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after the concrete tension failure peak seems to be well estimated by the model, indicating that i t 
seems reasonable to assume a conslant frictional shear stress in the debonded zones at each side 
of the crack. 
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APPENDIX C: 

MULTIPLE CRACK ING AND ROTATION AL CAPACITY OF LIGHTLY REINFORCED BEA MS 

Prepared by F .A. Christensen, M.S. Henriksen and R. Bri ncker 

Abstract 

In this appendix a model is formulated for the rotatianaJ capacit y of reinforced concrete beams 
assuming rebar tension fai lure. The model is based on a classical approach and establishes the 
load-deflection curve of a reinforced concrete beam. T he rotational capacity is then obtained as 
the area under t he load-deflection curve divided by the yield moment of the beam. In calculating 
the load deflection cun·e, the cracking process of the concrete is ignored. By assuming that all 
cracks are fully opened, the energy dissipated during cracking of the concrete is taken in to ac
count by simply adding the total tensile fraelure energy to the total plastic work obtained by the 
classical analysis. 

Model Formulation 

Before cracking of the concrete both the concrete and the reinforcement are assumed to behave 
elastically, and no slip is assumed between concrete and reinforcement. Assuming a linear variation 
of the normal beam strain over the cross-section , the stress distribution is obtained by classical 
beam theory. 

When the tensile strength is reached at the tensile side of t he beam, the concrete is assumed to 
crack. Further, cracks are assumed to be formed during conslant bending moment (no decrease 
of the bending moment) and are allowed to extend until the level of the neutral axis . The tension 
force from the reinforcement is balanced by compression stresses in the concrete. The size of the 
compression zone is obtained by assuming a uniform distribution of the compression stresses and 
using an equilibrium equation. At the cracked section the tensile force in t he reinforcement is 
transferred to the surrounding concrete by assuming a formation of two debonded zones araund 
the crack with constant shear frietion Tf. In Figure Cl the stress distribution at a cracked section 
of the beam is shown immediately before and after formation of a crack. 

Calculation Procedure 

The crack development is initiated when the tensile strength is reached at the tensile side of the 
beam in the cross section with maximum bending moment. This corresponds to the situation 
shown in Figure Cl. As the load increases, cracks might form in neighbour sections. !f the bend
ing moment is equal to the cracking moment at section II a new crack will be formed at section 
II. If the bending moment is Jess than the cracking moment, the load is increased causing the 
debonded zones to extend. By repeating this procedure cracks are formedone by one until tensile 
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Figure Cl. Stress distribution in cracked and uncracked cross-section. The debonded zone with 
conslant shear frietion stress ends at section II. 

faiture of the reinforcement bar. At the t ime a new crack is formed it is assumed that the strain 
at section II in Pigure Cl is the same in the concrete and in the reinforcement and that the strain 
is equal to the tensile fracture strain of the concrete (t = f,f Ee)· 

The load-deflection curve is found by integrating the curvature over the length of the beam. A 
typica.l load-deflection curve is shown in Figure C2. The curvature is determined as the ratio 
between the reinforcement strain and the distance from the reinforcement to the neutral axis at 
the cracked sections. 

The rotaticnaJ capacity is calculated by integrating the load delleetion curve and adding the en
ergy dissipated in the crack formation process estimated as nAeGF where n is the number of 
cracks, Ae is the cross sectional area o f tb e beam and G F is the f r aeture energy o f the concrete. 

Model Properties 

Investigating the model properties, results have been derived using the following values for the 
material parameters: 

fy 500 M Po 

J .. 575 MPa 

TJ 5.0 MPa 

ft (NSC) 3.0 MPa 

ft (H SC) 5.0 MPa 

fe (NSC) 60.0 MPa 

f e (H SC) 90.0 MPa 

GF 0.120 N/mm 

tv 2.0% 

t,. 15.0% 

E, 210,000 MPa 
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20 40 60 
Detleetion [mm) 

BO 
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Figure C2. Failure response curve for 100 x 200 x 2400 mm bea.m with 0.14 % reinforcement 
compared with typical experimenta.l result. 

representative for the two types of concretc used in thc experimentaJ investigation, see Appendix A. 

