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PREFACE v

Preface

This doctoral thesis is concerned with contributions to the research field Di-
rected Algebraic Topology. It is based on seventeen of the author’s published research
papers ( [1] to [17]) in this area from the period 1998 – 2013.

Directed Algebraic Topology is a quite new research discipline. It tries to
modify and twist methodology from “classical” Algebraic Topology to a situation
where paths, in general, are no-longer reversible. So far, its main motivation comes
from the theory of concurrent processes in theoretical computer science. As our
main example, we use a geometric/combinatorial abstract model for concurrent
computations. We try to find answers to questions concerned with the space of
executions for such a model.

While concurrency has served as a prime motivation, the field has also arisen
purely mathematical and computational interest. I have to admit that I personally
am most passionate about these mathematical aspects; but I am very happy to see
that some of them can, in the hands of others, be transformed into actually useful
running algorithms.

My thanks go to friends, collaborators, and colleagues around the world. Par-
ticular thanks go to my colleague and companion from Aalborg University in this
endeavour, Lisbeth Fajstrup. Furthermore, I wish to thank explicitly our long-time
friends and collaborators from the LIST laboratory of the CEA at Saclay/Paris in
France, first of all Éric Goubault, Emmanuel Haucourt and Samuel Mimram. All
the good colleagues in the ACAT network of the ESF have to be mentioned here,
as well.

It is my pleasure to thank my colleagues at the Department of Mathematical
Sciences at Aalborg University for providing a friendly, supportive and inspiring
professional environment.

Finally, I would like to express my gratitude to my family for love and support
throughout many years.

Aalborg, September 2013 Martin Raussen
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Thesis preface

This print of my thesis is identical with the previous version of the manuscript
except for minor changes in the layout and for updated references.

Aalborg, May 2014 Martin Raussen
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A BRIEF GUIDE TO THE PAPERS ix

A brief guide to the papers

This is no attempt to describe the content of the papers in any detail; we just
try to explain connections between them and express our view on their relative
importance:

The paper [1] was the first of our attempts to use geometrical and combina-
torial (rather than topological) reasoning in the investigation of a concurrency
problem: the detection of deadlocks and of unsafe regions for a so-called linear PV
program.

The papers [3, 4] are precursors for [5] that uses a combination of categorical
and topological ideas and methods to define and investigate components for models
of certain concurrent programs.

The paper [9] attempts to describe and organize in rather great generality the
many path spaces that a directed space comes equipped with – and also associated
algebraic invariants – in a functorial manner. It proposes a candidate for the title
directed homotopy equivalence.

The papers [10, 11] investigate a peculiar but surprisingly rich topic, the alge-
bra underpinning reparametrizations of (directed) paths.

The papers [2, 7, 12] can be considered as precursors to [13]. The first of them
treats first of all the (untypical) 2-dimensional case, the second analyses an eye-
opener example in 3D, whereas the last investigates general topological properties
of path and trace spaces.

I personally view the paper [13] as the most significant contribution. It shows a
way to model path and trace spaces simplicially (or combinatorially) and gives, for
the first time to my knowledge, an algorithmic way to calculate algebraic topological
invariants of spaces of directed paths given a decent description of the state space.
The implementation of the algorithm from [13] and an application/extension to a
case with directed loops is the main topic of the paper [14].

The methods from [13] have afterwards been modified and generalized in the
papes [15, 16] so that they – at least in principle – can be used to identify spaces
of executions of general Higher Dimensional Automata up to homotopy equivalence
by simplicial complexes.

The last paper [17] has its origin in a frustration over the fact that the algorithm
designed in [13] resulted in an all too large simplicial complex in a quite simple
interesting case (a directed torus with a hole). More delicate homotopy theoretical
tools helped to overcome this problem in this particular case; they will hopefully
show to be useful in greater generality.

The paper [8] is a bit of an outlier. It builds on Wisniewski’s phd-thesis –
supervised by me – that investigates almost flow-lines (with respect to a vector
field) as d-paths. It uses, first of all, Morse theoretic tools.

The paper [6] is a survey article; a first version had been published as an Aal-
borg University preprint already in 1999. Though quite out of date and deserving
an update, it still gets citations today.
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[27] P. Löffler and M. Raussen. Symmetrien von Mannigfaltigkeiten und rationale
Homotopietheorie. Math. Ann., 271:549–576, 1985.

[28] M. Raussen. Non-orthogonalisable vector fields on spheres. Proc. Edinb. Math.
Soc., II. Ser., 27:275–281, 1984.

[29] M. Raussen and R. Wiegmann. Liftings, homotopy liftings and localization ap-
plied to vector field and immersion theory, volume 6 of Osnabrücker Schriften
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CHAPTER 1

Introduction

1.1. Motivations. Background

1.1.1. A personal report. During my education as a mathematician, I was
primarily trained within differential and algebraic topology. This is clearly visible
from the older entries in my list of publications: Until the middle of the 1990s, my
research was focused on various aspects of algebraic topology, often on problems
concerning group actions on manifolds, some of them quite technical at the end of
the day.

Being based at Aalborg University with an emphasis on engineering and ap-
plied sciences, I felt after all quite alone – even after another topologist, Dr. Lisbeth
Fajstrup, had been appointed in 1992. This feeling and a combination of encour-
agement and pressure from leading people at the department led to a look for
alternative research directions, not too far from our experiences. Such an alterna-
tive became apparent when the two of us participated in a weeklong workshop at
the Isaac Newton Institute in Cambridge in late 1995 under the title New Connec-
tions between Mathematics and Computer Science, cf Gunawardena [Gun96].

This workshop was held in a very nice, open and fruitful atmosphere with a
variety of stimulating talks, including very famous speakers like M. Gromov and
S. Smale. But there were other talks that turned out to be more decisive for our
work. Apart from lectures by John Baez (n-categories in logic, topology and physics),
Yves Lafont (Homological methods and word problems), I would like to emphasize in
particular

• Éric Goubault, Scheduling problems and homotopy theory
• Sergio Rajsbaum, On the decidability of a distributed decision task

that introduced us for the first time to the possibility of applying topological meth-
ods for purposes in concurrency theory and in distributed systems theory.

1.1.2. Concurrency and distributed computing. To say it very briefly1, con-
currency in computer science means a property of systems in which several compu-
tations are executing simultaneously, and potentially interacting with each other.
Concurrent systems open up for faster algorithms, but the mumber of possible
execution paths (schedules) in such a system can be extremely large and the result-
ing outcome may be indeterminate. Methods are sought to identify schedules that
do produce results (not ending in a deadlock) and that lead (by construction) to
correct – or at least tolerable – results.

Distributed systems, studied in distributed computing consist of multiple au-
tonomous computers communicating through a computer network in order to

1A comprehensive survey over a wealth of models in concurrency is given in a chapter of the Handbook
of Logic in Computer Science by Winskel and Nielsen [WN95].

1



2 1. INTRODUCTION

achieve a common goal. Typically, a problem is divided into many tasks, each
of which is solved by one or more computers, communicating with each other
by a variety of protocols. What sorts of problems can be solved in distributed
architectures – possibly assuming that a number of participating computers may
fail to work, without notice to the others? An intriguing introduction to topolog-
ical methods had at the time just appeared (cf Herlihy and Rajsbaum [HR95], in
particular; moreover Herlihy and Shavit [HS99]).

The two talks mentioned above advocated that these two disciplines, certainly
related to each other, but with slightly different goals to achieve, may benefit from
a perspective from combinatorial/algebraic topology and showed indications and
some results in that direction. These prospects made an impression on us. We
began to think, in particular, about how to detect deadlocks in semaphore models,
cf Chapter 2 of this thesis. We made soon personal connections with Éric Goubault;
at the time employed at the ENS in Paris, now a professor at CEA Saclay and at
Ecole Polytechnique. This encounter started a very fruitful collaboration that has
been ongoing ever since.

It turned out that we would try to take inspiration from methods in combi-
natorial and algebraic topology that we knew; but it was not possible to apply
those directly, before “twisting” them. That twist consisted in taking directedness
properties serious. No longer are all continuous paths allowed, only directed paths,
reflecting that the time flow in the execution of a schedule is not reversible. This
fact makes it more difficult to exhibit suitable algebraic topological invariants de-
scribing phenomena of interest. At least, one has to get involved with categories
instead of groups. These were the first indications for a need for a systematic in-
vestigation of methods for and properties of Directed Algebraic Topology. It should
be mentioned in passing that other topological methods (order topologies etc) had
been applied previously in Computer Science, in particular in domain theory.

1.2. Collaboration

While algebraic topology for a long time had the reputation of an exclusive
and very pure mathematical discipline, more and more areas of application have
popped up during the last fifteen to twenty years, cf also Chapter 8.

1.2.1. Workshops, conferences, networks. One of the first intitiatives to col-
lect researchers with an interest in applying methods from algebraic topology to
problems in Computer Science after the conference at the Newton Institute in 1995,
was our own series of modest workshops called GETCO (Geometric and Topolog-
ical Methods in Computer Science): the first of those was held in 1999 at Aalborg
University and followed up by a series of similar workshops lasting between a
day and a week; several times attached to conferences of the CONCUR or DISC
communities in Computer Science.

At a much larger scale, I would like to mention the very inspiring conference
series ATMCS (Algebraic Topological Methods in Computer Science), that has
been organized five times, lastly in 2012 under the title Applied and computational
topology. Moreover workshop series at Schloss Dagstuhl, Germany and dedicated
conferences at MSRI, Berkeley, USA, Oberwolfach, Germany, the Fields Institute,
Toronto, Canada, and BIRS, Banff, Canada.

http://people.math.aau.dk/~raussen/GETCO/GETCO10
http://www.icms.org.uk/workshops/atmcs5
http://www.icms.org.uk/workshops/atmcs5
http://www.dagstuhl.de/en/program/calendar/semhp/semnr=12121
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On the European arena, collaboration on applied aspects of algebraic topology
gained force in the recent Research Networking Programme ACAT – Applied and
Computational Algebraic Topology – in the framework of the European Science
Foundation. This programme that lasts from 2011 to 2015, has some funds to
support conferences, workshops and summer schools within the field; moreover it
gives grants to visits between collaborating partners. I am the chair of the steering
committee of that network.

1.2.2. Acknowledgements. It would have been impossible to achieve substan-
tial progress without a network of people who have been interested in the research
line taken and with whom I have had the pleasure to collaborate for a while or
also on an almost permanent basis. It is impossible to mention them all, but I need
to give special thanks to

• Lisbeth Fajstrup, colleague at the Department of Mathematical Sciences at
Aalborg University, a long term partner and a coauthor in this endeavour;
giving inspiration and – very important – ready to listen whatever I had
on the agenda
• Éric Goubault, CEA/Saclay and Ecole Polytechnique, France, who would

explain many times to us many of the Computer Science aspects of our
work; moreover an important source of inspiration and coauthor
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Thanks are also due to the referees of my work in the area who have often given
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1.3. Not more than a survey!

This thesis can only give a quick guide through the material described in much
more detail in the articles that are submitted together with it (cf the list of thesis
papers right in the beginning). It is written in retrospect; only some highlights are
dealt with and deviations from the main route are deliberately kept obscure.

Most of the work is not technically deep or sophisticated. Beginning with a
new research interest meant that many concepts had to be developed if not from
scratch, then from only a few basic definitions. The only exception is the devel-
opment of combinatorial models for trace spaces, cf Chapter 7, that nevertheless,
from a mathematical perspective, stands on the shoulders of well-developed tech-
niques.

For proofs of results, the reader is referred to the original papers. Only a few
particularly important proofs that have a particular impact on this story have been
detailed in this thesis. Emphasis is put on more recent work – that of course uses

http://www.esf.org/acat
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insights from previous articles. The selection of topics has mainly been made from
a mathematical perspective.



CHAPTER 2

Topology and order for semaphore models

2.1. Semaphore models

2.1.1. History. First notions and examples. The following notes on the (pre)-
history of the subject are mainly drawn from Goubault [Gou00]; they describe the
initial motivation for our and for related work.

An option for scheduling the access of several processes to shared resources is
by semaphores: Each resource is provided with a semaphore. A schedule has to obey
to the rule that, at any given time, only one (in the case of mutual exclusion) or at
most a fixed number k of processes – called the arity of that resource – can acquire
a lock to a given resource. It has to relinquish the lock having finished working
with the resource. It is well-known (even in daily life) that “bad” schedules can
lead to deadlock states from which the combined execution has no way to proceed.

Semaphore methods can be given a description that has an inherently geomet-
ric flavour: The so-called “progress graph” was first introduced in the literature
in Shoshani and Coffman [SC70] and Coffman etal. [CES71]. The famous Dutch
computer scientist Edsger W. Dijkstra [Dij68] had given an abstract semantics for
handling mutual exclusion: Each (deterministic sequential) process Qi gives rise
to a sequence R1a1

i . . . Rni ani
i with Rj = P, V and aj one of the shared objects; P

(prolaag in Dutch; procure?) means acquiring a lock, V (verhogen in Dutch; vacate?)1

means relinquishing it again.
Simple test examples can be found in the early literature [SC70] and [CES71];

they are attributed there to Dijkstra. The following two examples must suffice here:
The first (the “Swiss flag”) consists of two processes T1 = Pa.Pb.Vb.Va and T2 =
Pb.Pa.Va.Vb competing for resources a and b and gives rise to the two dimensional
progress graph of Figure 1.

The second (of which the first is a special case) is known under the name Din-
ing Philosophers: Here n philosophers T1, . . . , Tn at a round dining table compete for
n resources (forks) a1, . . . , an according to the schedules Ti = Pai.Pai+1.Vai.Vai+1
(with an+1 = a1) giving rise to an n-dimensional progress graph. It is obvious that
trouble (a deadlock) arises when all philophers start to pick up their left forks at
the same time.

For a general linear progress graph, each individual process executes linearily
on a (time) unit interval I = [0, 1] on which the P and V actions are marked as an
ordered sequence. If there are n processes involved, the state space X consists of
a hypercube In (each point has n coordinates, one for every process) from which
a forbidden region F has been deleted: X = In \ F. The forbidden region consists
of points for which more than one (generally more than the arity k) coordinates

1These terminology explanations come from the Wikipedia page on semaphores.

5
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FIGURE 2.1. The Swiss flag as example of a 2D progress graph

FIGURE 2.2. Left: Dining philosophers. Right: Forbidden and
unsafe regions for the three dining philosophers protocol

are situated inbetween a Pai and a Vai with the same ai. It is easy to see that the
forbidden region in the semaphore case is a union of (open) higher dimensional
isothetic rectangles – with facets parallel to the coordinate hyperplanes.

A joint schedule in a progress graph corresponds to a path p in Rn joining the
compound start state, the lowest vertex 0 ∈ In to the compound end state, the
upmost vertex 1 ∈ In. The projections of every such path to one of the axes (de-
scribing the execution of the corresponding process with the locking instructions
on its way) has to be non-decreasing since an execution does not run backwards in
time. Moreover, such a path may not enter the forbidden region F ⊂ In.

The characteristic features of such a dipath [FGR06] – di for directed –
p : I → In , are hence that

(1) p(t) avoids the forbidden region F for all t;
(2) all projections pi : I → I are non-decreasing.

We will often also fix start and end points.
Deadlocks (originally called “deadly embrace” by Dijkstra) occur in many

schedules; these are states (points) from which no directed path can proceed with-
out immediately entering the forbidden region F. Furthermore, there may occur
“unsafe regions” (a dipath entering the unsafe region cannot reach a final state
without entering the forbidden region, cf. Figure 2.1 and Figure 2.2) and “un-
reachable regions” (that no dipath starting from the compound start state can ever
enter). Deadlocks, unsafe regions and unreachable regions had, to a certain extent,
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already been analysed and described in this context (including interesting test ex-
amples) in many articles, see eg Lipski and Papadimitiou [LP81] or Carson and
Reyolds [CR87].

If the processes (on the axes of the progress graph) run without or with re-
stricted coordination, many possible schedules - and in a progress graph even
infinitely many – will arise as dipaths. The following is an important insight in-
dicating that topology might have a role to play: Two schedules will yield the
same result (of a joint calculation or whatever) if the two respective dipaths can
be connected to each other by a one-parameter deformation of dipaths (avoiding the
forbidden region along that deformation); the reason for this will be explained in
detail in Section 3.2. In topology, one-parameter deformations are called homo-
topies; we call one-parameter deformations that respect directedness dihomotopies.
Loosely speaking, dihomotopic dipaths aquire their locks and relinquish them
in the same order, at least for semaphores of arity one. In the paper Fajstrup
etal. [FGR06], an example of a simple PV-program is given (with simple calcula-
tion steps between accesses to pieces of shared memory) showing that results in
general will be different for dipaths that are not dihomotopic. The schedules in
this example are in fact two dipaths circumvening the forbidden region in Figure
1 in two different senses.

2.1.2. Discrete versus continuous. This gives room for speculation. At first
sight, it may seem strange to replace a large discrete state space (as is common in
concurrency theory, e.g., a graph, that is contained in the product of the directed
graphs describing the actions for each of the processes) by an infinite state space.
That directed graph can be considered as the 1-skeleton of a subdivided progress
graph (cf. Section 3.1.4). Higher-dimensional rectangles in the progress graph
describe additional information, i.e., higher coordination (independence relations)
between actions of the individual processes.

