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Monopod bucket foundations under cyclic lateral loading 

 

Abstract  

The monopod bucket foundation can be a cost-reducing sub-structure for offshore wind turbines. To avoid 

problems during the turbine operation, the long-term effect of cyclic loading must be considered in the design 

of the foundation. In this paper a 1g testing rig is adopted to extend the knowledge on bucket foundations 

under lateral cyclic loading. The test setup is described in detail and a comprehensive experimental 

campaign is presented. The foundation is subjected to cyclic overturning moment, cyclic horizontal loading 

and constant vertical loading, acting on the same plane for thousands of cycles. Three buckets with different 

embedment ratios are tested. The data interpretation is focused on the long-term permanent rotation of the 

foundation and, particularly, on understanding how the controlling variables influence the potential for 

rotation accumulation. New and more general parameters of an empirical model predicting the long-term 

plastic rotation are proposed on the base of the experimental results.    

 

List of notation  

 ‘              effective unit weight of the sand 

Dr              relative density of the sand 

D              foundation diameter 

d              foundation embedment (skirt length) 

t                     wall thickness 

fL                     cyclic loading frequency 

N              number of cycles 

H              horizontal load acting on the load reference point 

h              eccentricity of the horizontal load 

M              overturning moment acting on the load reference point M = hH 

MR              ultimate monotonic moment 

Mmax , Mmin maximum and minimum cyclic overturning moment  

Hmax , Hmin maximum and minimum horizontal load 

V                     vertical load acting on the load reference point 

N              rotational displacement of the foundation after N cycles 

0              rotational displacement of the foundation at N = 1 

s                     rotational displacement of the foundation under monotonic loading when M = Mmax 

T                     rotation tolerance 

f                     rotational displacement at the end of a cyclic test 

N

~
                      normalised accumulated rotation 

ζb                     cyclic loading magnitude ratio, ζb = Mmax / MR 

ζc                     cyclic loading ratio, ζc = Mmin / Mmax 

Tb, Tc,              parameters of the empirical model                       



2 
 

1. Introduction 

To make offshore wind competitive in the energy market, cost-effective solutions for foundations and 

installation technologies must be developed. The monopod bucket foundation, given the right soil profile, can 

be a cost-reducing sub-structure for offshore wind turbines. This steel structure includes a bucket foundation 

and a conical shaft. The shaft is the interface between the support structure and the turbine tower. As 

opposed to monopile foundations, no transition piece is needed. The bucket foundation, known also as 

suction caisson, is a shallow skirted foundation with circular cross section of diameter, D and skirt length, d. 

This foundation concept has been adopted for decades in the oil and gas industry as an alternative to drilling 

or driving for anchoring mooring buoys (Senpere and Auvergne, 1982) or as a foundation for jackets (Bye et 

al., 1995). A picture of a monopod bucket foundation placed on the deck of an installation vessel is shown in 

Figure 1. This full-scale structure was installed at Dogger Bank, in the British Sector of the North Sea. The 

dimensions of this structure are: D = 15 m, d = 7.5 m and wall thickness, t = 30 mm.  

The installation consists of two phases: first, the foundation penetrates the seabed for a few meters by its 

own weight; second, suction assisted penetration is carried out until the skirt is fully embedded. This 

installation technology prevents the generation of noises that can be harmful for marine mammals. 

Furthermore, such installation process can be fully reversed, ensuring the full recovery of the structure at the 

end of the lifetime. DNV (2011) states that repeated loading may lead to irreversible soil deformation (and 

thus irreversible foundation displacement) that could jeopardize the turbine operation. When designing in the 

serviceability limit states (SLS) or in the fatigue limit states (FLS), this is to be accounted for by calculating 

the cumulative displacement with an adequate method. 

 

 

Figure 1: Large-scale monopod bucket foundation on the deck of a jackup vessel 
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Another important consequence of repeated loading is that it may lead to changes in the natural frequency of 

the system and, in the worst case, trigger resonance.  

The offshore environment presents adverse loading conditions, i.e. large overturning moment, M, and 

horizontal load, H, due to the action of waves. The condition is worsened for offshore wind turbines as these 

are light structures with M/(VD) typically larger than 1. 