For this kind of model, one of the most important parameters is the amount of reinforcement 
strain hardening deseribed by the ratio J./ f v· If no strain hardening is present, i.e. i f the ratio 
!u/ fy = l , at each crack, only one point {the point situated just between the concrete tensile 
failure crack faces) can be in the state of yielding. Thus, since the length of the zone over which 
yielding takes place tends to zero w hen the ratio tends to l , thc rotation al capacity tends to 
zero. Furthermore, in this case only ene crack will be formed reducing the possibilit ies of energy 
dissipation even further. The results clearly support these considerations. Figure C3 shows that 
the rotaticnaJ capacity is high ly dependent upon the ratio ful fy · 

One would expect the results of themodel to be rather sensitive to the vaJue of the shear friet ion 
stress TJ· However, this is not the case, Figure C4. Generally it can be stated tbat tbe rotaticnaJ 
capacity decreases with increasing frietion stress, although tbe influence is smal!. The energy dis
sipation due to yiclding and debonding decreases with increasing values of the shcar frietion stress, 
but at the same time the number of cracks increases, and thus, the contribution from dissipation 
of energy in the concrete tensile cracks increases. 

Figure C5 shows the results for a normal strength concrete and a high strength concrete. As it 
appears from the figure, increasing the concrete strength decreases the rotaticnaJ capacity for all 
values of the reinforcement ratio. 

For the va.lue of shear frietion stress used here, TJ = 5M P a , tbe model only shows a small size 
effect . For larger values of Tf, introducing a relatively larger contribution from concrete tensile 
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fracture energy dissipation, sarnewhat larger size effects are observed, see the results in the main 
part of the chapter. However, the results in Figure C6 clearly show that the rotatianaJ capacity 
is non-sensitive to the size, but highly sensitive to the deformation capacity of the steel. For the 
low deformation capacity steel the value of the ultimate strain was reduced to f~ = 2.0%, approxi
mately equal to the failure strain of the cold deformedbars used in the experimentaJ investigation, 
see Appendix A. 

All Figures C3-C6 show how the rotatianaJ capacity is influenced by the reinforcement ratio. When 
reinforcement tensile failure controls the failure of the beam the rotatianaJ capacity is increasing 
with increasing reinforcement ratio. 

Comparing with Experimental Results 

Figure C7 and C8 show bow the model compares with experimental results for the rotatianaJ 
capacity. In Figure C7 the case of normal strength concrete is sbown. 

In case of reinforcement ratios of 0.14% and 0.25% the model results fit the experiments well, 
whereas in some cases of 0.39% reinforcement ratio the experiments show that reinforcement ten
sile failure is no longer the dominating failure mode and therefore the model ever-estimates the 
rotational capacity. The experimental results show, as the model, that the rotatianaJ capacity is 
higher in the case of normal strength concrete. 
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1.0 

Figure C3. RotatianaJ capacity as a function of ihe reinforrement ratio for different strain hard
ening properties A), B), C) and D) of the reinforccment . 
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Figure C4. RotatianaJ capacity as a fundion of the reinforcement ratio for different values of the 
eJebonding shear frietion stress Tf. 
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Figure C5. Rotatior1al capacity as a function of the reinforcemcnt ratio for normal strength con
crete and high strength concrete. 
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Figure C6. Size effect on the rotational capacity as a function of the reiuforcement ratio for 
different reinforcement types: a low deformation capa.city type, and a high deformation capacity 
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Figure C7. Comparison between rotational capacities obtained from model and from cxper iments 
(normal strength concrete). 
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APPENDIX D: 

R. Brinckcr et al. 

FRAGTURE MECHANICAL MODEL FOR ROTAT IONAL CAPACJTY OF HEAVILY REIN

FORCED CONCRETE BEAMS 

Prepared by M.S. Henriksen, R. Brincker and G. Heshe 

Abstract 

In this appendix the flexural behaviour of reinforced concrete be.ams is investigated by analytical 
methods originally introduced by A. Hillerborg. A simple analytical model 1s presented W~Jcb. de
scribes the bending moment-curvature relation for normal and over-remforced beams. takmg J~ to 
account the strain localization within the compression zone of the concrete. The stram softemng 
part of the stress-strain curve for the concrete is deseribed as a stress-deformation relation.which 
is dependent on the length over which the compression failure extends along the beam ax1s. On 
the basis of the moment-curvature relation estimated by the model, the load-defiectwn curve IS 

calculated and the rotational capacity is obtained as the total plastic work divided by the yield 
moment of the beam. The results of the model are obtained assuming a linear compression soft
ening curve with different values of the critical compression deformation and the fraelure zone 
length. The results are compared with experimenis. 