For realistic examples, the state space is built either as a discrete product
of general directed graphs (with branchings, mergings and loops; not only linear
graphs) or as the topological product of their geometric realizations, in both cases
after deleting a forbidden region. This situation is more complicated than the
linear one and will be dealt with later.

Anyway, when the number of states and/or the number of processes increases,
a discrete product will suffer from (combinatorial) state space explosion. Moreover
it is quite difficult to determine which of the directed paths (even much bigger in
number) in such a product graph are equivalent to each other and which not.

Deformations (homotopies) are well-studied in algebraic topology, and we
attempt to use methods from this area to reason and to do calculations concerning
the space of directed paths (up to homotopy) in the model. The “detour” through
the continuous models seemingly allows a quicker (or more comprehensible) path
to a determination of equivalence classes of execution paths.

2.1.3. Example of an application: data base theory. A nice example where
topological reasoning gives rise to insights was originally described by J. Gunawar-
dena in [Gun94] and later made more rigorous in Fajstrup etal. [FGR06]: In data
base engineering, one uses often 2-phase locked protocols with the following defin-
ing property: Each PV-protocol for each of the processes needs to acquire all locks
before these are all relinquished (possibly in a different order): P . . . P.V . . . V.
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It can then be shown that every schedule using this strategy is serializable, i.e.,
equivalent to a serial schedule characterized by the property: One process at a
time! The schedule is a concatenation of the schedules of the individual processes
(in some order); no interleaving takes place.

This is important since the results of serial schedules can be checked and
understood quite easily. The geometric/topological picture that corresponds to
a 2-phase locked protocol yields a progress graph in which the forbidden region
has a center region from which one may deform all dipaths inductively to dipaths
on the 1-skeleton of the hypercube In. One has to be careful to make sure that the
deformation is through dipaths at any time – this is the contribution of Fajstrup
etal. [FGR06]. But still the argument given (and certainly the intuition behind it)
seems to be far easier to comprehend than arguments of a merely discrete type.

2.2. Detection of deadlocks and of unsafe regions

First joint work describing how to find deadlocks and unsafe directions in a
progress graph can be found in the preprint Fajstrup and Raussen [FR96]. This
work was completed in collaboration with Éric Goubault (Fajstrup etal. [FGR98b,
FGR98a]) with the description of a running implementation of the detection algo-
rithm.

2.2.1. A combination of combinatorial and geometric insight leads to an
algorithm. How can one find deadlock states in the n-dimensional state space
X = In \ F with the combinatorial input given by the hyperrectangles Ri making
up the forbidden region F? Those hyperrectangles are products of intervals Ri =

∏m
j=1]a

i
j, bi

j[⊂ In (between a P-action at ai
j of the ith process and the corresponding

V-action at bi
j). If n such hyperrectangles intersect (generically), then the lowest

corner of the intersection hyperrectangle is a deadlock state! Whichever process
progresses, it will have to enter one of the hyperrectangles. This corner point is
coordinatewise given by the maximal coordinates of the lower corners ai

j of the
contributing hyperrectangles.

A simple illustrating example consists of the walls and the ceiling of a rect-
angular room making up parts of the forbidden region: No way from the lower
corner of the intersection! The corners obtained in this way are the only deadlock
points in the interior of In. Deadlocks on the boundary of In can be found by the
same mechanism after having extended the given hyperrectangles touching the
boundary and added hyperrectangles representing the boundary; for details see
Fajstrup etal. [FGR98b, FGR98a].

It is even more important to describe the unsafe regions that schedules had
better avoid. It turned out, that these can be determined step by step using similar
ideas. For the first step, note that below a deadlock state, there is a hyperrectangle
whose lower corner has as coordinates the second largest among all the lower corner
coordinates ai

j of the participating hyperrectangles. It is easy to convince yourself
that dipaths in this hyperrectangle cannot escape without entering the forbidden
region.

In subsequent steps, one adds the unsafe hyperrectangles found so far to the
forbidden region; this may then give rise to additional unsafe hyperrectangles. It is
not difficult to see (and it is shown in Fajstrup etal. [FGR98a]) that the algorithm
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thus described ends after finitely many steps with a complete description of the
unsafe regions.

Although the algorithm can be described entirely in discrete terms without
any use of topological machinery, it is certain that we would not have found it
(and it would be hard to explain it) without geometric thinking and intuition.

2.2.2. Implementation issues. The algorithm for detection of deadlocks and
unsafe regions was implemented by Éric Goubault as a C-program. It had essen-
tially to manipulate intersections and unions of isothetic n-rectangles from a given
list and to implement the effect of adding an additional n-rectangle. In a first step,
the initial list of forbidden n-rectangles is established, the second step works out
an array of intersection rectangles (including as a special case those with deadlocks
at corner points), and the third adds pieces of the unsafe regions, recursively.

The total complexity of the algorithm reflects the geometric complexity of the
forbidden region, i.e., the number of intersections of n-rectangles in the forbidden
region. The latter express the degree of synchronization of the processes. In most
test cases, the implementation gave very competitive results compared to other
approaches; in particular, in high dimensions, with many participating processes;
some details are given in Fajstrup etal. [FGR98a].

These first tools have since been extended into a multi-purpose abstract in-
terpretation based static analyzer ALCOOL by our partners at CEA/LIST, cf eg
Goubault and Haucourt [GH05] and Fajstrup etal [FGH+12].

2.3. Outlook and discussion

As mentioned earlier, the state space X of aconcurrent program will, in general,
be modeled as (topological) product of directed graphs from which a subcomplex
corresponding to the forbidden region F has to be deleted: X = (Γ1 × · · · × Γn) \
F. The individual graphs and thus also the state space X may contain directed
loops. Still the forbidden region can be understood as a union of generalized
hyperrectangles (with identifications on the boundary, giving rise to cylinders or
tori). The detection of deadlock points as corners of intersections of n-rectangles is
essentially unchanged, but the detection of unsafe points is more tricky: States that
seem to be unsafe might be able to escape after several “rounds”. The effects of this
delooping have been described and investigated in Fajstrup [Faj00] and Fajstrup
and Sokołowski [FS00]. They were the original motivation for extending the theory
of coverings from algebraic topology to so-called dicoverings, cf Fajstrup [Faj03]
which turned out to be much more sophisticated.

In another direction, it turned out that the description of deadlocks and unsafe
(and, in an analogous manner, also of unreachable) regions is a helpful step in the
classification of dipaths in progress graphs up to dihomotopy in later work (cf
Raussen [Rau00, Rau06, Rau10]); this will be taken up in subsequent sections.





CHAPTER 3

Directed spaces and directed homotopy

3.1. Directed spaces

3.1.1. Partially ordered spaces. Apparently the first attempt to combine order
and topology in a systematic way can be found in Nachbin’s monography [Nac65].
The following definition connecting topology and order is particularly important:

DEFINITION 3.1.1. Let X denote a topological space and let ≤⊂ X× X denote
a partial order (reflexive, transitive and anti-symmetric) on X. The pair (X,≤) is
called a partially ordered space (or po-space for short) if ≤ is a closed subset of X× X.

In particular, if xn, yn denote sequences in X with xn ≤ yn, n ∈ N, with limits
x = lim xn, y = lim yn, then x ≤ y. For example, the standard (coordinatewise)
partial order ≤ on Rn makes (Rn,≤) a po-space. A closed subspace (like the Swiss
flag example from Figure 1) inherits a po-structure.

Another stimulating monography involving order notions is Penrose’s [Pen72]
that deals with questions in relativity theory from the viewpoint of differential ge-
ometry. A space-time is seen as a 4=(3+1)-dimensional manifold with a Lorentzian
metric of index 1. In particular, the tangent bundle contains a “bundle of cones”
consisting of causal resp. time-like tangent vectors. One studies then properties of
causal and of time-like curves (with causal, resp. time-like tangent vectors all along)
in combination with the differential geometry of the underlying manifold, eg with
the aim to investigate properties of black holes. Several notions from Penrose’s
book [Pen72] have been useful in connection with our work although they often
had to be modified in order to fit for our purposes.

In both cases mentioned above, one considers most often not all curves in the
topological space; only curves that play together well with order properties are
relevant. In a po-space, a directed path p : I = [0, 1] → X has to preserve orders,
i.e., has to satisfy:

(3.1) t1 ≤ t2 ⇒ p(t1) ≤ p(t2).

As soon as one considers spaces that contain interesting (from the point of view
of order) loops, po-spaces are too rigid: Property (3.1) cannot be satisfied for any
partial order ≤ along a non-constant loop p (with p(0) = p(1)) since one obtains
for any x = p(t) 6= p(0): p(0) ≤ x ≤ p(1) = p(0) contradicting anti-symmetry.
On the other hand, state spaces with loops occur naturally in applications, since
most relevant programs contain loops.

There are several reasonable approaches to widen the definition of a po-space:

3.1.2. Lpo-spaces. The one originally taken by us was an approach using
charts (compare the definition of manifolds) as in the following definition:

11
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DEFINITION 3.1.2. (Fajstrup etal. [FGR06])
(1) A covering U of a topological space X by open sets U with partial orders
≤U is an atlas of an lpo-space (locally partially ordered) if, for every x ∈ X,
there is a non-empty neighbourhood W(x) such that

y ≤U z⇔ y ≤V z for all U, V ∈ U , y, z ∈ U ∩V ∩W(x).

(2) Two atlas U and V define equivalent lpo-structures if their union U ∪ V
defines an lpo-structure in X.

For example, (counter-clockwise) rotations cannot be used to give the cir-
cle X = S1 a po-structure, but they give rise to a perfectly well-defined lpo-
structure. Moreover, one may ask a dimap to preserve partial local orders (cf Fa-
jstrup etal. [FGR06]) and in particular investigate dipaths and diloops in lpo-spaces
as dimaps with domain the ordered interval~I and the lpo-space ~S1.

Directed paths are the essential object of our study – they correspond to the
execution paths in the model; the (partial) order on the state space is secondary.
This makes the study of lpo-spaces by themselves a doubtful goal. In fact, for a
space with a partial order, one may define a (coarser) partial order by:

x � y⇔ ∃ a dipath p : I → X such that x = p(0), y = p(1).
Then, x and y are no longer related unless they are so via a directed path. For
example, the region under the Swiss flag (Figure 1) becomes then completely
unrelated to the region above it. On the other hand, it is not always clear that
the new partial order � thus obtained is closed.

A more serious drawback of lpo-spaces arises from categorial considerations.
An investigation of (finite) limits and colimits shows that these need not always
exist; if they exist they need not be the limits or colimits that arise in the category
of topological spaces (under the forgetful functor). This is maybe not that surpris-
ing; it parallels the bad behaviour of the category of manifolds under limits and
colimits. There have been attempts to reconcile lpo-spaces with model categories
(cf Bubenik and Worytkiewicz [BW06]); but those seemingly remained without
further practical applications.

3.1.3. Streams. These categorical problems have been overcome by introduc-
ing the more flexible streams in the work of Krishnan [Kri09]. Roughly speaking, a
stream is a topological space with consistent preorders on the open sets, a so-called
circulation. Consistency means that the preorder on an open set is equal to the tran-
sitive closure of the preorders on its open subsets. It is shown in Krishnan [Kri09]
that streams and stream maps (preserving the local preorders) form a complete
and cocomplete category.

Lpo-spaces are more special than streams: Local anti-symmetry is not required
for streams. In particular, streams may have vortices, ie they may allow for arbi-
trarily small directed loops.

3.1.4. Cubical complexes. Higher-Dimensional Automata. Higher-Dimen-
sional Automata (HDA) were originally introduced and studied by Pratt [Pra91]
and van Glabbeek [vG91] as combinatorial models extending the progress graphs
from Section 2.1.1. Roughly speaking, the concurrent parallel execution of one step
taken by each of n individual processes is modelled by an n-box or n-cube �n if it
is independent of orderings among the processes (and perhaps also subdivisions).
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An n-cube can thus be seen as the state space for all possible interleavings of the
n! directed paths on its one-skeleton. The presence of such a cube in a complex
indicates that the order of the partial executions on the 1-skeleton (or even of
partial interleavings) is insignificant. On the other hand, if nothing is known about
such independence relations, only the 1-skeleton of such a box appears in the
HDA.

Knowledge about partial independence can be encoded by considering a sub-
complex of the n-box containg its 1-skeleton. A subcube �k ⊂ �n is included
if k-processes execute independently as long as the others have come to a halt.
The partial ordering on an k-box (equivalent to ~Ik) yields a natural directed path
structure.

Several such (sub-)boxes (perhaps of varying dimensions; the number of partic-
ipating processes and the nature of independence relations may vary) can be glued
together to yield a Higher-Dimensional Automaton (HDA). Usually, at least the
1-skeleton of such an HDA is equipped with labels, as a generaliation of transition
systems in classical concurrency theory. In the following, we shall abstract away
from the use of such labels; this is in a sense justified by results of Srba [Srb01]
showing – for transition systems – that a labelled transition system can be replaced
by an equivalent unlabelled one without loosing expressivity. Let us also mention
that van Glabbeek [vG06] later showed that Higher Dimensional Automata com-
pete favourably with other widely used models for concurrent computing, eg Petri
nets.

The definition of an HDA and discussions about their properties came closer
to well-known mathematics when Éric Goubault found out that the underlying
combinatorics and topology is that of a pre-cubical set (also called �-set, cf. Faj-
strup [Faj05], in analogy with the term ∆-set from Rourke and Sanderson [RS71]
for a simplicial set without degeneracies).

Pre-cubical sets had been previously investigated in detail by Brown and Hig-
gins in [BH81a, BH81b]. Cubical complexes are already present underlying cu-
bical singular homology in Serre’s thesis [Ser51] from 1951. For modern homo-
topy theory references involving cubical sets see Jardine [Jar02] and Grandis and
Mauri [GM03].

In the following section, we shall use �n as an abbreviation for the n-cube
In = [0, 1]n with the product topology.

DEFINITION 3.1.3. (1) A�-set or pre-cubical set M is a family of disjoint
sets {Mn|n ≥ 0} with face maps

∂k
i : Mn → Mn−1, n > 0, 1 ≤ i ≤ n, k = 0, 1,

satisfying the pre-cubical relations ∂k
i ∂l

j = ∂l
j−1∂k

i for i < j.
(2) A pre-cubical set M is called non-self-linked (cf Fajstrup etal. [FGR06]) if,

for all n, x ∈ Mn and 0 < i ≤ n, the 2i(n
i ) iterated faces

∂k1
l1
· · · ∂ki

li
x ∈ Mn−i, ki = 0, 1, 1 ≤ l1 < · · · < li ≤ n, are all different.

(3) The geometric realization |M| of a pre-cubical set M is given as the quo-
tient space |M| = (än Mn ×�n)/≡ (a cubical complex) under the equiv-
alence relation induced from

(∂k
i (x), t) ≡ (x, δk

i (t)), x ∈ Mn+1, t = (t1, . . . tn) ∈ �n, 1 ≤ i ≤ n, k = 0, 1
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with δk
i (t) = (t1, . . . ti−1, k, ti+1, . . . , tn).

In a non-self-linked pre-cubical set, the map �n ' �n × e→ |M| is injective for
every n-cell e ∈ Mn. In particular, every element m ∈ |M| in the image of this map
has uniquely determined coordinates in �n, cf Fajstrup etal [FGR06]. Moreover,
every element x ∈ |M| has a unique carrier cell e(x) ∈ Mn, n ≥ 0, such that x
comes from an element in the interior �o

n under the restriction of the quotient map
to �n × e(x).

We will make use of particular open sets in |M|, the open stars of vertices in M0.
The open star St(x, M) of x ∈ M0 consists of the union of the interiors of all cells
of which x is a vertex. It was shown in Fajstrup etal [FGR06], that every such open
star inherits a consistent partial order from the partial orders on individual cells
given by their identification with �n ⊂ Rn and hence that

PROPOSITION 3.1.4. (Fajstrup etal. [FGR06, Theorem 6.23]) The po-structure
on the cells of a �-set extends to an lpo-structure on its geometric realization if M is
non-selflinked.

In particular, we know which paths in |M| are to be considered as directed; for
a down-to-earth description cf Raussen [Rau09b]. The geometric realizations of
these pre-cubical sets are arguably the most important class of examples of lpo-
spaces for applications. They are not as special as they might look at a first glance:
Fajstrup [Faj06] showed that every triangulable space can be realized as a cubical
complex. If this cubical complex is free of immersed cubical Möbius bands, then
there are consistent choices of directions; if this is not the case, one subdivision
suffices to establish a compatible local partial order.

3.1.5. D-paths, d-spaces, d-T OP. A very general approach to directed spaces
that plays together well with established techniques in homotopy theory was
suggested by Marco Grandis. He launched in Grandis [Gra03a] the idea to take
the directed paths (d-paths) as defining element of the structure of d-spaces:

As customary, the concatenation of two paths p, q : I → X in a topological space

X is defined by (p ∗ q)(t) =
{

p(t) t ≤ 0.5
q(2t− 1) t ≥ 0.5 .