 

The drained and undrained response of shallow embedded foundations under general loading is widely 

explored in literature (Gourvenec, 2007; Villalobos et al., 2009, Barari et al. 2012, Achmus et al. 2013b, 

Ibsen et al., 2014a, Ibsen et al., 2014b). Andersen (2009) presents a framework to estimate the settlements 

of shallow foundations subjected to cyclic loading due to storms. A well-established method to predict the 

response of offshore foundations under long-term cyclic lateral loading (i.e. millions of load cycles) does not 

exist yet. Lately, many research contributions have been given to this issue. Numerical models of monopiles 

were developed by Achmus et al. (2009) and subsequently by Depina et al. (2013). Monopiles were also 

tested in single gravity physical models by Peralta (2010) and Taşan et al. (2011). Centrifuge modelling has 

also been attempted. Watson and Randolph (2006) carried out an experimental campaign testing a bucket 

foundation and deriving fatigue contours for few hundreds of cycles. More recently Klinkvort and Hededal 

(2013), Garnier (2013) and Kirkwood and Haigh (2014) run lateral cyclic loading centrifuge tests on 

monopiles. Achmus et al. (2013a) run numerical simulations of bucket foundations under cyclic loading 

investigating the effect of load magnitude, relative density and embedment ratio, d/D. 

Comprehensive state of the art studies on cyclic loading of offshore foundations are Jardine et al. (2012), 

Randolph (2012) and Andersen et al. (2013).  

 

This paper deals with the issues related to permanent displacements of bucket foundations engendered by 

cyclic loading. In particular, the accumulation of rotational displacement is addressed, as recommended by 

standards (DNV, 2011) and industry practice.  A similar study on this issue has been conducted by Zhu et al. 

(2013). They performed tests on dry loose sand with a bucket of D = 200 mm, and d/D = 0.5 under two 

different vertical loads. The experimental data was interpreted with the empirical model proposed in LeBlanc 

et al. (2010) and the parameters of the model were found independent of the vertical load applied. 

The main objective of this study is to generalise the method to buckets with three different embedment ratios. 

A comprehensive experimental campaign concerning bucket foundations subjected to lateral cyclic loading is 

presented. The physical model design is thoroughly described and the experimental results are interpreted. 

The effect of loading frequency and relative density on the pattern of response is addressed. The post-cyclic 

behaviour and the robustness of the foundation in terms of cyclic loading are also investigated. In order to 

add practical value to the study, cyclic capacity curves are constructed and used in a design case.  

 

2. Physical model design 

2.1 Scope and aims of the modelling 

Conducting geotechnical experiments in 1g is a delicate issue and, when designing the experimental setup, 

all the choices must be choices of meaning. The geotechnical system taken as prototype to resemble in 
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small-scale experiments is a bucket foundation supporting a 5 MW wind turbine installed in dense silica 

sand. The diameter of the foundation is D = 15 m while the moment to horizontal load ratio is M/(HD) = 2. 

The scale of the model is 1:50. 

In general, when the results of small-scale experiments are to be scaled up, adequate scaling laws are 

required. In this work, rather than scaling up results directly to prototype scale, the intention is to capture 

general behavioural patterns of the foundation. To recreate similar responses in two different scales, non-

dimensional groups are to be retained between small-scale and prototype-scale. Three simple dimensionless 

groups were considered in this study: M/(HD), t/D and V/(  ‘D3) where   ‘  is the effective unit weight of the 

sand and V is the vertical loading. In real-scale wind turbine structures V includes the self-weight of the 

foundation and the weight of the whole superstructure. A realistic ratio V/(‘D3) for large-scale bucket 

foundations supporting wind turbines ranges between 0.1 and 1. The typical value of t/D lies in the range 

0.002 – 0.003. As these groups were to be conserved, the physical model was designed accordingly. For the 

entire experimental campaign M/(HD) was set to 1.98 while V/(‘D3) was between 0.73 and 0.89, depending 

on the bucket tested. The non-dimensional group t/D was 0.005 for all the buckets. Although the latter 

exceeds the maximum value suggested by industry practice, it is deemed that this group would affect the 

model accuracy only in case of differences in order of magnitude. 

Since the pore pressure development is not of primary interest in this study, the loading frequency was not 

scaled and only tests conducted in substantially drained conditions were interpreted with the empirical 

model. The drainage condition of the tests was evaluated on the base of the findings of Foglia et al. (2013) 

as explained further in the paper. 