Introduetion 

In the past ten years a lot of research has been carried out in the field of compression faiture 
of reinforced concrete structures. After development of different crack models for the fracture 
in tension like the Fictitious Crack Model, Hillerborg was one of the researchers that began to 
investigate the softening behaviour of tbe fradure in compression [1], [2] and [3]. 

Hillerborg had already shown that the softening behaviour in tension was size-depen?ent, and .in
spired by the work of van Mier (4]. Hillerborg got the idea of using the :node! for tens1on softemng 
on compression failure. This led to a simple model describing the unHj.XJal. stress-~tram relat1~n 
for concrete based on fracture mechanical concepts, Figure Dl. The stram locahzatwn w1thm 
the compression zone w as taken in to account by defining a characteristic length dependent on the 
depth of the compression zone. 

Van Mier and Vonk at the StE>vin Laboratory carried out differenl experimental studieson the full 
range behaviour in compressive loading of different concrete cubes as well as performed .micr?
mechanical modeiling of the compression softening [4],[5]. Recent stud1es of the behavwur m 
compression of both normal strength concrete (45 MPa) and hig? streng.th concre~e (90 MP_a) 
have been presented by Jansen and Shah [6], who performed expenmentalmvest1gatwns on cylm
ders with conslant diameter and different depths to examine the effect of specimen depth on 
compressive strain softening of concrete, see Figure D2. Their results show that the post-peak 
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Figure Dl. Basic idea of stress-strain relat ion in compression by Hillerborg [1]. 
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behaviour including the post peak energy dissipation is relatively insensitive to the depth of the 
cylinder specimen. 

Several researchers have examined the influence on compression softening behaviour when chang
ing the depth of test cylinders and when using interrnediate layers between the loading plate and 
the cylinder, but i t seems to be a Jack of in vestigations on the infiuence of changing the diameter. 
A so-called Compressive Damage Zone model has also been established by Markeset taking into 
account also localized shear deformation and deformation due to splitting cracks [7]. 

In this investigation, the length, over which the compression failure extends along the beam axis, is 
introduced as a characteristic length proportional to the depth of the compression zone lch = f3hc 
and lhe softening is assumed to be linear. Thus, themodel contains two parameters describing 
lhe basic fraelure mechanical properties of the model: the characteristic length parameter {3 and 
a critical softening deformation Wc· In the foliowing the infiuence of the parameters Wc and {3 on 
the full range behaviour of different model beams is analysed, and, based on the Joad-deflection 
curves, t he rotaticnaJ capacity is estimated as the total plastic work divided by the yield moment 
of the beam. 

Basic Assumptions of the State of Compression Failv.re 

When a reinforced concrete beam is loaded to ultimate compression failure and an unloading starts 
taki ng place, the critical cross-section is assumP.d to pa.ss through three d ifferent slates of failure, 
see Figure D3. 

The continuum state for the critical cross-section describes an elastic state for the concrete where 
the concrete stresses O" c < f e for all points in the cross-section. Varying the concrete strain C: c from 
zero to the peak strain <:o, the depth of the compression zone hc will be constant. In this phase 
the reinforcement is assumed to be in an elastic state corresponding to a, < fy· 

The condit ion of fracture zone growth is satisfied w hen the concrete stress in the compressed edge 
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Figure D2. Influence of specimen length on concrete cylinder uniaxial compressive stress-strain 
curve, (diameter 100 mm). Left: Normal strength concrete (45 MPa). Right: High strength 
concrete (90 MPa) . According to Jansen and Shah [6). 

of the cross-section reaches the concrete compression strength. At this condition a fraelure zone 
will start developing. When the fracture zone is fully developed, i.e. when the compression stress 
at thc top of the beam has dropperl to zero, the length of the fracture zone along the beam axis is 
a.ssumed to be lch, where l ch is defined as a characteristic length. The material within the fracture 
zone follows a softening branch and outside this zone an unloading takes place. The characteristic 
length could be assumed to be dependent on either the depth of the compression zone or on the 
widt h of t he cross-section. 

It is well known that the final compression fai lure of cylinders is often a so-called ''cone-failure'' 
where the concrete fails in a compression-shear mode with the development of sli p-planes at an 
angle 1 typically around "f ~ Jo•. Thus, for a cylinder with radius r, the characteristic length 
might be defined as lch lan(!) = 2r, and then taking the approximation tan(l) ~ 0.5 we get 
lch ~ 4r, see Figure D4. 