DEFINITION 3.1.5. (Grandis [Gra03a]) Let X denote a topological space and
let ~P(X) ⊂ X I := {p : I → X | p continuous} – the subset of d-paths. The pair
(X, ~P(X)) is called a d-space if

• ~P(X) contains every constant path px(t) = x, t ∈ I; x ∈ I;
• The concatenation of two d-paths is a d-path:

p, q ∈ ~P(X)⇒ p ∗ q ∈ ~P(X);

• p ∈ ~P(X), α ∈ I I a non-decreasing reparametrization⇒ p ◦ α ∈ ~P(X).

Remark that only non-decreasing reparametrizations are part of the structure.
Thus, in general the reverse p̄ of a d-path p given by p̄(t) = p(1− t) is not a d-path.
On the other hand, a sub-d-path of a d-path is d again. Note two extreme cases:

• ~P(X) consists solely of constant paths.
• ~P(X) = X I consists of all paths.
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While the di-paths in an lpo-space X provide it with a d-space structure, the
last example above shows that not every d-space arises from an lpo-space.

In particular, antisymmetry in an lpo-space forbids the existence of small (non-
constant) loops; but vortices can perfectly arise in a d-space. For example, the
d-paths in the plane might consist of paths rotating counterclockwise around the
origin. For homotopy theory purposes, it is an advantage that one can give not
only the cylinder but also the cone of a d-space the structure of a d-space; cf. the
work of Grandis in [Gra03a, Gra02, Gra09].

A continuous map f : X → Y is called a d-map if it preserves d-paths, i.e., if
f (~P(X)) ⊆ ~P(Y). We can consider the subcategory d-T OP ⊂ T OP (with d-maps
as the morphisms) of the category of topological spaces. It is not difficult to see that
the category d-T OP thus arising has all limits and colimits, cf Grandis [Gra09]; in
particular, there is an obvious notion of product of d-spaces.

A correspondence between the category of streams and that of d-spaces has
been described and investigated by Ziemiański [Zie12a]. They are related by
adjoint functors leading to isomorphisms of categories of “good” streams and
of “good” d-spaces. These are very close to the saturated directed spaces of
Hirschowitz etal [HHH13].

3.2. Dihomotopy and d-homotopy

3.2.1. Definitions. It was mentioned in the introduction, Section 2.1.1, that
two directed execution paths that can be deformed into each other along a one
parameter deformation will yield the same result; a combinatorial explanation will
be given in Section 3.2.2 below. It needs an adapted notion of homotopy to seriously
involve methods of algebraic topology with directed spaces.

To this end, we need first to describe two directed intervals, both with I = [0, 1]
as the underlying topological space:

I: with ~P(I) consisting of the constant paths only;
~I: with ~P(~I) consisting of all non-decreasing continuous paths ϕ : I → I.

D- and dihomotopies, cf Grandis and Fajstrup etal [Gra03a, FGR06], from a
d-space X to a d-space Y are homotopies that preserve certain d-space structures:

DEFINITION 3.2.1. (1) A dihomotopy is a d-map H : X × I → Y. The
d-maps H0, H1 are called dihomotopic: H0 ' H1.

(2) A d-homotopy is a d-map H : X ×~I → Y establishing a relation H0 � H1
(from H0 to H1).

(3) Two d-maps f , g : X → Y are called d-homotopic if there is a finite se-
quence f � f1 � f2 � f3 . . . fn = g of “zig-zag” d-homotopies connecting
them.

Obiously, d-homotopy implies dihomotopy.
There are also pointed and relative versions of these definitions. A particularly

relevant case concerns directed homotopy of directed paths (X = I) with given
end points.

3.2.2. Motivation. Here is how directed homotopy relates to the combinatorial
framework of HDAs: The 1-skeleton of an HDA can be viewed as a (directed)
graph. Directed paths on the 1-skeleton model executions that are locally sequen-
tial. Two paths p, q on the 1-skeleton with the same end-points are elementarily
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equivalent if there are decompositions p = p− ∗ p0 ∗ p+, q = p− ∗ q0 ∗ p+ (same
prefix and same postfix) and p0, q0 are directed paths (with the same end points)
on the 1-skeleton of the same cube within the HDA1; this defines a reflexive and
symmetric relation on all such directed paths. By construction of the HDA (cf Sec-
tion 3.2.1), the paths p0 and q0 will always yield the same result for a computation
along the respective schedules; hence, so do p and q.

Combinatorial dihomotopy is the equivalence relation obtained by taking the
transitive closure of elementary equivalence defined above. It is a direct conse-
quence that executions (computations) that correspond to combinatorially diho-
motopic directed paths on the 1-skeleton (and also what may arise from local
interleavings) will yield the same result; non-dihomotopic paths may have different
results.

General d-homotopy and dihomotopy are infinitesimal versions of combinato-
rial homotopy of directed paths (in a subdivided model space). For this motivation,
it does not play a role which of the two relations one considers: Any two paths
p, q on a k-cube from the bottom to the top are both d-homotopic and dihomo-
topic: Consider the path p ∨ q : I → �k, (p ∨ q)(t) = p(t) ∨ q(t). Here ∨ denotes
the componentwise maximum. Both p and q are connected to p ∨ q by a linear
d-homotopy: p, q � p ∨ q, and hence p � p ∨ q � q.

3.2.3. Dihomotopy versus homotopy of directed paths. Two directed paths
that are dihomotopic (d-homotopic) are certainly homotopic - forgetting about
order(s) on the deformation interval. The reverse is in general not true. Simple
examples are the “room with three barriers”, cf Fajstrup et al. [FGR06], or a 3D-
progress graph in the form of a cube from which 4 hyperrectangles (forming pairs
of corner wedges) have been removed, cf Raussen [Rau06] and Figure 3.1.

FIGURE 3.1. A d-path that is homotopic but not dihomotopic to a
d-path on the boundary

In both cases, it is easy to convince yourself that certain d-paths are homotopic
but not dihomotopic to each other. A formal proof is more difficult; it can best be
achieved by abstract methods discussed in Chapter 7.

REMARK 3.2.2. For HDA (cubical complexes) of dimension 2, it was shown in
Raussen [Rau10] that homotopic d-paths are dihomotopic. Hence 2-dimensional
complexes are very special and not very useful as background for intuition about
results on HDA of higher dimensions.

1Just for this purpose, one might restrict to 2-dimensional complexes, or to the 2-skeleton of the complex.
But that restriction would often make algorithms less efficient!
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Another essential difference between dihomotopy and homotopy concerns
cancellation: A homotopy p1 ∗ p2 ' p1 ∗ p3 of paths rel end point implies the
existence of a homotopy p2 ' p3. A similar statement is not true for dihomotopy.
An easy counter-example is found on the 2D-complex that is the boundary of
a 3D cube with the lower facet removed. D-paths from bottom to top are all
dihomotopic, whereas there are non-dihomotopic paths on the boundary of the
removed facet.

3.2.4. Dihomotopy versus d-homotopy. Of course, d-homotopy of d-maps
implies dihomotopy. It seems to be an open question in which generality the re-
verse holds. Fajstrup [Faj05] showed that d-paths on the 1-skeleton of a cubical
complex that are dihomotopic are necessarily also d-homotopic. In greater general-
ity, a directed version of a simplicial/cubical approximation theorem has recently
been proved by Krishnan [Kri13].

Dihomotopy does not always imply d-homotopy, not even for directed paths.
Here is a simple (but non-cubical) example due to Fajstrup: Consider the directed
suspension of an interval I with (only) constant d-paths; the d-paths on that sus-
pension from the bottom to the top point are contained in subspaces {a} × I that a
d-homotopy (but not a dihomotopy) needs to respect.

3.3. A first invariant: The fundamental category of a d-space

In classical algebraic topology, the space of all paths P(X)(x0; x1) in X from x0
to x1 is homotopy equivalent to the loop space Ω(X)(x0) if just x0 and x1 belong
to the same path component. The easy construction of a homotopy equivalence
makes essential use of the reverse of a path connecting x0 and x1. A similar state-
ment is wrong for d-paths in directed spaces; one needs to take end points (or
more generally, end sets) as essential parts of any algebraic structure capturing
directed homotopy.

On the level of directed paths, appropriate structures are given by the path
category ~P(X) and the fundamental category ~π1(X) of a directed space X.

DEFINITION 3.3.1. (Grandis [Gra03a, Gra09]) Both the path category and the
fundamental category of a directed space X have the elements of X as objects. The
morphisms from x0 to x1 are given by

~P(X)(x0, x1): the space of d-paths from x0 to x1 (with the topology inherited
from the compact-open topology on the space of all paths)

~π1(X)(x0, x1): the set of dihomotopy (d-homotopy) classes of d-paths from
x0 to x1.

Composition of morphisms in both categories is given by concatenation (of paths,
respectively their di/d-homotopy classes). The path category is enriched in the
category T op.

In Chapter 6, we will also consider the trace category ~T(X) of X whose mor-
phism are spaces of traces (reparametrization equivalence classes) of d-paths be-
tween given end points (with the quotient topology; also ~T(X) is T op-enriched).
There are obvious forgetful functors ~P(X)→ ~T(X)→ ~π1(X).

The most important result at this level – making calculations possible at least
in relatively easy cases – is a van Kampen type result for fundamental categories.
Note that a d-subspace Xi ⊂ X has d-paths ~P(Xi) = ~P(X) ∩ P(Xi).
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THEOREM 3.3.2. (Grandis [Gra03a]) Let X denote a d-space with two d-subspaces
X1 and X2; let X0 = X1 ∩ X2. If X = intX1 ∪ intX2, then the following diagram of
fundamental categories (induced by inclusions) is a pushout diagram in Cat:

~π1(X0) //

��

~π1(X1)

��
~π1(X2) // ~π1(X)

The proof (in Grandis [Gra03a, Gra09]) – along the lines of the proof of the
classical van Kampen theorem – makes essential use of “zig-zag” d-homotopies.
Hence, the morphisms in the fundamental category have to be considered as d-
homotopy classes of d-paths.

3.4. Outlook and Discussion

It depends very much on the aim of a study which framework one should
choose. If one wishes to study homotopy theoretic properties, then the categories
of d-spaces (Grandis) or of streams (Krishnan) are to prefer; the categories of flows
(Gaucher), cf Chapter 8, has similar aims.

Cubical complexes have the huge advantage of combining topological, combi-
natorial and directed structures in a very natural way. This is why concrete results
and calculations have mainly been established for such spaces, cf Chapter 7. Sim-
plicial complexes, cf Ziemiański [Zie12b] might also become useful. Lpo-spaces
filter out some of the general properties of cubical complexes (local antisymmetry
and the non-existence of vortices). It is true that they do not form well-behaved
categories – but neither do differentiable manifolds!



CHAPTER 4

Localization techniques and components

Given a d-space X. As explained in Chapter 3, it comes equipped with (topo-
logical) path spaces ~P(X)(x0, x1) and their sets of components ~π1(X)(x0, x1) form-
ing the morphisms of the path category, resp. the fundamental category of X. It is
relevant to ask how sensitive these path spaces and their components are with re-
spect to variations of the end points x0 and x1. If homotopy types (or some algebraic
invariants) only change at certain thresholds, one may compress the representation
of these categories without losing information.

4.1. Weakly invertible morphisms and wide subcategories

4.1.1. Problem and aim: State space explosion problem and components.
Discrete models (transition systems etc.) in concurrency theory share the property
that the number of discrete states grows very fast with respect to the length (or
rather complexity) of each individual program and also with respect to the number
of processors. This is known as the state space explosion problem. At first sight, this
problem does not get any better by replacing discrete state spaces with infinite
state spaces, as with Higher Dimensional Automata. On the other hand, the state
spaces (in the form of cubical complexes) are well-structured, and hence, one may
hope that they can be decomposed in such a way that the homotopy types of path
spaces (or at least their components) only change along some very specific “cut-
locuses”; this would mean, that the essential information in path or fundamental
categories can be compressed to quotient categories of a much smaller size. It was
the aim of the series of papers Goubault and Raussen [GR02], Raussen [Rau03],
Fajstrup et al [FGHR04], later extended by Goubault and Haucourt [GH07], to
achieve such a compression of information in the fundamental category of a d-space
by using a calculus of fractions.

4.1.2. Weakly invertible morphisms. To achieve this, one identifies in the
fundamental category ~π1(X) a system (in fact a wide subcategory)W of so-called
weakly invertible morphisms. A morphism (d-path class) σ ∈ ~π1(X)(x, y) is called
weakly invertible1 if (pre and post-) compositions with σ in form of the maps

σ] : ~π1(X)(y, z) → ~π1(X)(x, z); σ] : ~π1(X)(v, x) → ~π1(X)(v, y)
α 7→ σ ∗ α β 7→ β ∗ σ

are bijections – as soon as the domains are non-empty.

REMARK 4.1.1. (1) The notions discussed apply to general categories,
not only to the fundamental category.

1Goubault and Haucourt [GH07] use the term Yoneda morphism instead.

19



20 4. LOCALIZATION TECHNIQUES AND COMPONENTS

(2) Weakly invertible morphisms can be interpreted to be those that do not
contribute to a “decision” when concatenated with other morphisms. The
aim is to take a quotient with respect to a subcategory of the weakly
invertible morphisms, as large as possible.

(3) In Section 5.1, we will formulate other versions of weak invertibility and
also generalize the localization techniques below.

4.1.3. lr and pure subcategories. In order to apply localization techniques
and to arrive at quotient categories with nice properties, we need further assump-
tions to a wide subcategory Σ ⊆ W :

DEFINITION 4.1.2. (Gabriel and Zisman [GZ67], Borceux [Bor94]):
(1) Σ satisifies the lr-extension properties (admits a left/right calculus of frac-

tions) if every diagram of morphisms in ~π1(X)

x′
γ′ // y′ x′

γ // y′

x

σ

OO

γ // y

σ′

OO

x

σ′

OO

γ′ // y

σ

OO

with σ ∈ Σ can be filled in with σ′ ∈ Σ (and γ′ in ~π1(X));
(2) Σ is pure if it only allows decompositions within Σ, ie

σ1 ∗ σ2 ∈ Σ implies σ1, σ2 ∈ Σ.

REMARK 4.1.3. Applied to weakly invertible morphisms, the condition in
Definition 4.1.2(1) tells you that a “non-decision” at the start point can be reflected
by a “non-decision” at the end point and vice versa. Pureness means that a decision
cannot be converted to a non-decision by pre-or post-composition.

4.2. Localization, categories of fractions and component categories

4.2.1. The setup. The general idea, initially formulated in Goubault and Rau-
ssen [GR02] and in Raussen [Rau03], is to formally invert a subcategory of the
weakly invertible morphsisms (turning those into isomorphisms) and to consider
a quotient category (turning isomorphisms into identities).

In general, given a wide subcategory Σ ⊂ C of a category C containing the
C-isomorphisms, one may consider the category “of fractions” C[Σ−1] in which a
formal inverse σ−1 has been added to every morphism σ ∈ Σ. It is universal with
respect to functors that send all Σ-morphisms into isomorphisms. To make the
exposition here as simple as possible, we work with a pure wide subcategory Σ
satisfying the lr-extension property right away:

It is easy to see that all morphisms of C[Σ−1] then have a description of the
form σ−1 ◦ α, resp. β ◦ σ−1 with σ ∈ Σ. A morphism of the form σ−1

1 ◦ σ2, resp.
σ1 ◦ σ−1

2 is invertible in C[Σ−1]; such a morphism is called a Σ-zig-zag.
Two objects x, y of C are called Σ-equivalent (x 'Σ y) if there exists a Σ-zig-zag-

morphism between them. The equivalence classes with respect to that relation
are called the Σ-components of C; they are the (usual) path components with respect
to the Σ-zig-zag morphisms. Moreover, we generate an equivalence relation on the
morphisms of C[Σ−1] by requiring that τ ' τ ◦ σ, τ ' σ ◦ τ whenever σ ∈ Σ and
the composition is defined.
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The component category π0(C; Σ) of the category C with respect to Σ has as ob-
jects the Σ-components; the morphisms from [x] to [y] are the equivalence classes
of morphisms in

⋃
x′'x,y′'y C[Σ−1]. Two morphisms in π0(C; Σ) that are repre-

sented by τi ∈ C(xi, yi), 1 ≤ i ≤ 2, with y1 'Σ x2 can be composed by inserting
any Σ-zig-zag-morphism connecting y1 and x2, cf. Fajstrup etal. [FGHR04] for
details.

Taking equivalence classes results in a quotient functor qΣ : C → π0(C; Σ).

4.2.2. Properties of component categories. The most important properties of
components and the quotient function qΣ shown in Fajstrup etal. [FGHR04] can
be summarized as follows:

PROPOSITION 4.2.1. (Fajstrup et al. [FGHR04, Proposition 2 – 7]) Let C denote
a category that has only identities as endomorphisms. Let Σ ⊂ C denote a pure wide
subcategory of weakly invertible morphisms satisfying the lr-extension properties,2 cf
Definition 4.1.2.
Let x, y, z denote objects in C.