It is well-known that realistic shear strength of the soil in 1g models can be achieved by increasing the void 

ratio of the soil we would have in large-scale. In so doing the path toward the critical state line of the soil in 

small-scale would resemble that in large-scale and dilation would be suppressed (Cerato and Lutenegger, 

2007, LeBlanc et al., 2010, Wood, 2004). However, here the aim is not to scale up the ultimate capacity and 

the stiffness of the monotonic behaviour. If serviceability and fatigue limit state design situations are 

investigated, the load magnitudes involved are limited and no dilation is likely to occur. Thus, it is argued that 

preparing the sand at very low Dr would result in samples more prone to disturbance and, more importantly, 

would lead to overly conservative results in terms of permanent displacements as a result of an unrealistic 

potential for compaction. For this reason, in an attempt to better capture the displacements accumulation, the 

relative density of the prototype-scale is conserved in small-scale. The samples were densely packed also to 

obtain general failure of the foundation and gain thereby a clear reference failure moment from the 

monotonic tests. 

The aim of this experimental campaign was to extend the previous analysis of Zhu et al. (2013) by changing 

some essential features of the model. The novel analysis concerns buckets of three different bucket 

geometries, the effect of loading frequency and the post-cyclic behaviour. Besides, the soil sample is water 

saturated, densely packed and the foundations tested are 100 mm larger in diameter.  

 
2.2 Description of the model 

The experimental rig used to carry out the testing program was designed and constructed at Aalborg 
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University. The system was designed on the base of the rig employed by LeBlanc et al. (2010). A sketch of 

the equipment is illustrated in Figure 2. A sand box (1600 x 1600 x 1150 mm) and a loading frame are the 

main components of the setup. The sand box is made of steel and is equipped with a drainage layer at the 

bottom. The drainage system consists of perforated pipes, 100 mm of drainage material (gravel) and sheets 

of geotextile dividing the layers. The pipes let the water evenly within the sand container. The water is 

provided by a tank and the water gradient is regulated with valves. The loading frame surrounds the sand 

box and provides a firm support to the equipment for monotonic and cyclic loading. Two screw jacks are 

mounted on the sides of the loading frame, one for lateral monotonic loading and the other for the foundation 

installation. To apply cyclic loading to the foundations, the rig is integrated with a loading beam hinged on 

one side of the box, four pulleys, three weight-hangers, few meters of steel wire and additional steel frame. 

An electric motor capable of exerting constant rotational motion is mounted on the hinged beam. The cyclic 

loading is induced to the system by applying a rotational motion to weight-hanger 1 which in turn cause the 

hinged beam to oscillate in the vertical direction.  

The foundation is subjected to cyclic loading through a vertical beam bolted on the bucket lid which is directly 

connected to the system with two wires, one on each side. The features of the cyclic loading applied can be 

adjusted by changing the set of weights on the weight-hangers. Three foundations with diameter, D = 300 

mm, and embedment ratios equals to 1, 0.75 and 0.5, were tested. Throughout the paper the buckets will be 

addressed by using their embedment ratio (d/D = 1, d/D = 0.75 and d/D = 0.5). The skirts of the foundations 

have all the same wall thickness, t = 1.5 mm. This particular thickness was chosen in order to ensure a fully 

rigid response of the foundations during any loading phase. The foundations are instrumented with three 

linear variable differential transformers (LVDTs). Two load cells are mounted on the vertical bar to record the 

net load applied to the foundation. A PC-based data acquisition system is used to transfer data from the 

measurement devices to the computer. The data sampling frequency is set to 2 Hz. The soil used for 

conducting the experimental program is Aalborg University Sand No. 1 (cf. Table 1 for properties). The 

reference system taken for forces and displacements is that proposed by Butterfield et al. (1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Schematic illustration of the testing rig Figure 3: Example of biased two-

way cyclic loading  
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Each cyclic test was carried out in four stages: sample preparation, installation, cyclic loading test and post- 

cyclic monotonic test. To ensure repeatability, a systematic sample preparation procedure was carried out 

before each test. A gradient close to the critical one was applied to the sample. Thereafter, mechanical 

vibration of the sand was performed. After vibrating, the uniformity and the compaction state of the sample 

were assessed by analysing small-scale cone penetration tests (CPT) performed in three different positions. 