Foliowing this idea, the faiture mode of the compression zone of a beam is assumed to be a similar 
compression-shear mode with the development of slip-planes at a certain angle to horizontal. New, 
assuming that the slip-planes will start at the point where the strain is zero, the characteristic 
length becomes proportional to the depth hc of the compression zone, thus lch = f3hc · Assuming 
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Figure D3. Ful! range behaviour for a reinforced concretc beam. 
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Figure D4. Defin ition of the parameter (3 describing the length of the failure zone. Left: Cone 
failure of a cylinder in compression. Right: Assumed failure mode in the compression zone of a 
beam in bending. 
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Figure DS. Simplified analytical stress-strain curve~ for the reinforcement and the concrete. 
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Pigu re D6. The stress and strain distribution for the critical cross-section. 

that thc slip-planes develop at an angle similar to thc cylinder failu re gives the estimate fJ ~ 4, 
Figure D4. 

However, the relation lch = fJh - is only expected to be valid on the assumption that t he depth of 
the compression zone is smal! compared to the width b of the beam. If the beam width becomes 
substantially smaller than the depth of the compression zone, it is more reasonable to assume a 
failure mode where vertical slip-planes develop, and thus, for t his case it should be assumed that 
the characteristic length is proportional to the width b of the beam . In the foliowing however, the 
relation lch = (3h will be used. 

Using the approach of a characteristic length lch, the softening deformation can be represcnted as 
a strain, and thus , t he full range behaviour of both concrete and reinforcement can hc represented 
by a stress-strain relation, Figure D5. 

In the state of crack extension a part of the material in the compression zone has totally fai led 
and a "real crack" is formed. T he final failure develops as t he crack extends downwards through 
the beam. 

Modding Flexu7·a/ Behaviour 

In the rnodcling it is assumed that the considered beams are subjected to t hree-poin t hending, 
and the critical r.ross-section is assumed to be reinforccd onl:-- by main reinforcement. Thus , the 
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influence of compres~ive reinforcement and stirrups is not taken in to account. The bending tensile 
strength of the concrete is set equal to zero which means that the cross-section is assumed to be 
cracked from the start . Effects from other cracks along the beam axis as well as bond-slip effects 
between the concrete and the reinforcement are not considered. For calculation of the ful! range 
behaviour Bernuoilli 's assumption (plane cross-sections remain plane) is applied. 

Themodel describing the full range behaviour is based on sirnplified linear stress-strain curves for 
the reinforcement and the concrete, see Pigure D5. Typical stress and strain distri butions for the 
critical cross-section and each of the fracture states are shown in Pigure D6. 

The flexural behaviour is deseribed for the three states as non-dimensional moment-cmvature 
relations as follows: 

The continuum statc, te :S to 

6M (t ) = (3t _ t2) ~ 
bh

2 f .,, f~ ., ., r 
•f c J c 

(l) 

t he state o f fracture zone growth , fo < f , :S wc/ fJhc 

6M (E:o ) 2 (( Eo) ( E:o (E:o )) 2) O"c -2 -(~,fc) = 3~+ --2 ~ + 3-3- ~- l+ - -- 2 ~ -
bh• f le E, F;c Ec C: c le 

(2) 

and the state of crack extension, fe > w, f fJhc 

(3) 

Bending moment-curvature curves and Joad-deflection curves are shown for different valu<.>s of w, 
and {3 in Pigure D7. Here t he curvature is calculated as the angle in the strain distribution fc/ hc. 
The results are shown for a reinforced normal strength conrrete beam with reinforcemenl ratios 
( A,/bh) 0.78 %, 1.57 %, 2.45 % and 4.02 %. Values for the beam dimensions are b= 200 mm, 
h = 400 mm, l = 4800 mm. The concrete parameters are le = 60 M P a, c:0 = 0.2 % and the 
reinforcement parameters are f v = 600 M P a , E, = 2.0 x l 05 M P a , Esu = lO %. Note t he large 
sensitivity of t he modelled behaviour on t he values of the two key parameters wc and fJ. 