(1) Σ(x, y) is either empty or it consists of a single morphism (in the latter case x, y
are Σ-equivalent).

(2) If x and y are Σ-equivalent and f ∈ C(x, z), g ∈ C(z, y), then f , g ∈ Σ (and
hence z is Σ-equivalent to x and y).

(3) Let x, y ∈ C for a component C ⊆ ob(C). Every morphism τ′ ∈ C(x′, y′) with
x′ ∈ C (resp. y′ ∈ C) is Σ-equivalent to a morphism
τ ∈ C(x,−) (resp. τ ∈ C(−, y)).

(4) For every object x ∈ C, every morphism in π0(C; Σ)(C, D) has a lift to a
morphism in C(x, y) for some y ∈ D.

(5) If, moreover, π0(C; Σ)(C, D) is finite, then there exists y ∈ D such that the
quotient map qC : C(x, y)→ π0(C; Σ)(C, D) is a bijection.

(6) Every isomorphism in π0(C; Σ) is an endomorphism.
(7) If τ1 ◦ τ2 ∈ π0(C; Σ)(C, C) is an isomorphism, then the τi, 1 ≤ i ≤ 2, are

isomorphisms.
(8) π0(C; Σ) has only identities as endomorphisms.

REMARK 4.2.2. The lifting properties (3) and (4) show the usefulness of the
construction to yield information concerning the original category. Properties (6)
and (7) show that it is impossible to return to a component that has been left.

Under reasonable additional assumptions, cf Fajstrup etal [FGHR04, Section
5.3], we were able to show that the component category π0(C; Σ) has desirable
properties. In particular, cf [FGHR04, Proposition 9], one can define the concept
of neighbouring Σ− components C1, C2; these allow precisely one morphism in
π0(C; Σ)(C1, C2).

4.2.3. Further developments. How to choose a convenient large subcategory
of the weakly invertible morphisms, that is both pure and that satisfies the exten-
sion properties? It is not difficult to see that the subcategories of a given category
that satisfy the extension properties form a lattice with a maximal element (Fajstrup
etal [FGHR04, Lemma 5]); this is the largest subcategory satisfying the extension
properties. But there seems to be no way to find a maximal pure subcategory of

2Not all conditions are needed in all statements below. For details, consult Fajstrup et al. [FGHR04].
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a given system of morphisms, in general; let alone one that satisfies extension
properties.

4.3. Outlook and discussion

This problem has been overcome by Goubault and Haucourt [GH07] by streng-
thening the extension properties from Definition 4.1.2:

DEFINITION 4.3.1. (Goubault and Haucourt [GH07]) A wide subcategory Σ ⊂
C satisfies the strong extension properties if the diagrams in Definition 4.1.2 can be
filled in so that they yield pushout, resp. pullback squares in C.

REMARK 4.3.2. This means that the pushout (resp. pullback) is universal with
respect to all other fillouts. The intuitive idea is that the pushout arises from a ∨−,
resp. ∧-operation in a lattice.

As a result, Goubault and Haucourt show that the strong extension properties
imply pureness, in the following sense:

PROPOSITION 4.3.3. (Goubault and Haucourt [GH07]) Let B denote a wide sub-
category of C and suppose that the pair (C, Iso(C)) is pure.

(1) If (C,B) satisfies the strong extension properties, then (C,B) is pure.
(2) The family of all wide subcategories Iso(C) ⊆ D ⊆ B ⊆ C such that (C,D)

satisfies the strong extension properties is a complete lattice; in particular, there
is a wide subcategory ΣB ⊆ B such that (C, ΣB) satisfies the strong extension
properties and such that D ⊆ ΣB for all D above.

Hence, this maximal subcategory satisfying the strong extension properties is
a good candidate for the definition of components in loopfree categories.

Moreover, also in Goubault and Haucourt [GH07], the authors establish an
equivalence between the category of fractions C[Σ−1] and the quotient category
C/Σ using generalized equivalences that had previously been investigated by Bed-
narczyk etal [BBP99]. They go on to show that the van Kampen theorem for the
fundamental category from Grandis [Gra03a] infers a similar statment for compo-
nent categories (with respect to a maximal subcategory of the weakly invertible
morphisms satisfying the strong extension properties).

For many applications, it may only be important to distinguish elements of
a d-space (and d-paths starting at such elements) with respect to their future. In
that case, only r-extensions properties are relevant. A framework to handle future
components in that direction has been dealt with in Goubault etal [GHK10].



CHAPTER 5

A general categorical approach to invariants of
directed spaces

5.1. Categorical approaches

How about algebraic topological invariants of a d-space X? Of course, one
may define invariants of path spaces ~P(X)(x, y) or their quotient trace spaces
~T(X)(x, y) (up to reparametrization, cf Chapter 6) for given x, y ∈ X and have
them organized by way of various categories related to X itself. In fact, since both
source and target play a role, it is more natural to use categories related to the
product X× X for indexing purposes; this is certainly necessary for categories that
are not acyclic – in the notation of Kozlov [Koz08] – or loop-free – in the notation
of Haucourt [Hau06]. This bookkeeping point of view and also an analysis of
associated component categories (with distinctions up to various invariants from
algebraic topology) are the main contributions of Raussen [Rau07]:

5.1.1. Preorder categories as indexing categories and functors. A d-space X
comes equipped with a natural preorder x � y ⇔ ~P(X)(x, y) 6= ∅. For all the
preorder categories below, the objects are the pairs (x, y) ∈ X× X with x � y.

The morphisms in the category ~D(X) are ~D(X)((x, y), (x′, y′)) := ~T(X)(x′, x)×
~T(X)(y, y′) with composition given by pairwise contra-, resp. covariant concatena-
tion. Hence, ~D(X) is a full subcategory of the category ~T(X)op × ~T(X). Note that
every morphism (σx, σy) ∈ ~T(X)(x′, x)× ~T(X)(y, y′) decomposes as

(σx, σy) = (cx′ , σy) ◦ (σx, cy) = (σx, cy′) ◦ (cx, σy)

with cu ∈ ~T(X)(u, u) the constant trace at u ∈ X.
Trace spaces with varying pairs of end points in X can be organised by the

trace space functor ~TX : ~D(X) → Top given by ~TX(x, y) = ~T(X)(x, y) and
~TX(σx, σy)(σ) := σx ◦ σ ◦ σy ∈ ~T(X)(x′, y′) for σ ∈ ~T(X)(x, y). This functor can be
viewed as (a restriction of) the Top-enriched hom-functor of ~T(X).

A d-map f : X → Y induces a functor ~D( f ) : ~D(X)→ ~D(Y) with ~D( f )(x, y) =
( f x, f y) and ~D( f )(σx, σy) = (~T( f )(σx),~T( f )(σy)) = ( f ◦ σx, f ◦ σy); moreover, it
induces a natural transformation ~T( f ) from ~TX to ~TY.

A homotopical variant is given by the category ~Dπ(X) with the same objects
as above and with ~Dπ(X)((x, y), (x′, y′)) := ~π1(X)(x′, x)× ~π1(X)(y, y′). Hence,
this category is a full subcategory of the category ~π1(X)op × ~π1(X), and ~π1(X)
denotes the fundamental category (cf. Sect. 3.3). It comes with a functor
~TX

π : ~Dπ(X) → Ho − Top into the homotopy category; a d-map f : X → Y
induces a natural transformation ~Tπ( f ) from ~TX

π to ~TY
π . Together with the (vertical)

23
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forgetful functors, we obtain a commutative diagram

(5.1) ~D(X)
~TX

//

��

Top

��
~Dπ(X)

~TX
π // Ho− Top.

The functors ~TX and ~TX
π may be composed with homology functors into cat-

egories of (graded) abelian groups, R-modules or graded rings. In particular, we
obtain, for n ≥ 0, functors ~Hn+1(X) : ~D(X) → Ab with (x, y) 7→ Hn(~T(X)(x, y))
and (σx, σy)∗ given by the map induced on n-th homology groups by concatena-
tion with those two traces on trace space ~T(X)(x, y). This functor factors over
~Dπ(X) by homotopy invariance. In the same spirit, one can define homology with
coefficients and cohomology. A d-map f : X → Y induces a natural transformation
~Hn+1( f ) : ~Hn+1(X)→ ~Hn+1(Y), n ≥ 0.

Composing with the functor π0 : Top → Sets that associates to a topologi-
cal space its set of path components, defines a functor ~Π1 : ~D(X) → Sets with
~Π1(X)(x, y) = ~π1(X)(x, y), the set of morphisms in the fundamental category –
with dihomotopy and not d-homotopy, cf Section 3.2.4, as equivalence relation.

If one needs to take care of base points (essential for homotopy groups of the
very often non-connected spaces of d-paths), more care is needed. For that purpose,
one may use a factorization category (cf Baues [Bau89]) of the trace category; for
details, cf Raussen [Rau07, Section 3.3].

5.1.2. Components with respect to functors. Using functors – like the ones
discussed above – on preorder categories, one may define components as sub-
spaces of X× X, for a variety of algebraic topological invariants. In greater gener-
ality:

Consider a functor F : C → D between two small categories. A morphism
σ ∈ C(x, y) will be called F-invertible if and only if F(σ) ∈ D(Fx, Fy) is a D-
isomorphism. Let CF(x, y) ⊆ C(x, y) denote the set of all F-invertible morphisms
from x to y. The collection of all CF(x, y) form a wide subcategory CF of C since
the composition of two F-invertible morphisms obviously is F-invertible again;
remark that CF(x, y) contains the C-isomorphisms.

For example, consider the functor ~TX
π : ~Dπ(X)→ Ho− Top or the functors

~Hn+1(X) : Dπ(X)→ Ab from Sect. 5.1.1. A morphism
(σx, σy) ∈ ~Dπ(X)((x, y), (x′, y′)) is ~TX-invertible if and only if
~T(X)(σx, σy) : ~T(X)(x, y) → ~T(X)(x′, y′) is a homotopy equivalence; it is ~Hn+1-
invertible if (σx, σy)∗ : Hn(~T(X)(x, y))→ Hn(~T(X)(x′, y′)) is an isomorphism.

When C is the homotopy preorder category ~Dπ(X) and F one of the functors
from Section 5.1.1, it makes sense to apply the framework of component categories
from Section 4.2. Reasonable components can then be defined at least in the case
when the ~TX-invertible morphisms satisfy the strong extension properties, cf. Def-
inition 4.3.1. For details, compare Raussen [Rau07, Section 4].
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5.2. Homotopy flows and d-homotopy equivalences

We discuss a candidate for a definition of the notion directed homotopy equiva-
lence and an investigation of its properties:

5.2.1. Introduction. Which requirements should a d-map f : X → Y satisfy in
order to qualify as a directed homotopy equivalence? Obviously, there should be a
reverse d-map g : Y → X such that both g ◦ f and f ◦ g are d-homotopic to the re-
spective identity maps. But this is not enough: The (d-path) structures on X and Y
ought to be homotopically related, i.e., the maps ~T( f ) : ~T(X)(x, y)→ ~T(Y( f x, f y)
should be ordinary homotopy equivalences – for all x, y with ~T(X)(x, y) 6= ∅ –
and that in a natural way. Moreover note the following:

EXAMPLE 5.2.1. The subspace L = [0, 1]×{0} ∪ {0}× [0, 1] ⊂ ~R2 – the branch
figure “letter L” – is homotopy equivalent to the one point space O = {(0, 0)}
included in it; there is a d-homotopy of the map c ◦ i (i: inclusion, c: the (constant)
reverse map) to the identity map on L. Moreover, all non-empty trace spaces are
contractible. But a branch should not be d-homotopy equivalent to a point!

5.2.2. Homotopy flows. The main tool in the definition below is the notion of
a homotopy flow generalising the concept of a flow on a differentiable manifold.
This notion will be used as an ingredient in the requirements for a d-homotopy
equivalence. Moreover, it is useful in order to generate subcategories of weakly
invertible d-paths (cf Section 4.1) and thus to reason about component categories
(cf Section 4.2).

DEFINITION 5.2.2. (1) A d-map H : X×~I → X is called a future homotopy
flow if H0 = idX and a past homotopy flow if H1 = idX .

(2) The sets consisting of all future homotopy flows, resp. of all past homo-
topy flows will be denoted by ~P+C(X), resp. by ~P−C(X).

Remark that we do not require that the maps H(−, t) : X → X are homeomor-
phisms.

The orbits of a flow have the following counterpart: For every x ∈ X, the
map Hx : ~I → X, t 7→ H(x, t), is a d-path (with Hx(0) = x, resp. Hx(1) = x).
Evaluation at x ∈ X sends x to Hx and defines maps H 7→ Hx

(5.2) evx
+ : ~P+C0(X)→ ~T(X)(x,−), resp. evx

− : ~P−C0(X)→ ~T(X)(−, x)

by H 7→ Hx. Every homotopy flow gives thus rise to a well-organized collection
of d-paths.

Remark that a maximal element x+ ∈ X – the only d-path with source x+ is
constant – will be fixed under a future homotopy flow; likewise a minimal element
under a past homotopy flow. Moreover, a branch point like in Example 5.2.1 is
fixed under all (future, resp. past) homotopy flows.

Homotopy flows can be concatenated, for future homotopy flows as follows:

(H1 ∗ H2)(x, t) =
{

H1(x, 2t), t ≤ 1
2

H2(H1(x, 1), 2t− 1), t ≥ 1
2 .

A homotopy flow H+ : X × ~I → X and its restrictions Hs
+ : X × ~I →

X, Hs
+(x, t) = H+(x, st) induce interesting maps on trace spaces, collected in the
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homotopy commutative diagram below (similarly for a past homotopy flow H−):

(5.3) ~T(X)(x, y)

~T(H+(−,s))

��

~TX(cx ,Hs
+y)

**
~T(X)(x, H+(y, s))

~T(X)(H+(x, s), H+(y, s))
~TX(Hs

+x ,cH+(y,s))

44

A homotopy flow on X does not change the topology of trace spaces if it
induces homotopy equivalences on associated trace spaces:

DEFINITION 5.2.3. (1) A future homotopy flow H : X×~I → X is called
automorphic if, for all x, y ∈ X with ~T(X)(x, y) 6= ∅ and all s ∈ I, the map
~T(Hs

+), (vertical in (5.3)) is a homotopy equivalence.
Similarly for past a past homotopy flow and ~T(Hs

−).
(2) A self-d-map f : X → X is called a future/past-automorphism if there

exists an automorphic future/past homotopy flow connecting f and the
identity on X.

In particular, given such an automorphic homotopy flow H+, resp. H−, the
maps f = H+(−, 1), resp. g = H−(−, 0) induce homotopy equivalences

~T( f ) : ~T(X)(x, y)→ ~T(X)( f x, f y) resp. ~T(g) : ~T(X)(gx, gy)→ ~T(X)(x, y).

Relations to the remaining maps on trace spaces in (5.3) are formulated in the
easy

LEMMA 5.2.4. Let H denote a future/past homotopy flow on X.
(1) If all concatenation maps (the skew ones in (5.3)) are homotopy equivalences,

then H is automorphic.
(2) Let H be automorphic. If one of the concatenation maps (skew in (5.3)) is a

homotopy equivalence, then the other is as well.
(3) P+C(X) satisfies the r-extension properties, and P−C(X) satisfies the l-extension

property.

Weaker properties (concerning maps on trace spaces that induce isomorphisms
on homotopy, resp. homology groups) are also formulated in Raussen [Rau07,
Definition 5.9].

5.2.3. d-homotopy equivalences: Definition and properties. The following
is a suggestion for a reasonable definition of a d-homotopy equivalence mak-
ing sure that trace spaces are related by homotopy equivalences. The conditions
should be seen as requirements to a d-homotopy class of d-maps from X to Y:

DEFINITION 5.2.5. (1) A d-map f : X → Y is called a future d-homotopy
equivalence if there exist d-maps f+ : X → Y, g+ : Y → X such that f , f+
are d-homotopic and automorphic d-homotopies HX : idX → g+ ◦ f+ on
X and HY : idY → f+ ◦ g+ on Y (ie HX : X ×~I with HX

0 = idX and
HX

1 = g+ ◦ f+) etc.
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(2) The d-map f : X → Y is called a past d-homotopy equivalence if there exist
d-maps f− : X → Y, g− : Y → X such that f , f− are d-homotopic and
automorphic d-homotopies HX : g− ◦ f− → idX on X and HY : f− ◦ g− →
idY on Y.

(3) A d-map f is called a d-homotopy equivalence if it is both a future and a past
d-homotopy equivalence.

Remark that a self-d-homotopy equivalence preserves branch points (like in
Example 5.2.1).

d-homotopy equivalences have the desired properties:

PROPOSITION 5.2.6. The natural transformation ~Tπ( f ) : ~TX
π → ~TY

π induced by
a (past or future) d-homotopy equivalence f : X → Y between d-spaces X and Y is
an equivalence, i.e., the induced maps ~T( f )(x, y) : ~T(X)(x, y) → ~T(Y)( f x, f y) are
homotopy equivalences for all x, y ∈ X with x � y.