The sample had a high compaction state, average Dr = 89 %. The bucket was installed in the middle of the 

sand box by means of a screw jack with a penetration rate of 0.02 mm/s. The foundation was installed by 

pushing rather than by applying suction. This has certainly an effect on the foundation capacity (Villalobos, 

2006). However, the potential for rotational displacement accumulation should not be significantly affected as 

it is normalised with the monotonic reference rotation (see the next section).  

Three air valves placed on the lid were let open during the penetration. Once the installation stage was 

complete, the installation rig was dismantled and the air valves were sealed to ensure full contact between 

soil and bottom lid during the test. The vertical beam was then bolted on the bucket lid and connected to the 

system. The number of cycles applied was between 1·104 and 5·104. At the end of the cyclic stage the cyclic 

equipment was meticulously substituted with the monotonic one to run the post-cyclic test. Cyclic loading 

tests were load-controlled. With respect to the load reference point the foundation was subjected to 

sinusoidal cyclic horizontal load, Hmin ≤ H ≤ Hmax, sinusoidal cyclic overturning moment, Mmin ≤ M ≤ Mmax, and 

constant vertical load, V (self-weight of the foundation and weight of the vertical beam).   

The reference monotonic tests were controlled by designating a displacement rate to the point of load 

application. Foglia et al. (2013) conducted test of bucket foundations controlled in the same manner. The 

foundations were instrumented with eight pore pressure transducers placed under the lid and along the skirt. 

Four different displacement rates were tested. Tests carried out with displacement rate in the range 0.01 – 

0.1 mm/s were found to be in substantially drained conditions.  Based on this finding, the reference 

monotonic experiments were designed as displacement-controlled quasi-static tests with a displacement rate 

imposed by the actuator of 0.011 mm/s. 

 

Table 1. Properties of Aalborg University Sand No. 1 

Property  Value  Unit 

Grain diameter corresponding to 50 % passing  0.14  [mm] 

Uniformity coefficient  1.78  [‐] 

Specific grain density   2.64  [‐] 

Maximum dry unit weight  17.03  [kN/m3] 

Minimum dry unit weight  14.19  [kN/m3] 
 

 

2.3 Experimental program 

Before describing all the phases of the experimental program, it is necessary to outline the key elements of 

the empirical model used to analyse the data (LeBlanc et al., 2010). The object of the empirical model is the 

relationship between the normalised accumulated rotation, , and the number of cycle N: 
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                                                            

 NTRT ccdbb )(,

~

s

0N
N 


                                     (1) 

where N is the accumulated rotation at cycle of number N, 0 is the rotation at the first cycle, s is the rotation 

of the monotonic test at M = Mmax and Tb, Tc and are the parameters of the model. Tb and Tc depend on the 

cyclic loading features ζb and ζc which are defined as follows: 

                                                       
R

min

min

max ,
M

M

M

M
cb                                                      (2)                                 

A graphical representation of the two ratios is given in Figure 3. 

The model is defined by means of the boundary condition Tc (ζc = 0) = 1.   

The experimental campaign comprises seven test series. Each of them was conducted with clear intention 

and with great attention to details. Table 2 (see at the end of the paper), lists all the tests of the experimental 

campaign. 

In Series 1, 5 and 6, ζc was set to 0 and thereby the parameters Tb could be deduced for the three buckets. 

In Series 2, ζb was set to approximately 0.37 to obtain the parameter Tc. In Series 3 the robustness of the 

foundation against cyclic loading was addressed by conducting tests at increasing ζb. Series 4 was devoted 

to investigate the influence of the loading frequency on the cyclic behaviour. Series 0 includes the three 

monotonic reference tests.  

Technical problems denied the post-cyclic stages of C47 and C39 to be performed. 

 

3. Results  

3.1 Presentation of typical results 

Selected results are presented in order to give an insight into the general behavioural patterns of bucket 

foundations under lateral cyclic loading. It is common practice to present the results of small-scale 

experiments in non-dimensional form. However, in this section qualitative and scaling-independent results 

are shown. Thus, it was deliberately chosen to present the results without scaling. 

