results for normal strength concrete beams with w. = 4.0 mm and g = 8.0.
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ABSTRACT

In the present paper different aspects of the requirement for the minimum reinforcement ratio are
studied and discussed. The influence of the beam depth is investigated in more detail. Numerical
analysis for reinforced concrete beams of different sizes is carried out using plane finite element code
MASA2 which is based on the nonlocal mixed constrained microplane model. Presently, an extensive
test project for reinforced concrete beams in which the matenal and geometrical properties are varied
is in progress. Currently available test results are compared with the numerical results. It is concluded
that the requirement on the minimum reinforcement depends on the beam size but also on the material
properties as well as on the amount and type of the distributed reinforcement. To define the
dependency between the minimum reinforcement and geometrical as well as material parameters in
more detail, further theoretical and experimental studies are needed.
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INTRODUCTION

In engineering practice RC beams of different sizes and with different reinforcement ratios are often
used. They are normally designed such that the internal forces as well as their distribution over the
cross section are calculated according to the elastic beam theory. On the contrary, the dimensioning is
performed using a limit state procedure. Obviously, this is in contradiction. Therefore, significant
efforts have recently been made in order to develop consistent tools and recommendations for the
nonlinear structural analysis and dimensioning according to the limit state procedure. In order to
provide enough structural safety and to make a redistribution of internal forces possible, RC beams
must be designed such that they fail in a ductile manner. Some recent fracture mechanics studies [1-5]
indicated that larger beams are more brittle than smaller. Consequently, the question is whether the
same material laws and design rules may be used for RC beams of different sizes.

An important condition for ductile failure of RC beams is the minimum reinforcement requirement.
The minimum reinforcement must assure a stable and ductile beam response after the concrete tensile
strength at the beam tensile zone is reached. Presently, in almost all design codes the minimum
reinforcement requirement is independent of the beam depth. For example, according to [6] the typical
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