PROOF. By abuse of notation, we write f , g instead of f+, g+, resp. f−, g− in
the following. In the diagram

~T(X)(x, y)
~T( f ) // ~T(Y)( f x, f y)

~T(g) // ~T(X)(g f x, g f y)
~T( f ) //

I

hh
~T(Y)( f g f x, f g f y),

J
ii

let I denote a homotopy inverse to ~T(g) ◦~T( f ) and let J denote a homotopy inverse
to ~T( f ) ◦ ~T(g). Then ~T(g) has a homotopy right inverse ~T( f ) ◦ I and a homotopy
left inverse J ◦ ~T( f ). By general nonsense, the right homotopy inverse and the
left homotopy inverse are homotopic to each other, and thus ~T(g) is a homotopy
equivalence. Since ~T(g ◦ f ) = ~T(g) ◦~T( f ) is a homotopy equivalence by definition,
the map ~T( f ) is a homotopy equivalence, as well. �

Furthermore, we prove in [Rau07, Proposition 6.8] that future and past diho-
motopy equivalences behave well under composition:

PROPOSITION 5.2.7. The composition g ◦ f : X → Z of (future or past) dihomotopy

equivalences X
f→Y

g→Z is again a (f/p) dihomotopy equivalence.

5.3. Outlook and discussion

5.3.1. Construction of homotopy flows and of components? While the defi-
nition of a d-homotopy equivalence ensures some of the most desirable properties,
it seems not that easy to construct the homotopy flows needed in the definition in
a systematic way. The fact that they have to preserve branch points (for a more
precise definition cf Raussen [Rau12b] or Section 7.3.1) and thus also the regions
between branch points requires them to be very “stiff”. On the other hand, this
is perhaps good news for handling components in simple cases, like for the PV-
models from Section 2.1 and Chapter 7.

5.3.2. Topology change and relations to multidimensional persistence. It is
clear that the discussion of topology change of trace spaces under variation of
end points and the identification of components cannot be easy in general. In fact,
variation of end points can be thought of as a (double) filtration on the trace spaces:
You begin with trace spaces ~T(X)(x, x) – trivial in spaces without directed loops



28 5. A GENERAL CATEGORICAL APPROACH TO INVARIANTS OF DIRECTED SPACES

– and let start and end point drift further and further away from each other and
observe topology changes – at certain thresholds – on the way. At a first glance, the
situation resembles that investigated in the theory of (homological) persistence:

For a one-dimensional filtration with coefficients over a field k, the homology
of a filtered space can be analyzed via the ranks of homology maps in the form
of so-called barcodes, cf eg Edelsbrunner and Harer [EH10]. The theoretical back-
ground herefore is based on the classification of modules over the polynomial ring
k[t], cf Zomorodain and Carlsson [ZC05].

For a multi-scale filtration, the situation is much more complicated; one needs
to analyze modules over a polynomial ring of several variables. In general, discrete
invariants like the barcodes are not sufficient; compare Carlsson and Zomorodian
[CZ09].

Our case is even more difficult; for at least three reasons:
• The state space has “holes” in cases of interest; a filtration is thus not

homogeneous and theoretically understandable by considering a polyno-
mial ring.
• There may and will often be more than one map comparing trace spaces

between given pairs of end points (this is the essence of the category
D(X) and also Dπ(X)).

• In full generality, one would have to consider a double (multi-scale) fil-
tration, taking into accounts both end points.



CHAPTER 6

Topology of executions: General properties of path
and trace spaces

One of the fundamental tasks in directed algebraic topology is to translate
information about a directed space (d-space) into information about the space of
directed paths (d-paths, executions) in that space. To this end, one has to structure
the path spaces and

• to define them as (ordinary) topological spaces and to study properties of
such spaces,
• to define and study appropriate subspaces (eg subspaces of d-paths with

given end points) and natural maps between such,
• to investigate the influence of (weakly increasing) reparametrizations and

to study properties of quotient spaces (trace spaces).

We begin here with the last issue:

6.1. Reparametrizations and traces

6.1.1. In ordinary spaces – without directions. Before turning to spaces of
d-paths, it turned out to be beneficial to study the space of paths P(X) = X I from
an interval I into a Hausdorff space X in the compact-open topology more closely.
This Section reports briefly on the work of Fahrenberg and Raussen [FR07] with a
minor correction that appeared in Raussen [Rau09a]:

In differential geometry, one studies usually (spaces of) regular paths in a
manifold. Those have never-vanishing speed, can be reparametrized by a diffeo-
morphism of the unit interval to yield a path parametrized by arc length – with
unit speed.

The closest analogon for paths in a Hausdorff space leads to

DEFINITION 6.1.1. Let p : I → X denote a continuous path in a Hausdorff
space X.

(1) A path p : I → X is called regular if, for every interval J ⊆ I with p|J
constant, J is either a degenerate (one-point) interval [a, a] or J = I.

(2) A continuous map φ : I → I is called a reparametrization if φ(0) =
0, φ(1) = 1 and if φ is increasing, i.e. if s ≤ t ∈ I implies φ(s) ≤ φ(t).
The subspace (and monoid under composition) of all reparametrizations
(within the mapping space I I) is denoted Rep+(I).

(3) The subspace (and group under composition) of all (increasing) homeo-
morphisms within Rep(I) is called Homeo+(I).

(4) Two paths p, q : I → X are called reparametrization equivalent if there exist
reparametrizations φ, ψ such that p ◦ φ = q ◦ ψ.

29
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It turns out that reparametrization equivalence is in fact an equivalence re-
lation, but the proof of the transitivity property is non-trivial. The equivalence
classes with respect to reparametrization equivalence are called traces in the space
X, and the quotient space T(X) = X I/Rep+(I) of P(X) = X I is called the trace space
for X. Likewise, one may consider the quotient space TR(X) = R(X)/Homeo+(I) of
regular traces.

Since one can contract paths to their start point, trace spaces as such are not
interesting from the homotopy point of view. This changes, when one restricts end
points and looks at subspaces of all (regular) paths R(X)(x0, x1) ⊂ P(X)(x0, x1)
with given end points x0, x1 ∈ X. In the non-directed case, one may restrict
attention to loops (x0 = x1) in every path-connected component, and it is then
not difficult to see using path fibrations – and proved in Fahrenberg and Raussen
[FR07, Remark 3.10]:

PROPOSITION 6.1.2. For two elements x0, x1 ∈ X in a Hausdorff space X, the
inclusion map R(X)(x0, x1) ↪→ P(X)(x0, x1) is a weak homotopy equivalence.

It is natural to ask whether every path is reparametrization equivalent to a
regular path. Since a general path can have complicated (Cantor) sets of intervals
on which it is constant, this is not clear right away. In fact, reparametrizations of
the interval have an interesting algebraic and combinatorial structure investigated
in Fahrenberg and Raussen [FR07, Section2]. Using these insights, we proved in
Theorem 3.6 of that article:

THEOREM 6.1.3. For every two elements x0, x1 ∈ X of a Hausdorff space X, the map
i : TR(X)(x0, x1)→ T(X)(x0, x1) is a homeomorphism.

The proof of this theorem is surprisingly intricate and needs a thorough study
of the monoid Rep+(I) of reparametrizations, a characterization of reparametriza-
tion by sets of stop intervals and relations between those.

REMARK 6.1.4. It seems to be difficult to prove statements about the quotient
maps q and qR in the diagram

R(X)(x0, x1)
⊂ //

qR

��

P(X)(x0, x1)

q
��

TR(X)(x0, x1)
∼=
i
// T(X)(x0, x1)

in full generality. The map qR is a quotient map for a free action of the contractible
group Homeo+(I). But it is not clear whether this map is a fibration in general; one
cannot apply the Vietoris-Begle theorem (cf Smale [Sma57]) either since the fibre
Homeo+(I) is not compact.

If the map qR is a fibration (with contractible fibers of type Homeo+(I)), then it
is a weak homotopy equivalence, and then q is so as well. This is certainly the case
when there is a (“unit speed”) section of qR leading to product decompositions
R(X)(x0, x1) ∼= TR(X)(x0, x1) × Homeo+(I) and P(X)(x0, x1) ∼= T(X)(x0, x1) ×
Rep+(I). In this case, both qR and q are actually homotopy equivalences. For a
framework where this occurs naturally, cf Section 6.2.
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6.1.2. In directed spaces. Under mild extra assumptions, a variant of Theo-
rem 6.1.3 holds for a d-space X, as well. Let ~R(X) = R(X) ∩ ~T(X) consist of the
regular d-paths. The free action of the contractible group Homeo+(X) restricts to
~R(X) and yields the quotient space ~TR(X) = ~R(X)/Homeo+(I). We need to consider
so-called saturated d-spaces:

DEFINITION 6.1.5. (Fahrenberg and Raussen [FR07]) A d-space X is called a
saturated d-space if the underlying topological space is Hausdorff and satisfies the
following additional property:

p ∈ ~P(X), ϕ ∈ Rep+(I) and p ◦ ϕ ∈ ~P(X) ⇒ p ∈ ~P(X).

This means, that if p becomes a d-path after a reparametrization, then it has
to be a d-path itself. It is easy to saturate a given d-space to yield a d-space with
possible additional d-paths; therefore it is no harm to assume that a d-space is
saturated right away.

Remark that, unlike in the classical case, the topology of the spaces ~T(X)(x0, x1)
will usually depend crucially on the choice of end points.

COROLLARY 6.1.6. For every two elements x0, x1 ∈ X of a saturated d-space X, the
map i : ~TR(X)(x0, x1)→ ~T(X)(x0, x1) is a homeomorphism.

It is not clear, in general, that the inclusion map ~R(X)(x0, x1) ↪→ ~P(X)(x0, x1)
is a homotopy equivalence. But again, as in Section 6.1.1, if inclusion has a (“unit
speed”) section, then ~P(X)(x0, x1) ∼= ~R(X)(x0, x1)× Rep+(I) and hence inclusion
is a homotopy equivalence. Section 6.2 handles a case where this is naturally the
case.

REMARK 6.1.7. K. Ziemiański [Zie12b, Section 5] has noted that spaces of d-
paths and of traces in a d-space are homotopy equivalent if one just has a (length)
function l : ~P(X)→ R that is a homomorphism with respect to concatenation and
addition, trivial only on constant dipaths, invariant under reparametrization and,
moreover and crucially, continuous.

6.2. Trace spaces in cubical complexes

Our aim is to describe additional tools that allow a closer investigation of trace
spaces ~T(X)(x0, x1) for a convenient d-space X.

Convenience has two aspects:
• There should be enough structure on the d-space to make sure that it is

possible to describe an associated trace space in terms of a finite complex.
• Important classes of d-spaces arising as models for concurrency should

be included.
The cubical complexes and their geometric realizations explained in Section 3.1.4
are candidates for convenient d-spaces, certainly satisfying the second criterion as
models for Higher Dimensional Automata. With the d-space structure explained
in Section 3.1.4, we shall explain that associated trace spaces enjoy several prop-
erties that pave the way for more detailed investigatons. In short, it is shown
in Raussen [Rau09b], that trace spaces in a cubical complex – under mild addi-
tional assumptions – are separable metric spaces which are locally contractible
and locally compact. Moreover, it turns out that they have the homotopy type of
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a CW-complex, and hence determination of topological invariants comes within
reach.

6.2.1. Arc length parametrization and consequences. The L1-arc length of
a d-path in a cubical complex was introduced and studied in Raussen [Rau09b,
Rau12b]. The signed L1-length l±1 (p) of a path p : I → �n within a cube �n is
defined as l±1 (p) = ∑n

j=1 pj(1)− pj(0). For any path p, that is the concatenation
of finitely many paths each of which is contained in a single cube, the signed L1-
length is defined as the sum of the lengths of the pieces. The result is independent
of the choice of decomposition – and of the parametrization! Moreover, it is non-
negative for every d-path and positive for every non-constant d-path.

This construction can be phrased more elegantly using differential one-forms
on a cubical complex (a special case of the PL differential forms introduced by
D. Sullivan [Sul77] in his approach to rational homotopy theory, or of the closed
one-forms on topological spaces by M. Farber [Far02,Far04]): On an n-cube e ' �n,
consider the particular 1-form ωe = dx1 + · · ·+ dxn ∈ Ω1(�n). It is obvious that
ω∂k

i e = (ik
i )
∗ωe with ik

i : |∂k
i e| ↪→ |e| denoting inclusion. Pasting together, one

arrives at a particular (closed!) 1-form ωX on every pre-cubical set X – the one-
form that reduces to ωe on every cell e in X.

The signed length of a (piecewise differentiable) path γ on X can then be
defined as l±1 (γ) =

∫ 1
0 γ∗ωX and extended to continuous paths using uniformly

converging sequences of such piecewise differentiable paths. This length
• is invariant under orientation preserving reparametrization;
• changes sign under orientation reversing reparametrization;
• is additive under concatenation and non-negative for d-paths.
• yields a continuous map l±1 : P(X)(x0, x1)→ R.

An application of Stokes’ theorem shows:

PROPOSITION 6.2.1. Two paths p0, p1 ∈ P(X)(x0, x1) that are homotopic rel end
points have the same signed length: l±1 (p0) = l±1 (p1). �

A more direct proof can be given along the lines of Raussen [Rau09b] using
the continuous d-map s : X → S1 = R/Z given by s(e; x1, . . . , xn) = ∑ xi mod 1.
We think of S1 as a pre-cubical set with one vertex and one edge from that vertex
to itself. Then the map l±1 (S1) : P(S1)→ R coincides with the map that associates
to p ∈ P(S1) the real number p̂(1) − p̂(0) for an arbitrary lift p̂ of p under the
exponential map exp : R → S1. It follows from the definition that the arc length
l±1 (X) factors for an arbitrary cubical complex X:

l±1 (X) : P(X)
s# // P(S1)

l±1 (S1)
// R

with the following consequences:

PROPOSITION 6.2.2. (1) The function l±1 : P(X)→ R is continuous.
(2) l±1 (p) ≡ s(p(1))− s(p(0)) mod 1 for p ∈ P(X).
(3) l±1 (P(X)(x0, x1)) is constant mod1 for every pair of points x0, x1 ∈ X.
(4) l±1 is constant on any connected component, i.e., on any homotopy class of paths

in P(X)(x0, x1). In particular, it induces a map l±1 : π1(X)(x0, x1) into a coset
in R mod Z.
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Similar results hold for spaces of directed paths ~P(X)(−,−) and of traces
~T(X)(−,−) (with dihomotopy classes corresponding to components).

REMARK 6.2.3. Ordinary Euclidean arc length (for piecewise differentiable
functions) is not a continuous function on a path space. A family of graphs of
oscillating functions with increasing frequency and decaying amplitude may have
constant arc length and converge to the graph of a constant function with a smaller
arc length.

We will now consider the restriction l1 : ~P(X) → R≥0 of l±1 to spaces of d-
paths. We call a d-path parametrization p : I → X natural if l1(p|[0,t]) = t · l1(p)
for all t ∈ I; such a path moves at “unit speed” with respect to l1. Naturally
parameterized d-paths form the subspace ~N(X) ⊂ ~P(X).

PROPOSITION 6.2.4. Let X denote a cubical complex; x0, x1 ∈ X.
(1) ~N(X)(x0, x1) ⊂ ~P(X)(x0, x1) is a deformation retract.
(2) All maps in the diagram

~N(X)(x0, x1) �
� //

''

~P(X)(x0, x1)

ww
~T(X)(x0, x1)

are homotopy equivalences.

PROOF. A homotopy inverse to inclusion is given by the naturalization map
nat : ~P(X)(x0, x1)→ ~N(X)(x0, x1), nat(p)(t) = p(l−1

1 (t)) – which is well-defined
(!), continuous and homotopic to the identity in ~P(X)(x0, x1) – since Rep+(I) is
convex and thus contractible. The map ~N(X)(x0, x1) → ~T(X)(x0, x1) is even a
homeomorphism. For details, we refer to Raussen [Rau09b, Section 2.4]. �

Essentially the same construction wass used in the more general setup of Zie-
miański [Zie12b].

6.2.2. General properties of trace spaces in a cubical complex. Every con-
nected component of a cubical complex has a topology that is induced from a
metric space: A chain connecting two elements x, y ∈ X in the same component
is a sequence x = x0, x1, . . . , xn = y in X such that two subsequent elements
xi, xi+1, 0 ≤ i < n, are contained in the same cell. The L1-distance d1(x, y) is then
defined as the infimum (in fact the minimum) over all sums ∑n−1

i=0 |l
±
1 (pi)| with pi

any path from xi to xi+1 in a common cell – extending over all chains between x
and y. It is easy to check that d1 is a metric.

The compact-open topology on path space ~P(X) is induced from the supre-
mum metric d1(p, q) = maxt∈I d(p(t), q(t)) for p, q ∈ ~P(X) – for paths within the
same component. By Proposition 6.2.4, trace space ~T(X) is homeomorphic to the
subspace ~N(X) and can thus be seen as a subspace of this metric subspace.

PROPOSITION 6.2.5 (Raussen [Rau09b]). Given a cubical complex X with elements
x0, x1 ∈ X.

(1) Path space ~P(X)(x0, x1) and trace space ~T(X)(x0, x1) are metrizable and thus
Hausdorff and paracompact.
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(2) If X is a finite complex, then these metric spaces are separable.