Figure 4 shows how the rotational displacement accumulates for two tests and a magnified view of few 

cycles. Even though cyclic amplitude and mean value are very dissimilar in magnitude, the accumulation rate 

appears fairly comparable. In Figure 5, the three monotonic reference tests are plotted. Test S30 developed 

a clear general failure mechanism, with a noticeable peak in moment capacity followed by a softening 

branch. Tests S57 and S48, did not show a distinct peak in moment capacity. Instead, a plateau followed by 

a moderate negative gradient took place. Although the relative density is very high, the general failure of the 

system occurs only for the foundation with the largest embedment ratio. This kind of response could be seen 

in analogy with the findings of Vesić (1973), who investigated how the failure mechanism of shallow 

foundations under pure vertical loading changes as a function of Dr and d/D. MR was taken as the maximum 

moment reached during the test. In the same graph, the points corresponding to the first cycle of all the 

cyclic tests of d/D = 1 are depicted. All the points, except for those of the two tests with highest moment (C39 

and C40), lie along the monotonic curve. This proves the substantially drained condition of these tests. The 

two tests that deviate from the monotonic test had most likely too high loading rate to remain substantially 
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drained. Though, it should be emphasised that the tests which underwent partly drained conditions are not 

taken into consideration when interpreting the data with the empirical model.  

It is worth to notice that also the tests conducted at different loading frequencies (squares on Figure 5) follow 

the fully drained response. Even further in the tests, no significant and consistent alteration of the behaviour 

in terms of displacements was found between the tests of Series 4.  

In Figure 6, the rate of displacement accumulation in terms of rotation (i.e. the permanent rotation 

accumulated every ten cycles, N+10 - N) is plotted against N for three tests of series 2. In general, when the 

rate of accumulation grows with the number of cycles, cyclic progressive failure occurs. This is not the case 

for the tests shown in Figure 6. The plot shows a significant rotational displacement accumulation within the 

first hundreds of cycles, followed by a plastic adaptation in which the rate of accumulation gradually 

decreases until reaching a negligible value. As expected, the larger the ζb the more number of cycles are 

required for the accumulation rate to reduce.  

In Figure 7, the ultimate post-cyclic moment against the rotation at failure of all the tests of d/D = 1 is plotted. 

The large majority of the points exceeds the reference moment (test S30). On average, the post-cyclic 

capacity is 10.5 % larger than the reference capacity.  
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The same observation can be made in Figure 5 on the M- plane where the post-cyclic phase of test C36 is 

plotted. The post-cyclic curve has higher initial stiffness and capacity than the reference monotonic curve. 

The failure mechanism is brittle as for the monotonic test.  

 

3.2 Interpretation of the results 

Equation 1 is used to fit all the tests run in substantially drained conditions. In general, the exponent has 

the tendency to reduce as T increases. This suggests that when a foundation system accumulated 

significant rotational displacement in the beginning, it has less potential for accumulation further in the test.   

This is in accordance to what pointed out by Achmus et al. (2013a) where the ratio N/0 was found to have a 

higher rate for low values of ζb. A clear dependency of on the test features could not be detected and, 

therefore, a constant exponent was used to analyse the data. When fitting all the drained tests until N = 

10000 with Eq. (1), the average  turns out to be 0.189 with a standard deviation of 0.034. The value of  

differs significantly from that of Zhu et al. (2013) and this is to be ascribed to the different relative density of 

the sands. 

The results of series 1, 5 and 6 are presented in Figure 8. The points extrapolated using three different 

bucket geometries seem to follow the same trend. This indicates that the parameter Tb does not depend on 

the embedment ratio. This observation contrasts with Achmus et al. (2013b) who found the accumulated 

rotation to be slightly higher for d/D = 0.5. An interpolating curve in the form of a power law was chosen to fit 

the data:  

                                                                  
64.141.2 bbT                                                                   (3) 

In Figure 8, the fit proposed by Zhu et al. (2013) is also plotted. The discrepancy between the two trends 

proves the Tb-dependency on the relative density. The same pattern (i.e. Tb reducing for looser compaction 

states) was found by LeBlanc et al. (2010). Recently, Tb was found dependent on the particle size in a study 

conducted by Abadie and Byrne (2014). However, the uncoupled effect of these two properties of the system 

has not been identified yet. The experimental points of series 2, together with the fit deduced by Zhu et al. 

(2013), are shown in Figure 9. 
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Despite the significantly different embedment ratio and relative density, the experimental points match the fit. 

It can be concluded that Tc depends neither on the embedment ratio, nor on the relative density. The tests of 

Series 2 also support the idea that Tc peaks in correspondence to a biased two-way loading configuration. 