Load-detleetion curves are obtained by integrating the curvature distrihution according to the 
principle of virtual work. When the curvature is integrated, it is kept conslant over the charac
teristic length , see Figure D8 where t he distribut ion of curvature along the beam axis is shown 
in the state of ultimate failure, here defined as the transition between the state of fracture zone 
growth and thc state of crack extension. 

The rotatianaJ capacity is est imated by integrating the load-dcfl<"c tion curves to obtain the total 
plastic work, and then dividing by t he yielcl moment to obtain a non-dimensional parameter e. 
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The parameter() is <1 di reet measure of the rotational capacity of the beam . 

Results for the rotational capacity are shown in Figures D9-D12 for different values of W c and 
{3. As expected, the rotatianaJ capacity is strongly sensitive to both parameters . Notethat since 
the ultimate strain of the reinforcement is incorporated in the analysis, some of the test results 
correspond to reinforcement tensile failu re. The r~ason for incorporating this rather simple ten
sion failure in this model (no bond-slip is modeled) is to have a rough check on the capability 
of the model to show a reasonable switch between the two modes of failure. The part of the 
rotationa.l capacity curves in Figures D9-D12, where the rotat ional capacity is increasing with the 
reinforcement ratio, corresponds to reinforcement tension failure. This part of the results should 
be acknowledged as less interesting ( modeiling for this part is given in Appendix C) than the rest 
of the curve corresponding to concrete compression failure. 

More details of themodeiling arc given in Henriksen and Brincker [8]. 

Comparison witk Experimental Results 

The values of the rotational capacit) estimated by themodel are shown in Figures D13-Dl 6 as a 
function of the reinforcement ratio and compared with experimental results from Appendix A for 
normal strength concrete beams with a cross-section of 100 x 100 mm, 100 x 200mmand 200 x 
400 m m and slenderness number 12. As it appears, the hest agreement is obt ained for the values 
Wc = 4 mm and /3 = 8. 

Figure Dl6 shows that using the values Wc = 4 mm and {3 = 8, the rotational capacit) estimated 
by the model compares reasonably well with experimental results for all the three beam sizes. 
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MINIMUM REINFORCEMENT REQUIREMENT FOR RC BEAMS 

ABSTRACT 

J. OZBOLT and M. BRUCKNER 
lnsritut fiir Werkstoffe im Bauwesen, Vniversitiit Stuttgart, 

Pfaffenwaldring 4, D-70550 Stuttgart, Gennany 

In the present paper different aspeels of the requirement for the minimum reinforcement ratio are 
studied and discussed. The influence of the beam depth is investigated in more.detail. Numerical 
analysis for reinforced concrete bearos of different sizes is carried out using plane finite element code 
MASA 2 which is basedon the nonlocal mixed constrained microplane model. Presently, an extensive 
test project for reinforced concrete bearos in which the matenaJ and geometrical properties are varied 
is in progress. Currently avai lable test results are compared with the numerical results. It is concluded 
that the requirement on the minimum rei nforcement depends on the beam size but also on the material 
properties as well as on the amount and type of the distributed reinforcement. To define the 
dependency between the minimum Teinforcement and geometrical as well as material parameters in 
more detail, further theoretical and experimental studies are needed . 

KEYWORDS 

Minimum reinfoTcement, RC beams, nonlocal microplane model, energy criteria. 

INTRODUeTION 

In engineering practice RC beams of different sizes and with different reinforcement ratios are often 
used. They are normally designed such that the internat forces as well as their distribution over the 
cross seerion are calculated according to the elastic beam theory. On the contrary, the dimensioning is 
performed using a limit state procedure. Obviously, this is in contradiction. Therefore, significant 
efforts have recently been made in order to develop consistent tools and recommendations for the 
nonlinear structural analysis and dimensioning according to the limit state procedure. In order to 
provide enough structural safety and to make a redistribution of internal forces possible, RC beams 
must bedesigned snch that they fail in a duetile manner. Some recent fracture mechanics studies [l-5] 
indicated that larger beams are more brittie than smaller. Consequently, the question is whether the 
same material laws and design rules may be used for RC beams of diffeTent sizes. 

An important condition for dueti le fai lure of RC beams is the minimum Teinforcement requirement. 
The minimum reinforcement must assure a stable and dueti le beam response after the concrete tensile 
strength at the beam tensile zone is reached. Presently, in al most all design codes the minimum 
Teinforcement requirement is independem of the beam depth. For example, according to [6) the typical 
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