A space of d-paths is never compact – unless it only contains constant paths.
This is so since the space of reparametrizations Rep+(I) = ~P(I)(0, 1) is not com-
pact; it is not even equicontinuous, a necessary condition for compactness by the
Arzelà-Ascoli theorem (cf. e.g. [Dug66, Mun75]).

Trace spaces are in general not compact either. If the d-space X contains a non-
trivial loop based at x0 ∈ X, then the closed subspace ~T(X)(x0, x0) has d-paths
of infinitely many L1-arc lengths and thus by Proposition 6.2.2 infinitely many
connected components whence it cannot be compact. But compactness results are
available if one bounds the L1-arc lengths of d-paths:

PROPOSITION 6.2.6 (Raussen, [Rau09b]). Let X denote a finite cubical complex.
(1) A subset H ⊆ ~T(X) of bounded L1-arc length is relatively compact.
(2) For x0, x1 ∈ X, every dihomotopy class (connected component) in ~T(X)(x0, x1)

is compact.
(3) Trace space ~T(X) is locally compact.

John Milnor investigated in Milnor [Mil59] conditions for spaces that ensure
that a variety of mapping spaces have the homotopy type of a CW-complex: One may
check that these criteria can be applied to spaces of traces in a cubical complex sat-
isfying an extra condition, and we conclude that those spaces have the homotopy
type of a CW-complex.

DEFINITION 6.2.7. (Milnor [Mil59]) A topological space A is called ELCX (equi
locally convex) provided there are

(1) a neighborhood U of the diagonal ∆A ⊂ A× A and a map λ : U× I → A
satisfying
λ(a, b, 0) = a, λ(a, b, 1) = b for all (a, b) ∈ U, and
λ(a, a, t) = a for all a ∈ A, t ∈ I;

(2) an open covering of A by sets Vβ such that Vβ ×Vβ ⊂ U and
λ(Vβ ×Vβ × I) = Vβ.

LEMMA 6.2.8. (a special case of [Mil59, Lemma 4])
Every paracompact ELCX space has the homotopy type of a CW-complex. �

In fact, Milnor shows that a paracompact ELCX space is dominated by a sim-
plicial complex and thus (see e.g. Hatcher [Hat02, Appendix, Proposition A.11])
homotopy equivalenct to a CW-complex.

PROPOSITION 6.2.9 (Raussen, [Rau09b]). Let X denote a non-self linked cubical
complex (cf Definition 3.1.3) and let x0, x1 ∈ X. Then

(1) X is ELCX.
(2) The path spaces ~P(X) and ~P(X)(x0, x1) are ELCX.
(3) The path and trace spaces ~P(X), ~P(X)(x0, x1),~T(X) and ~T(X)(x0, x1) have

the homotopy type of a CW-complex.

6.3. Outlook and discussion

It is a natural but unfortunately still unachieved project to try to achieve a
generalisation of the results on reparametrizations of paths (and d-paths) to map-
ping spaces with boxes �n resp. directed boxes ~�n as their domain. A further
generalization would concern mapping spaces with domain a cubical complex.
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Later work, described in the subsequent Section 7 yields a precise cell structure
– as a simplicial complex – for a complex homotopy equivalent to both ~P(X)(x0, x1)

and ~T(X)(x0, x1); in Section 7.1 for a space X arising from a linear semaphore
model as introduced in Section 2; then, more generally in Section 7.3, for d-paths
in a general cubical complex X.





CHAPTER 7

Homotopy types of trace spaces

In this section, we report on recent work that allows to identify the homotopy
types of trace spaces of convenient d-spaces as explicitly given (generalized sim-
plicial) complexes. A resulting combinatorial description of the chain complexes
associated to these complexes allows to calculate algebraic topological invariants
for the trace space under investigation.

It should be admitted right away, though, that the simplicial complexes and
chain complexes in question will often be huge. Apart from a few vary easy
toy cases, actual calculations need the power of dedicated computer algorithms
for homology calculations. Experiments using such software (eg CHomP and
CrHom) done by Polish collaborators on top of outputs of the dedicated ALCOOL
software of French colleagues have shown limits to the calculations of, say, Betti
numbers using this approach – apart from the quintessential β0, ie the number of
components of trace spaces. For an algorithm finding and exploiting the simplicail
complexes mentioned above as well as for implementation issues, consult Section
7.1.4.

7.1. Simplicial models for trace spaces associated to semaphore models

It is easiest to describe the general idea for the spaces associated to semaphore
models explained in Chapter 2: The state space is of the form X = In \ F with a for-
bidden region F =

⋃l
i=1 Ri consisting of isothetic hyperrectangles Ri = ∏n

j=1]a
i
j, bi

j[.
To make notation as easy as possible, we concentrate on a description of trace space
~T(X)(0, 1) between bottom 0 and top 1 in the hypercube In – the generalization to
the general case ~T(X)(c, d) is not very difficult, cf Raussen [Rau12a].

The general strategy may be described as follow:

(1) Decompose X into finitely many subspaces Xk ⊂ X such that the sub-
trace spaces ~T(Xk)(0, 1) cover the entire trace space ~T(X)(0, 1) and such
that all these sub-trace spaces and all intersections of those are either
empty or contractible. The non-empty ones among those intersections form
a poset category.

(2) Apply a variant of the nerve lemma (eg Kozlov [Koz08, Theorem 15.21])
to identify the homotopy type of ~T(X)(0, 1) with the nerve of that poset
category – a finite simplicial complex.

In fact, one can do a bit better by replacing the poset category by a related smaller
category C(X)(0, 1) taking into account the product structure induced from the
collection of individual hyperrectangles; the associated complex is then a prodsim-
plicial complex in the terminology of Kozlov [Koz08].

37
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It turns out that the method used to detect deadlocks and unsafe regions
described in Section 2 comes in very handy to distinguish those sub-trace spaces
that are empty from those that are not.

7.1.1. Contractible subspaces of trace spaces. For bookkeeping purposes, we
consider the set Ml,n = Ml,n(Z/2) of all binary l× n-matrices – with 2ln elements –
and the subset MR

l,n ⊂ Ml,n consisting of the (2n − 1)l matrices with the property
that no row vector is a zero vector. We regard Ml,n and MR

l,n as poset categories with
the coordinatewise partial order ≤.

For every matrix M ∈ Ml,n, we define a subspace XM of X = In \ F:

DEFINITION 7.1.1.

XM := {x ∈ X | mij = 1⇒ xi
j ≤ ai

j or ∃k : xk ≥ bi
k}

= {x ∈ X | ∀i : (∀k xk < bi
k ⇒ (mij = 1⇒ xi

j ≤ ai
j))}.

REMARK 7.1.2. (1) Interpretation: An execution path in XM has the prop-
erty:
If mij = 1, then process j will not acquire a lock to resource i before at
least one of the others has relinquished it.

(2) Matrices in MR
l,n represent areas in which each hole is obstructed further-

more in at least one direction.

EXAMPLE 7.1.3. (1) Figure 7.1 shows, in each of the two rows, an exam-
ple of a model space X = ~I2 \ F given as the complement of the forbidden
region F consisting of two black squares. The grey-shaded areas show, in
both cases, the four subspaces XM corresponding to the four matrices

M =

[
1 0
1 0

]
,
[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

0 1
0 1

]
– in that order.

FIGURE 7.1. Two examples of a model space X and of associated
subspaces XM – the grey-shaded areas.

Remark that an empty space of d-paths ~P(XM)(0, 1) = ∅ occurs only
in the second row and second column in Figure 7.1. All other spaces
~P(XM)(0, 1) are non-empty and contractible. This can be used to explain
that the trace space ~T(X)(0, 1) has four (contractible) components in the
first case and three components in the second.
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(2) Figure 7.2 below shows a forbidden region “black box”~J3 – with~J ⊂ ~I an
interior open interval – with upper corner b surrounded by the state
space X = ~I3 \~J3. Moreover, you recognize the shaded areas
XMj ∩ (∂+ ↓b), 1 ≤ j ≤ 3, with M1 = [100], M2 = [010] and M3 = [001].

FIGURE 7.2. Intersections of XMj with the upper boundary ∂+ ↓b
of the black box ↓b with upper corner b.

Remark that every pair of these areas intersect non-trivially, whereas
the intersection X[111] = XM1 ∩ XM2 ∩ XM3 is empty. In particular,
~P(XM)(0, 1) = ∅ for M ∈ MR

1,3 if and only if M = [111]. The subsequent
analysis yields as a consequence that ~T(X)(0, 1) ' ∂∆2 ∼= S1.

The following constructions depend on an analyis of the binary operation ∨
(least upper bound) defined on Rn: a ∨ b = (max(a1, b1), . . . , max(an, bn)). This
operation restricts to an operation on In, but its restriction to X× X has values in
the forbidden region F. This is why we subdivide X into subspaces XM, M ∈ MR

l,n:

PROPOSITION 7.1.4. (1) The subspaces XM, M ∈ MR
l,n are all closed under

∨.
(2) ~T(X)(0, 1) =

⋃
M∈MR

l,n
~T(XM)(0, 1) – every trace is contained in at least one

of the restricted regions XM.
(3) Every trace space ~T(XM)(0, 1), M ∈ MR

l,n, is empty or contractible.

PROOF. For details, we refer to Raussen [Rau10].

(1) Verify that the inequalities defining XM are satisfied for a∨ b, a, b ∈ XM.
It is crucial that M ∈ MR

l,n – the inegalities “guard” every hole Ri.
(2) For a given d-path p ∈ ~P(X)(0, 1), let t+i = min{t| ∃k : pk(t) = bi

k}
for 1 ≤ i ≤ l. Then there exists j ∈ [1 : n] such that pj(t+i ) ≤ ai

j and

hence pj(t) ≤ ai
j for t ≤ t+i ; otherwise p(t) ∈ Ri on a non-empty interval

]t−i , t+i [.
(3) If ~T(XM)(0, 1) is non-empty, then, for any pair p, q ∈ ~P(XM)(0, 1), define

a one-parameter family H(p, q) : ~P(XM)(0, 1)× I → ~P(XM)(0, 1) by

Ht(p, q)(s) := q(s) ∨ p(ts), t ∈ I.
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Remark that H0(p, q)(s) = q(s) ∨ 0 = q(s), Ht(p, q)(0) = 0∨ 0 = 0,
Ht(p, q)(1) = 1 ∗ p(t) = 1 and that H1(p, q)(s) = q(s) ∨ p(s). Thus
H(p, q) defines an increasing d-homotopy (cf Grandis [Gra03a]) q 7→ p ∨
q between d-paths within ~P(XM)(0, 1). Likewise, H(q, p) is an increasing
d-homotopy p 7→ q ∨ p = p ∨ q. Their concatenation G(q, p) = H(p, q) ∗
H−(q, p) (orientations are reversed for the second d-homotopy) is a “zig-
zag” d-homotopy from q to p; in particular a path from q to p within
~P(XM)(0, 1).

The map G(−,−) : ~P(XM)(0, 1)× ~P(XM)(0, 1) → ~P(XM)(0, 1)I de-
fines a continuous section of the “end path map”

ev0 × ev1 : ~P(XM)(0, 1)I → ~P(XM)(0, 1)× ~P(XM)(0, 1);

it associates the d-homotopy G(p, q) to a pair (q, p).
Given an arbitrary p ∈ ~P(XM)(0, 1), the map G(−, p) : ~P(XM)(0, 1)×

I → ~P(XM)(0, 1) is a contraction of ~P(XM)(0, 1) to p. By Raussen [Rau09b,
Proposition 2.16] or Proposition 6.2.4(2), the trace space ~T(XM)(0, 1) is ho-
motopy equivalent to path space ~P(XM)(0, 1); hence it is also contractible.

�

7.1.2. A variant of the nerve lemma leads to a prodsimplicial complex. In
the following, we will work with a restriction of the poset category Ml,n of binary
matrices from Section 7.1.1: The relevant index category to consider here is the full
subposet category C(X)(0, 1) ⊂ MR

l,n ⊂ Ml,n consisting of all matrices M such that

(7.1) ~T(XM)(0, 1) 6= ∅.

This index category gives rise to functors D and E into Top:

DEFINITION 7.1.5. • For a non-zero binary vector m ∈ (Z/2)n, let
∆(m) ⊆ ∆n−1 denote the simplex spanned by the unit vectors ej ∈ Rn

with mj = 1.
• For M ∈ MR

l,n, let ∆(M) = ∏l
i=1 ∆(mi) ⊆ (∆n−1)l .

• The functor D : C(X)(0, 1)op → Top associates ~T(XM)(0, 1) to the matrix
M; the reverse partial order on C(X)(0, 1) corresponds to inclusion in
Top.
• The functor E : C(X)(0, 1) → Top restricts from a functor E l

n : MR
l,n →

Top; it associates to M ∈ C(X)(0, 1) ⊆ MR
l,n the simplex product ∆(M).

For this functor, the original partial order on C(X)(0, 1) corresponds to
inclusion in Top.

The functor E l
n should be considered as a pasting scheme for the product

of simplices (∆n−1)l ; the functor E becomes then a pasting scheme for a sub-
prodsimplicial complex (cf Kozlov [Koz08]) T(X)(0, 1) ⊆ (∆n−1)l to be explained
below.

Regarding the functors E andD as pasting schemes, we consider their colimits:

• colim(D) = ~T(X)(0, 1) – by Proposition 7.1.4;
• colim(E l

n) = (∆n−1)l ;
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• T(X)(0, 1) := colim(E) ⊂ colim(E l
n) = (∆n−1)l is a prodsimplicial com-

plex consisting of all those products of simplices ∆(M) that correspond
to matrices M ∈ C(X)(0, 1); in other words, the functor E is a pasting
scheme for a prodsimplicial complex with one simplex product for each
M ∈ MR

l,n giving rise to a non-empty trace space ~T(XM)(0, 1).
• As a subcomplex of (∂∆n−1)l ∼= (Sn−2)l , the prodsimplicial complex

T(X)(0, 1) has at most nl vertices, and dim(T(X)(0, 1)) ≤ (n− 2)l.

EXAMPLE 7.1.6. Figure 7.3 shows the state space X from Section 3.2.4 with a
(slightly compressed) picture of T(X)(0, 1) ⊂ ∂∆2 × ∂∆2. It consists of the shaded
parts of the torus and the isolated vertex shown four times in the covering (corre-
sponding to the contractible component of the path space with the d-path in the
illustration on the left hand side). That latter model space is clearly homotopy
equivalent to S1 ∨ S1 t ∗.

FIGURE 7.3. State space X and prodsimplicial model T(X)(0, 1)
of the path space

THEOREM 7.1.7. The trace space ~T(X)(0, 1) is homotopy equivalent to the prodsim-
plicial complex T(X)(0, 1) ⊂ (∂∆n−1)l and to the nerve of the category C(X)(0, 1); the
latter simplicial complex arises as a barycentric subdivision of T(X)(0, 1).

PROOF. First, we determine the homotopy colimits of the functors defining the
pasting schemes above. We apply the homotopy lemma (cf eg Kozlov [Koz08, The-
orem 15.12]) to the natural transformation Ψ : D ⇒ T ∗ from D to the trivial
functor T ∗ : C(X)(0, 1)op → Top which sends every object into the same one-
point space. Since the maps corresponding to Ψ are homotopy equivalences at
every object M in C(X)(0, 1) (from a contractible space ~T(XM)(0, 1) – by Propo-
sition 7.1.4(3) – to a point), the map hocolimD → hocolim T ∗ induced by Ψ is a
homotopy equivalence by the homotopy lemma. By definition, hocolim T ∗ is the
nerve ∆(C(X)(0, 1)) of the indexing category.

A similar argument shows that also the trivial natural transformation from E
to T : C(X)(0, 1)→ Top induces a homotopy equivalence of homotopy colimites.

Next, we wish to apply the projection lemma (cf Segal [Seg68, Proposition
4.1] or Kozlov [Koz08, Theorem 15.19]) to the fiber projection maps hocolimD →
colimD and hocolim E → colim E . The given cover is not open, but it was shown
in Raussen [Rau10] how it can be replaced by an open cover of homotopy equiv-
alent spaces. Hence the projection lemma ensures that these maps are homotopy
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equivalences. Altogether, the maps discussed above fit to yield a homotopy equiv-
alence

~T(X)(0, 1) = colim(D) hocolim(D)oo // hocolim(T ∗)
OO

��
T(X)(0, 1) = colim(E) hocolim(E)oo // hocolim(T )

,

since the two opposite categories C(X)(0, 1) and C(X)(0, 1)op have the same clas-
sifying space ∆(C(X)(0, 1)). In particular, T(X)(0, 1) is also homotopy equiv-
alent to the nerve ∆(C(X)(0, 1)) – which is thus a barycentric subdivision of
T(X)(0, 1). �

7.1.3. Determination of dead and of alive matrices. In the following, we call
a matrix M ∈ MR

l,n alive it ~T(XM)(0, 1) 6= ∅ and dead else. It is crucial for an
algorithmic description of C(X)(0, 1) to find a method that distinguishes dead
and alive matrices. It turns out that the determination of dead matrices may be
achieved through the method determining deadlocks and unsafe regions from
Chapter 2. But first we need to establish an easy order property:

Consider the map Ψ : Ml,n → Z/2, ψ(M) = 1 ⇔ ~T(XM)(0, 1) = ∅ and
the subset MC

l,n ⊂ Ml,n consisting of all matrices with unit vectors as columns –
minimal candidates for dead matrices. Then

PROPOSITION 7.1.8. (1) Ψ is order-preserving.
(2) Ψ(M) = 1⇔ there exists N ∈ MC

l,n with Ψ(N) = 1 and N ≤ M.