Interestingly, Kirkwood and Haigh (2014) attributed this phenomenon to the reduction of locked in stresses 

occurring in presence of biased two-way loading conditions.  

 

4. Implication to foundation design 

From the observations on the post-cyclic behaviour (Figure 5 and Figure 7) two distinct implications emerge. 

Firstly, since the foundation was pre-subjected to cyclic M and H the yielding surface expanded and 

therefore it is not surprising that the initial stiffness increases. Secondly, and perhaps more importantly, the 

failure envelope seems to increase when a foundation is pre-subjected to cyclic loading. 

 

In the following, an example of how to put into practice the empirical model is given. As explained earlier in 

the paper, no direct result of the tests is scaled up by means of scaling laws. Instead, it is assumed that 

when the dimensionless groups of large-scale systems are similar to those used in the experimental 

campaign, the general relationship found in small-scale between monotonic and cyclic response is 

applicable in large-scale. 

The example consists in a preliminary estimation of the long-term accumulated rotation of a bucket 

foundation supporting a 5 MW wind turbine. The estimation is preliminary in the sense that it is based only 

on the empirical model which would need to be validated against real-scale measurements over many years 

of turbine operation. As substantially drained conditions are considered, it is reasonable to assume 0 = s. 

The features of the bucket foundation are D = 15 m, d/D = 0.75 and t = 30 mm. The foundation is subjected 

to general loading: constant vertical loading, V = 35 MN, cyclic overturning moment and cyclic horizontal 

loading. A one-way loading configuration (ζc = 0) is chosen and the analysis evaluates both SLS and FLS 

design cases. According to LeBlanc et al. (2010), typical design cases for offshore wind turbines are for SLS, 

N = 102 and ζb = 0.473, whereas for FLS, N = 107 and ζb = 0.295. 
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Figure 8: Tb parameter: Zhu et al., 2013, 
experimental points of this work and relative fit  
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By simply combining Equations 1 and 3 the accumulated rotation as a function of loading configuration and 

number of cycle can be evaluated: 

                                                           189.064.1

s

N 41.21 NTcb


                                                      (4) 

A design graph relevant to the loading case in object, and based on Equation 4, is illustrated in Figure 10. To 

use Figure 10 in the design case, it is necessary to evaluate the monotonic M – curve in some manner. For 

this purpose, a drained numerical simulation is performed with the software Plaxis 3D. The Hardening Soil 

Model is used to run the drained simulation. Typical dense silica sand parameters are adopted. The ultimate 

moment capacity is defined by the intersection between the tangents to the initial and final points of the 

curve (MR = 462.74 MNm). Equation 4 can be used to estimate the accumulated displacements for SLS 

design, N, SLS = 0.506, and FLS design N, FLS = 0.749. Some authors adopt a very stringent 0.5⁰ as 

maximum rotation criterion justifying such a choice as the limit recommended by DNV (2011). However, DNV 

(2011) suggests this value in the context of a mere example and, in some cases, this stringent limit might 

lead to over-conservative design. The rotation tolerance relative to the normal operation of the wind turbine 

should instead be defined by the turbine manufacturer and the contractors on a case by case basis. 

 

In order to have a graphical understanding of the secant stiffness degradation due to repeated loading, cyclic 

capacity curves can be constructed on the base of Equation 4 and the monotonic M-curve. This can be 

accomplished by simply calculating N for different values of N and ζb. The cyclic capacity curves are plotted 

in Figure 11 as opposed to the monotonic curve. The legend of Figure 10 applies also to Figure 11. By 

entering the graph with the appropriate N and ζb, N, SLS and N, FLS can be graphically found. 

 

5. Limitations of the physical model 

The lateral cyclic loading is applied in terms of sinusoidal and continuous M and H.  

In reality, environmental loads do not fluctuate regularly about a mean value. Imposing sinusoidal M 
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Figure 10: Normalised accumulated rotation as a 
function of the number of cycles and ζb 

 

Figure 11: Cyclic capacity curves as opposed to 
monotonic capacity curves 
 



12 
 

and H on the foundation is, in fact, unrealistic and leads inevitably to conservative prediction of 

displacements (Byrne, 2000). If realistic displacements are to be predicted, a relationship between real 

wave load patterns and equivalent sinusoidal load should be established.  