For the easy proof, we refer to Raussen [Rau10, Proposition 4.5].
The first property in Proposition 7.1.8 tells us that C(X)(0, 1) is indeed closed

under containment and its geometric realization is thus a complex.
By the second property, we can concentrateon determining the subset

D(X)(0, 1) := {M ∈ MC
l,n| Ψ(M) = 1} ⊂ MC

l,n. It allows to describe C(X)(0, 1) as
the set of matrices M ∈ MR

l,n with the property: For every matrix N ∈ D(X)(0, 1),
there is a pair (i, j) ∈ [1 : l]× [1 : n] such that mij = 0, nij = 1.

Since the map Ψ above is order-preserving, it is enough to describe the maximal
matrices in Cmax(X)(0, 1) ⊆ C(X)(0, 1) that are “just alive”: replacing just one
entry mij = 0 by an entry 1 makes such a matrix greater or equal than a dead
matrix.

The crucial idea for the determination of the dead matrices in D(X)(0, 1) ⊂
MC

l,n is a variant of the algorithm determining deadlocks and unsafe regions from
Chapter 2: The aim is to describe the subspaces XM ⊆ X as complements of a union
of extended hyperrectangles of type

Ri
j =

j−1

∏
k=1

Ĩi
k × Ii

j ×
n

∏
k=j+1

Ĩi
k, 1 ≤ i ≤ l, 1 ≤ j ≤ n

with Ĩi
k = [0, bi

k[⊃]a
i
k, bi

k[. It is then easy to see (Raussen, [Rau10, Lemma 4.2]) that
XM = ~In \⋃mij=1 Ri

j.

Furthermore, as soon as n extended hyperrectangles Ri
j, one for each 1 ≤ j ≤ n,

give rise to a deadlock, the associated unsafe region is a hyperrectangle with 0
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as the lowest vertex: the second largest coordinates (cf Section 2.2.1) are all 0
in extended hyperrectangles. In the end, everything boils down to a systematic
check of various sets of inequalities between bottom and top coordinates ai

j and

bi′
j′ of intervals in the product decomposition of the original hyperrectangles, cf

Raussen [Rau10, Section 4].

7.1.4. Implementation issues. The algorithm described above that determines
the poset category C(X)(0, 1) has been implemented in the ALCOOL tool of our
French partners at CEA Saclay, cf Fajstrup etal [FGH+12]. That latter paper con-
tains also considerations about how to extend the methods from this section to
cubical complexes that arise from the spaces XM by identifying boundary faces, ie,
complexes that are subspaces of products of a torus and a box arising by deletion
of forbidden hyperrectangles.

The ALCOOL tool produces (among other deliveries) a description of the
maximal alive matrices in Cmax(X)(0, 1). The boundary operator ∂ of an assoicated
chain complex (with Z/2 coefficients) can be implemented by a sum of terms in
which exactly one of the digits 1 is replaced by a zero. In this way, it was possible
for M. Juda (Krakow) to adapt the homology software created by the Polish group
around M. Mrozek (cf eg Kaczynski etal [KMM04]) to do homology calculations
of trace spaces.

This works well for semaphore protocols of a very moderate size. Unfortu-
nately, when the number l of obstructions grows, the model T(X)(0, 1) becomes
quickly high-dimensional – although the homological dimension of the trace space
is conjectured to be far more limited. The method thus does not yield algorith-
mically satisfactory results for large l. We work currently on modifications ot the
method – that needs new theoretical insights – with the aim to reduce the dimen-
sion of the complex and thus to make homology calculations feasible in cases of
interest.

7.2. Specific results for mutex semaphores – arity one

In the previous Section 7.1, we assumed for simplicity that none of the forbid-
den hyperrectangles Ri intersects the boundary ∂In. For semaphore models, this
is true only for semaphores of arity n− 1, giving simultaneous access to n− 1 but
not to n of the processors. For semaphores of a lower arity a (cf Section 2.1), one
shared object gives rise to a union of ( n

a+1) hyperrectangles each of which contains
n− a− 1 maximal interval factors [0, 1] – and thus intersections with the boundary.

This fact, and also a need for investigation of “intermediate” trace spaces
~T(X)(c, d), 0 ≤ c ≤ d ≤ 1, motivated the extension of the method described in
Section 7.1 to more general forbidden regions developed in Raussen [Rau12a]. We
will not try to describe the quite technical development needed in that contribution
in general; instead we list some results in the particularly interesting case where
all semaphores have arity one: Only one process can access a shared object at any
given time. This is the particularly important case of mutual exclusion or mutex
semaphores. In this case, we prove:

PROPOSITION 7.2.1. (Raussen [Rau12a, Proposition 7]) Let X = In \ F denote
the state space corresponding to a collection C of calls to semaphores of arity one. Then the
trace space ~T(X)(0, 1) is homotopy equivalent to a finite discrete space.
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We knew this already for n = 2 – in this case semaphores can only have
arity one: The prodsimplicial complexes considered in Section 7.1 are then all
subcomplexes of a product of 0-dimensional spheres.

For the state space X corresponding to a program with just a single call to
one semaphore of arity one, this can be phrased more specifically as follows: X
may be decomposed into subspaces Xπ , one for every permutation π ∈ Σn. More
specifically, we show for this case:

COROLLARY 7.2.2. (Raussen [Rau12a, Corollary 2]) The trace space is a disjoint
union

−→
T (X)(0, 1) =

⊔
π∈Σn

−→
T (Xπ)(0, 1). All n! components

−→
T (Xπ)(0, 1), π ∈ Σn,

are contractible.

The general situation (more than one call) is far more complex, but it can in
the end be translated to the discrete realm using a notion of compatible permutations:
Every semaphore h can be called several times by a number of processes; each
concurrent call c is performed by a subset Jh ⊂ [1 : n] of (at least two competing)
processes; a call c is characterized by a semaphore h(c), by the subset Jh(c) and by
one out of rj(h(c)) locking intervals on the axes corresponding to Jh(c). Every such
call c = (h; m1(h), . . . , m|Jh |(h)), 1 ≤ mj(h) ≤ rj(h), gives rise to a forbidden region
F(c). Such a forbidden region alone would give rise to a trace space homotopy
equivalent to a discrete space ΣJh(c)

⊂ Σn – the stabilizer of [1 : n] \ ΣJh(c)
, with

cardinality |Jh(c)|!.
In total, we have to study the complement of a forbidden region F =

⋃
c∈C F(c)

with C denoting the set of all calls. This suggests to study collections of permuta-
tions π = (πc)c∈C ∈ Σ = ∏c∈C ΣJh(c)

: Consider the set of boundary coordinates

ai
j, bi

j ∈ I, 1 ≤ j ≤ n, corresponding to all cconcurrent calls to the semaphores.
For every collection π = (πc)c∈C ∈ Σ = ∏c∈C ΣJh(c)

, we consider several order
relations on subsets of these real numbers:

• The natural order ≤, inherited from the reals, on numbers ai
j, bi

j with the
same subscript (direction) j;

• b
mπc(j)(h)
πc(j) � a

mπc(j′)(h)
πc(j′) for c ∈ C, j < j′ ∈ Jh(c) for the same call

c = (h; m1(h), . . . , m|Jh |(h)) ∈ C.

DEFINITION 7.2.3. We call the collection π = (πc)c∈C ∈ Σ = ∏c∈C ΣJh(c)

compatible if the transitive closure vπ of these relations is a partial order.

This notion was applied in the proof of

PROPOSITION 7.2.4. (Raussen, [Rau12a, Proposition 10]) Let X = In \ F denote
the state space corresponding to a collection C of calls to semaphores of arity one.
Then

−→
T (X)(0, 1) is homotopy equivalent to the discrete space

{π = (πc)c∈C ∈ ∏c∈C ΣJh(c)
| π compatible} ⊆ ∏c∈C ΣJh(c)

⊆ (Σn)|C|.

EXAMPLE 7.2.5. Let Xk ⊂ Ik denote the state space corresponding to the
PV-model describing k dining philosophers (each protocol of type PaPbVaVb; cf
Dijkstra [Dij71]) and Section 2.1.1. Then the trace space

−→
T (Xk)(0, 1) consists of

2k − 2 contractible components: There are 2k − 2 essentially different interleavings
of the d-paths corresponding to each individual protocol – indicating who of two
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neighbouring philosophers uses a fork first. The number 2k − 2 of schedules is, for
k > 3, considerably smaller than the number k! of ordered k-tuples of philosophers.
This is due to the fact that several philosophers can serve themselves concurrently
for k > 3. For a detailed analysis, cf Raussen [Rau12a, Example 2].

7.3. General Higher Dimensional Automata

In the preceeding sections, methods have only been worked out for semaphore
models without loops; an important, but restricted family of general Higher Dimen-
sional Automata (HDA). It turned out that some general ideas from this analysis
can be applied to the general case, as well. In particular, the general case includes
HDA with non-trivial directed loops, absolutely essential in the analysis of realistic
concurrent programs. It has to be admitted, that the ideas that we describe below
are certainly far more difficult to implement; this has not even been tried so far.

The aim is to find a combinatorial model T(X)(x0, x1) of the trace space
~T(X)(x0, x1) for a general non-self-linked (cf Fajstrup et al [FGR06], Raussen
[Rau09b]) cubical complex X. This is done in several steps:

7.3.1. Trace spaces for non-looping cubical complexes. First we study trace
spaces for non-self-linked cubical complexes without (non-trivial) d-loops and look
for a replacement of the subspaces XM from Section 7.1. These turn out to be
(maximal) non-branching (sub)-complexes:

A (finite) cubical complex (geometric realization of a pre-cubical set) X will be
called non-branching if it satisfies the following additional property

(NB): Every vertex v ∈ X0 is the lower corner vertex of a unique maximal
cube cv in X. This maximal cube cv contains thus all cubes with lower
corner vertex v as a (possibly iterated) lower face.

PROPOSITION 7.3.1. For every pair of elements x0, x1 in a non-branching cubical
complex X, the trace space ~T(X)(x0, x1) is either empty or contractible.

Instead of using the least upper bound (∨) operation (essential in the proof of
Proposition 7.1.4), we apply the diagonal directed flow FX : X ×R≥0 → X: Every
element x ∈ X is contained in the interior or the lower boundary of a uniquely
determined maximal cube, i.e., the maximal cube cv of its lowest vertex v. On
the interior and the lower faces of such a cube cv, this flow is locally given by the
diagonal flow:

(7.2) FX
c (c; (x1, . . . , xn); t) = (c; x1 + t, . . . , xn + t) for 0 ≤ t ≤ 1− max

1≤i≤n
xi.

On a maximal vertex v1 with c = cv1 = v1 (a deadlock), FX
c is defined to be constant

in the variable t for 0 ≤ t.
Note that property (NB) is essential: necessary and sufficient for pasting diago-

nal flows together from flows on individual cubes. Diagonal flows on intersecting
different maximal cubes do not fit together on intersections of their lower bound-
aries. For a different description using a diagonal 1-form ω as in Section 6.2.1, we
refer to Raussen [Rau12b].

One may now construct a cover of a general cubical complex X by maximal
subspaces satisfying property (NB) and identify ~T(X)(x0, x1) with the nerve of
that covering; cf Raussen [Rau12b, Theorem 4.2]. To determine such maximal (NB)
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subspaces algorithmically, one investigates the branch points in the 0-skeleton X0
of the complex X – with several maximal cubes having that branch point as lowest
vertex – and associated branches, one for every such maximal cube.

Simple examples show that these smaller branch subspaces may have (sec-
ondary) branch points. Hence, one has to iterate the construction. One ends up
with a poset category C(X)(x0, x1) the objects of which are given by so-called coher-
ent and complete sequences of first and higher order branch points and associated
choices of branch cubes. This category can be realized as a colimit T(x0, x1) of
spaces each of which is a product of products of simplices and of cones on such
products. In analogy with Theorem 7.1.7, one obtains

THEOREM 7.3.2. For a cubical complex X without non-trivial loops and points
x0, x1 ∈ X, the trace space ~T(X)(x0, x1) is homotopy equivalent to

(1) the nerve ∆(C(X)(x0, x1)) of the poset category C(X)(x0, x1), and
(2) the complex T(X)(x0, x1).

For the proof, we refer to Raussen, [Rau12b, Theorem 4.11].

7.3.2. Trace spaces for cubical complexes with directed loops. We outline
how previous metods can be adapted to trace spaces in a general cubical complex
X with directed loops using suitable coverings of the complex X:

We exploit the d-map s : X → ~S1 ∼= R/Z introduced in Raussen [Rau09b] and
described here in Section 6.2.1: just glue the maps s(x1, . . . , xn) = ∑ xi mod 1 on
individual cubes. Consider the pullback X̃ in the pullback diagram

X̃ S //

π

��

X×R

id×exp
��

X
id×s
// X× S1

.

The map π is a covering map with unique path lifting. Since exp can be
interpreted as a semi-cubical map, X̃ can be conceived as a cubical complex: Every
cube e in X is replaced by infinitely many cubes (e, n), n ∈ Z; the boundary maps
are given by ∂−(e, n) = (∂−e, n), ∂+(e, n) = (∂+e, n + 1).

The directed paths on X̃ are those that project to directed paths in X under
the projection map π. Remark that the maps exp and s – and hence π and π2 ◦ S
– preserve the signed L1-arc length l±1 from Section 6.2.1. Moreover, the L1-length
l±1 (p) of a path p in X with lift p̃ can be expressed via the d-map S : X̃ → X×R in
the pullback diagram as follows:

LEMMA 7.3.3. (1) l±1 (p) = π2(S( p̃(1)))− π2(S( p̃(0))).
(2) The map π2 : X̃ → R is a d-map; hence:
(3) X̃ has only trivial directed loops.

Another method to construct this covering is to consider the homotopical length

map π1(X)
l±1→ Z→ 0 (cf Proposition 6.2.2) from the non-directed classical funda-

mental group of the cubical complex X. Consider the cover X̃ ↓ X with fundamen-
tal group π1(X̃) = KE π1(X) the kernel of the homotopical length map l±1 . It can
be given the structure of a cubical complex, and every element x in X is covered
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by elements xn ∈ X̃; one for every n ∈ Z. The projection map π : X̃ ↓ X preserves
the signed L1-arc length. A path in X̃ is directed if and only if its projection to
X is directed. There are no non-trivial directed loops in X̃ – these need to have
L1-length 0!

For a general cubical complex X with length cover X̃ we obtain the following
decomposition result:

PROPOSITION 7.3.4. For every pair of points x0, x1 ∈ X, trace space ~T(X)(x0, x1)

is homeomorphic to the disjoint union
⊔

n∈Z ~T(X̃)(x0
0, xn

1 ).

Since the covering X̃ has only trivial loops, Proposition 7.3.4 allows us to apply
the methods from Section 7.3.1 to describe the homotopy type of trace spaces
~T(X)(x0, x1) in an arbitrary cubical complex X.

In practice, we have so far investigated simple semaphore models with loops
of the form X = Tn \ F with Tn = (S1)n an n-torus and F a collection of forbidden
hyperrectangles. For such a space, one may consider the covering

(7.3) X̃ �
� //

��

Rn

exp
��

X �
� // Tn

that arises as pullpack from the universal cover of the torus Tn – a far bigger
gadget. The universality property ensures that (d-)paths, that are not homo-
topic in the torus Tn, lift to (d-)paths with different end points. The methods
from Raussen [Rau10] can be applied to X̃ immediately. It is easier to get hold
on periodicity properties in this setting; cf Fajstrup etal [FGH+12], Raussen and
Ziemiański [RZ14] and the following Section 7.4.

7.4. Explicit homology calculations for specific path spaces – with loops

It seems to be difficult to implement the considerations from Section 7.3 above
in a working programme for spaces of directed paths with non-trivial directed
loops. This is why we have attempted to investigate simple examples in order
to find clues for calculations. One of these examples concerns path spaces in a
Euclidean torus Tn = (~S1)n from which just one rectangular hole In has been
removed: X = Tn \ In.

The covering space arising from the construction (7.3) has the description
X̃ = Rn \ ⊔c− 1

2 1∈Zn In
c with Ic a homothetic hyperrectangle centered at c – and

edges of length less than 1. The space X̃ is homotopy equivalent to the (n− 1)-
skeleton of Rn seen as a cubical complex – with vertices in the integral points.
Moreover, inclusion and retraction establishing such a homotopy equivalence can
be chosen to preserve directed paths.

Also in this case it is easy to see, cf Raussen and Ziemiański [RZ14, Section
1.5] that the space of directed loops ~P(X)(x0, x0) based at x0 ∈ X is homotopy
equivalent to the disjoint union of spaces ~P(X̃)(0, k), k ≥ 0, k ∈ Zn. For n > 2,
this decomposition is also a decomposition into path components; for n = 2, ~P(X)
is homotopy discrete cf Raussen and Ziemiański [RZ14, Section 1.7] and Corollary
7.4.2.
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For n = 3, an attempt to calculate the homology of ~P(X̃)
(k,l,m)
0 by “brute force”

using the poset description for the cell complex of the prod-simplicial complex
homotopy equivalent to that path space as in Section 7.1 – even using sophisticated
homology software – failed already for k = l = m = 3. The prod-simplicial
complex in this case has dimension klm(n− 2); its homological dimension is only
min{k, l, m}(n − 2). This gap was one of the motivations for looking for better
descriptions of these path spaces.

In this specific case, we could show that at least the homology and the coho-
mology of the relevant path spaces ~P(X̃)(0, k) are, loosely speaking, algebraically
generated by the cubical holes in the complex. Every such hole is characterized by
the smallest integral vertex l ∈ Zn above it; this integral vector satisfies 0� l ≤ k
(with a� b⇔ ai < bi for all i).

Let Z∗(X̃)(0, k) denote the free graded exterior Z-algebra with generators the
holes 0� l ≤ k; every generator has grade n− 2. Let I(X̃)(0, k) denote the ideal
generated by products l1l2 with l1 6� l2 and l2 6� l1. Let F∗(X̃)(0, k)) denote the
quotient algebra F∗ = Z∗/I∗; a (graded) free abelian group with a basis consising
of ordered cube sequences [a∗] = [0 � a1 � a2 � · · · � ar ≤ k] (in dimensions
r(n− 2)) in X̃.

THEOREM 7.4.1. Let n > 2 and k ≥ 0.

(1) Homology H∗(~P(X̃)(0, k)) is isomorphic to F∗(X̃)(0, k) as a graded abelian
group.

(2) Cohomology H∗(~P(X̃)(0, k)) is isomorphic to F∗(X̃)(0, k) as a graded ring.

The proof of Theorem 7.4.1 – first for homology, then refined to cohomology
– relies on the fact that the path spaces ~P(X)(0, k) can be shown to be homotopy
equivalent to the homotopy colimit of the system of spaces ~P(X)(0, k− j) over the
poset category Jn with objects the non-identical binary vectors j ∈ {0, 1}n, 0 <
j < 1. Similarly, the graded abelian group F∗(X̃)(0, k) is a colimit of graded
abelian groups F∗(X̃)(0, k− j) over the same category. This allows to construct a
homomorphism Φ : F∗(X̃)(0, k)→ H∗(~P(X̃)(0, k)).

The final steps of the proof in Raussen and Ziemiański in [RZ14, Section
3] establishing that Φ is indeed a graded isomorphism apply induction using
a Bousfield-Kan [BK72] spectral sequence argument. Using Theorem 7.4.1, it is not
difficult to calculate the Betti numbers of the relevant path spaces:

COROLLARY 7.4.2. For n > 2 and k = (k1, k2, . . . , kn) ≥ 0, Betti numbers are
given as

dim Hr(n−2)(~P(X̃)(0, k)) =
(

k1

r

)(
k2

r

)
. . .
(

kn

r

)
.

Homology is trivial in all other dimensions.
For n = 2, ~P(X̃)(0, (k1, k2)) consists of (k1+k2

k1
) contractible components.

The calculation of the (co-)homology of trace spaces in Theorem 7.4.1 can eas-
ily be generalized to a cubical subcomplex of Rn containing the (n− 1)-skeleton
(possibly with fewer holes), cf Raussen and Ziemiański [RZ14]. Further generaliza-
tions and other applications of the homotopy colimit constructions are still under
consideration.
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7.5. Outlook and discussion

Several lines of research are currently under consideration:
Section 7.1: We would like to construct a smaller poset category as a re-

placement for C(X)(0, 1) such that the classifying space (nerve) has the
same homotopy type. The background is that, in many cases, spaces
XM, XM′ may be equal for different matrices M, M′ ∈ Ml,n.

Section 7.2: So far, we have interpreted the forbidden region Fa correspond-
ing to a semaphore of (general) arity a as a union of hyperrectangles.
Instead, one may view the forbidden region In \ Fa as homotopy equiva-
lent (preserving d-paths and dihomotopies) to the a-skeleton of In.

Recent discussions with Fajstrup, Ottosen and Ziemiański show that
the path space ~P(X)(In \ Fa)(0, 1) is homotopy equivalent to a configuation
space, the so-called “a-equal manifold” with a topology (in particular its
homology) has been studied by Björner and Welker [BW95].

Section 7.4: K. Ziemiański observed recently that it is possible to realize
every! finite simplicial complex as the trace space of a suitable semaphore
model up to homotopy. This result – quite easy to obtain – shows:
• There are no limits to the (combinatorial) “expressiveness” of linear

semaphore models.
• It is undecidable whether two HDAs have the same expressiveness.





CHAPTER 8

Related Work. Outlook

8.1. Related Work

Directed Algebraic Topology has been an active research field pursued by
a small community for about twenty years. As mentioned in the introduction,
the original motivation was an attempt to model and study problems in con-
currency theory in Computer Science. The oldest source studying connections
between topology and order notions seems to be L. Nachbin’s Topology and Or-
der [Nac65] that served as background for our first attempt regarding lpo-spaces.
V. Pratt’s idea [Pra91] to use geometric and homotopy notions, later refined by
van Glabbeek [vG91], inspired Goubault and Jensen [GJ92] to make use of homol-
ogy tools. Gunawardena [Gun94] had the first clear-cut application of homotopy
methods: a proof that the 2-phase locking method in database engineering is safe;
cf Section 2.1.3.

From there on, developments diversified quickly. The following short guide to
the literature mentions very briefly the work of several authors on mathematical
perspectives motivated by concurrency and not covered in the previous sections.
It is certainly biased and non-comprehensive. We start with work published by
coauthors:

8.1.1. Approaches by other authors.

Lisbeth Fajstrup: Lisbeth Fajstrup (partially in collaboration with Sokołow-
ski) investigated deadlocks and associated unsafe regions for semaphore
models with directed loops [Faj00, FS00] and showed that several “de-
loopings” may be necessary before the unsafe region is detected correctly.
She developed and investigagted the directed version of a covering space
in [Faj03, Faj10] and gave first results for directed cubical approximation
in [Faj05]. The paper [FR08] investigates directed coverings from a cat-
egorical perspective. In [Faj14], the author has a close look at the trace
space of a torus with holes and relates it to automata theoretic methods.

Éric Goubault, Emmanuel Haucourt, Sam. Mimram and Sanj. Krishnan:
Modeling concurrency via Higher Dimensional Automata is originally
an idea of Vaughan Pratt’s [Pra91]. It was translated into the mathemat-
ical language of (labelled) cubical complexes by Éric Goubault ( [GJ92,
Gou93,Gou95,Gou01]. We have already taken account of Goubault’s sur-
vey article [Gou00] from 2000 followed up by another survey [Gou03] in
2003. Several joint papers with Emmanuel Haucourt [GH05, GH07] and
with Sanjeevi Krishnan [GHK09, GHK10] and also by Haucourt [Hau06]
are devoted to definitions and properties of components in varying con-
texts and also of categories describing relations them. Krishnan invented

51
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streams in [Kri09] (cf Section 3.1.3) and proved directed simplicial and
cubical approximation theorems in [Kri13] (cf Section 3.2.4). The imple-
mentation of many concepts and ideas in the software tool ALCOOL is
due to Éric Goubault, Emmanuel Haucourt and Samuel Mimram.

Krzysztof Ziemiański: Krzysztof Ziemiański defines (directed) d-simplicial
complexes and constructs and investigates a pre-cubical model for spaces
of d-paths or traces in such a complex [Zie12b] – in the same spirit, but
more intricate than our construction from Section 7.1. In [Zie12a], he
shows that suitable categories of “good” d-spaces and of streams are
equivalent and enjoy important properties (complete, cocomplete, Carte-
sian closed). A similar investigation can be found in the article [HHH13]
authored by the Hirschowitz family.

Peter Bubenik: Peter Bubenik and Krzysztof Worytkiewicz attempt in
[BW06] to reconcile the category of lpo-spaces (cf Section 3.1.2) with
the tools and techniques of (topological) model categories. In [Bub09],
Bubenik studies full subcategories of the fundamental category of a d-
space with respect to sets of extremal points. In [Bub12], he produces
alternative ways of giving trace spaces a combinatorial structure.

Philippe Gaucher: Philippe Gaucher has authored a long series of papers
[Gau00,Gau01,Gau02,Gau03d,GG03,Gau03a,Gau03c,Gau03b,Gau05c,
Gau05a, Gau05b, Gau06a, Gau06b, Gau07, Gau08a, Gau08b, Gau09]
[Gau10a, Gau10b, Gau11] investigating Higher Dimensional Automata
and categories of such, mainly from a model category perspective. In par-
ticular, he defines categories of flows and two types of directed homotopy
equivalences, the so-called S- and T- homotopy equivalences between
flows. In recent papers, labelling and higher dimensional transition sys-
tems have been taken into consideration, as well.

Marco Grandis: The many research contributions by Marco Grandis have
been focused on category theory through many years; most of them are
motivated by topological and geometrical considerations in a wide range
of set-ups. For several years, he has worked in directed algebraic topol-
ogy; he is the author of the only book [Gra09] on the subject – written
very systematically and with great care. This book builds on many previ-
ous articles [Gra03a,Gra02,Gra03b,Gra03c,Gra04,Gra05,Gra06,Gra06b,
Gra06a, Gra06c, Gra06, Gra07] without exhausting them.

John F. Jardine: Rick Jardine is a prolific homotopy theorist, amongst others
well-known for his book [GJ99] (with P. Goerss) on simplicial homotopy
theory. He is mentioned here for his pre-print [Jar02] on cubical homo-
topy theory and for his investigation [Jar10] on path categories leading
to algorithmic determinations of fundamental categories.

Thomas Kahl: Thomas Kahl is noted for two contributions [Kah06, Kah12]
to directed algebraic topology. In the first, he investigates certain fibration
and cofibration category structures on the category of po-spaces under a
given pospace. In the second, he investigates collapsing operations that
may reduce the size of a d-space without affecting the homotopy type of
associated trace spaces.

8.1.2. Distributed Computing and Combinatorial Algebraic Topology.
Distributed Computing is a different area of theoretical Computer Science that
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has profited from relations with combinatorial algebraic topology. Roughly speak-
ing, a distributed system is a software system in which components located on
networked computers communicate and coordinate their actions by passing mes-
sages. A theoretical analysis becomes particularly challenging and interesting
when coordination is low; in particular, when participating processors have only
private memory and when they can crash without the others being able to observe
that.

A typical problem that could be analyzed with tools from combinatorial alge-
braic topology is the algorithmic unsolvability of the so-called consensus problem
(where processors have to agree on one of their inputs). Important contributions
to this area earned their authors Herlihy and Shavit [HS99], resp. Saks and Za-
haroglou [SZ00] the Gödel prize in 2004, awarded jointly by the European As-
sociation for Theoretical Computer Science and the Association for Computing
Machinery.

A first source of inspiration for us was the survey book by Herlihy and Rajs-
baum [HR95] followed by a long list of articles [HRT98,CHT99,HR99,HS99,HR00,
HRT00,CHLT00,GHR06,GHP09,Her10] reasoning with tools from combinatorial
algebraic topology on the (non)-solvability of (simplicial) tasks using simplicial
protocol complexes extending a given simplicial input complex.

We are looking forward to the comprehensive textbook by Herlihy, Kozlov
and Rajsbaum [HKR14] on the subject. It is a challenge to compare and to attempt
finding formal relations between the use of tools from combinatorial algebraic
topology in Distributed Computing and in Concurrency Theory.

8.1.3. Morse Theory. Relativity Theory. Another sort of inspiration came
from the application of ideas from Morse theory applied to relativity theory – with
causal or time-like curves playing the role of d-paths. This theme had been covered
quite extensively in Penrose’s classical monograph [Pen72] that includes important
notions like the domain of dependence.

Rafal Wisniewski’s Ph.d.-dissertation [Wis05] is not in relativity theory, but
it applies Morse theory ideas to the analysis of (almost) flow lines of gradient-
and non-gradient vector fields. He allows limited perturbations from the flow
(within a cone) in the definition of a d-path. A follow up paper by Raussen and
Wisniewski appeared as [WR07]. The borderline between dynamical systems and
directed topology deserves certainly more attention.

8.2. Outlook: Applied and Computational Algebraic Topology

The research field directed algebraic topology (with an eye to several fields of
applications) is one of the areas composing the European research network ACAT:
Applied and Computational Algebraic Topology. This network allows to facilitate
many of the conferences in the area and to sponsor visits between researchers in
the area. The network cooperates with researchers all over the world.

In the United States, applications of algebraic topology within engineering
and science disciplines cover already a broad and established research spectrum.
This is for instance witnessed by the entire academic year 2013 – 2014 devoted to
Scientific and Engineering Applications of Algebraic Topology at the Institute of
Mathematics and its Applications in Minneapolis, MN, USA.

Important research activities (apart from directed topology) in the ACAT net-
work include

http://www.esf.org/acat
http://www.ima.umn.edu/2013-2014/
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• Computational Algebraic Topology – including in particular research on
persistent homology and its many applications; moreover topological
aspects of visualization and shape analysis.
• Topological Robotics
• Stochastic Topology
• Applied Combinatorial Algebraic Topology.

It is impossible to cover these research areas within a few sentences; a list of
survey books and articles must suffice here:

• Zomorodian [Zom05] and Edelsbrunner and Harer [EH10] on computa-
tional algebraic topology and, in particular, persistent topology
• Farber [Far08] on topological robotics
• Costa, Farber and Kappeler [CFK12] on stochastic topology
• Kozlov [Koz08] on combinatorial algebraic topology.

Cooperation and cross-fertilization between various subcommunities in ap-
plied and computational algebraic topology seem to be of utmost importance for
future developments.
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Birkhäuser, 1999.

[GM03] M. Grandis and L. Mauri, Cubical sets and their site, Theory Appl. Categ.
11 (2003), no. 8, 185–211.
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Dansk Resumé

Denne afhandling omhandler bidrag til et nyt forskningsfelt: Algebraisk Topologi
med retning. Den giver et overblik over sytten forskningsartikler som blev pub-
liceret inden for området i årene 1998 – 2013.

Algebraisk topologi med retning er et forholdsvis nyt forskningsområde. I
“klassisk” algebraisk topologi (med sine mange forbindelser til geometri, analyse,
algebra, fysik mv.) ræsonnerer man abstrakt i termer af kombinatorik, algebra og
kategorier om emner af en geometrisk natur. Når man tager retninger med i be-
tragtning, tillader man ikke alle geometriske stier; specielt kan man som regel ikke
invertere en sti (“løbe baglæns”). Dette ødelægger muligheden for at oversætte
umiddelbart til de fleste vante algebraiske strukturer.

Indtil videre kommer den vigtigste motivation for rum og stier med retning
fra teorien om parallelitet (“concurrency”) i den teoretiske datalogi: Når flere
processer kan arbejde sig igennem hver sit program uden at der på forhånd er
fastlagt en rækkefølge ligger det ikke fjernt at finde på geometriske modeller hvor
stierne har en retning: Tiden kan ikke gå baglæns! Et vigtigt spørgsmål som
blev behandlet i starten af arbejdet var hvordan man algoritmisk hurtigt finder
“deadlocks” og tilhørende usikre regioner hvorfra man ikke kan nå i mål.

Man kan både undersøge specifikke modeller og også mere generelle rum
hvis egenskaber det gælder om at kaste lys på. Det giver sig selv at man ofte ikke
umiddelbart kan bruge metoderne fra den “klassiske” algebraiske topologi til ret
meget. Man kan ikke engang definere en fundamentalgruppe for stier med retning.
Men nogle af fagets metoder kan alligevel bringes i anvendelse – når først man
har stillet spørgsmålene rigtigt.

En stor del af undersøgelserne i afhandlingen handler om at beskrive og analy-
sere rum af d-stier – stier har en retning, rum af stier har ikke – med udgangspunkt
i viden om det såkaldte tilstandsrum som stierne bevæger sig i. Desuden ønskes
information om stirummenes indbyrdes sammenhæng givet information om en-
depunkterne.

Man kan sige en del “kategorielt” om dette emne (se især publikationen
[Rau07] for ret generelle d-rum). Men når man skal foretage egentlige udreg-
ninger af topologiske invarianter for stirum, så lykkes det indtil videre kun for
konkrete tilstandsrum; dem som er modeller for parallele beregninger. Her er det
til gengæld lykkedes at beskrive en direkte vej fra en model af tilstandsrummet til
beskrivelse af stirummet (udførelser af et parallelt program) som et kombinatorisk
beskrevet simplicial kompleks (se [Rau10,Rau12a,Rau12b,FGH+12]) med relevante
topologiske invarianter. Den sidstnævnte artikel beskriver implementeringen af
metoden i en praktisk anvendelig algoritme!
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