Offshore environment is featured by a combination of waves, wind and currents, that results in a  

multi-directional load configuration (Fraunhofer IWES, 2009). Regardless, the geotechnical system 

considered in this paper has three degrees of freedom and the three loading components act in a 

single plane. Interestingly, Rudolph et al. (2014) investigated the cyclic behaviour of monopiles 

subjected to changing direction cyclic loading and found an amplification factor of 45% in 1g tests and 

63% in centrifuge. In-plane loading conditions seem to have a beneficial effect on the accumulated 

displacements and therefore reduce the conservatism of the model.  

In addition, the simplified method proposed does not account for the varying loading features of the 

cyclic load. However, this is important when real load time series are considered. In case a more 

sophisticated estimation of the accumulated displacements is needed, loading packages with different 

loading features could be included in the model, perhaps on the base of previous studies such as 

Peralta (2010) and LeBlanc et al. (2010b).    

The empirical model is based on 1g tests only. Thus, it should be corroborated with centrifuge 

experiments or large-scale tests before using it with confidence in real design cases. 

 
6. Conclusions 

Bucket foundations have been extensively used and yet their behaviour under cyclic lateral loading is not 

fully explored. This paper presents a physical model and a comprehensive experimental campaign. The data 

analysis is focused on the long-term accumulated displacement and, particularly, on the rotational 

displacement. Some conclusions can be drawn about the general response of bucket foundations under 

cyclic loading. 

The accumulation rate of the rotational displacement (calculated every ten cycles) is seen to reduce to 

negligible values within the first few hundreds of cycles, regardless of the load magnitude. The permanent 

displacement is not influenced by the loading frequency in the range tested (between 0.025 and 0.1 Hz). 

Post-cyclic curves are found different from the pure monotonic curves in terms of initial stiffness and ultimate 

capacity. This implies that, as expected, cyclic loading-induced permanent displacements affect the elasto-

plastic proprieties of the geotechnical system.  

The experimental data is also interpreted with an existing empirical model and new parameters are 

extrapolated. It is remarkably important to emphasise that the three bucket geometries tested seem to 

respond equally to cyclic loading. This means that, in the range of embedment ratio tested (0.5, 0.75 and 1) 

all the bucket geometries are equally influenced by cyclic loading. On the base of the empirical model, cyclic 

capacity curves are constructed and employed in a practical example. 
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Table 2. List of the experiments 

Series 0  d/D  fL [Hz]  b  c 

S30  1  ‐  ‐  ‐ 

S57  0.5  ‐  ‐  ‐ 

S48  0.75  ‐  ‐  ‐ 

Series 1             

C16  1  0.1  0.403  ‐0.047 

C17  1  0.1  0.536  0.027 

C18  1  0.1  0.304  ‐0.042 

Series 2             

C20  1  0.1  0.358  ‐0.595 

C22  1  0.1  0.383  0.193 

C23  1  0.1  0.381  ‐0.426 

C24  1  0.1  0.367  ‐0.963 

C32  1  0.1  0.421  ‐0.146 

C33  1  0.1  0.382  ‐0.316 

C47  1  0.1  0.378  ‐0.796 

Series 3             

C34  1  0.1  0.252  ‐0.604 

C35  1  0.1  0.484  ‐0.543 

C36  1  0.1  0.583  ‐0.563 

C37  1  0.1  0.687  ‐0.578 

C38  1  0.1  0.758  ‐0.583 

C39  1  0.1  0.856  ‐0.588 

C40  1  0.1  1.155  ‐0.469 

Series 4             

C41  1  0.1  0.400  ‐0.514 

C42  1  0.05  0.420  ‐0.500 

C44  1  0.03  0.389  ‐0.598 

C45  1  0.2  0.387  ‐0.479 

C46  1  0.025  0.419  ‐0.500 

Series 5             

C50  0.5  0.1  0.355  ‐0.054 

C53  0.5  0.1  0.514  ‐0.049 

C54  0.5  0.1  0.339  0.019 

C55  0.5  0.1  0.398  0.040 

Series 6             

C58  0.75  0.1  0.177  0.089 

C59  0.75  0.1  0.244  0.055 

C60  0.75  0.1  0.312  ‐0.055 

C61  0.75  0.1  0.376  ‐0.053 
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