Aalborg Universitet

A Broadband Beamformer Using Controllable Constraints and Minimum Variance

Karimian-Azari, Sam; Benesty, Jacob; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

Published in:

2014 Proceedings of the 22nd European Signal Processing Conference (EUSIPCO 2014)

Publication date: 2014

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Karimian-Azari, S., Benesty, J., Jeńsen, J. R., & Christensen, M. G. (2014). A Broadband Beamformer Using Controllable Constraints and Minimum Variance. In 2014 Proceedings of the 22nd European Signal Processing *Conference (EUSIPCO 2014)* (pp. 666-670). IEEE. http://ieeeexplore.com/xpl/articleDetails.jsp?tp=&arnumber=6952192&searchWithin%3Dp_Authors%3A.QT.Kari

mian-Azari%2C+S..QT.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AUDIO ANALYSIS LAB

A Broadband Beamformer Using Controllable Constraints and Minimum Variance

Sam Karimian-Azari^{†,1}, Jacob Benesty^{*}, Jesper Rindom Jensen^{†,2}, and Mads Græsbøll Christensen[†] email: [†]{ska, jrj, mgc}@create.aau.dk, and ^{*}benesty@emt.inrs.ca

AALBORG UNIVERSITY Denmark

Introduction

The minimum variance distortionless response (MVDR) beamformer is an optimal approach to noise reduction:

- Achieves a high output SNR.
- It has degrees of freedom (DOF) corresponding to the number of microphones minus one.
- Its output is contaminated with both residual noise and interference.

The linearly constrained minimum variance (LCMV) beamformer reduces noise, and rejects interferers using linear constraints:

- Achieves a high output SIR.
- ► The number of constraints may degrade the DOF.
- It may amplify background noise which causes a lower output SNR.

C-LCMV Beamformer
MDVR: $\min_{\mathbf{h}(f)} \mathbf{h}^{H}(f) \left[\mathbf{\Phi}_{\mathbf{i}}(f) + \mathbf{\Phi}_{\mathbf{v}}(f) \right] \mathbf{h}(f) $ (7)
subject to $\mathbf{h}^{H}(f) \mathbf{d}_{1}(f) = 1,$
LCMV: $\min_{\mathbf{h}(f)} \mathbf{h}^{H}(f) \mathbf{\Phi}_{\mathbf{v}}(f) \mathbf{h}(f) $ (8)
subject to $\mathbf{h}^{H}(f) \mathbf{D}_{N}(f) = \mathbf{i}_{N}^{T}$,
where \mathbf{i}_N is the first column of a $N \times N$ identity matrix.
We divide N signal sources into two sets of N_1 sources, containing SOI, and $N_2 = N - N_1$ remaining signal sources;

To achieve a trade-off between attenuation of noise and interfering sources, we proposed the controllable LCMV (C-LCMV) beamformer in the frequency-domain.

Formulation

Multi-channel observed signals at the frequency *f* are observed, using an array of *M* microphones:

$$\mathbf{y}(f) = \mathbf{d}_1(f)X_1(f) + \sum_{n=2}^{N} \mathbf{d}_n(f)X_n(f) + \mathbf{v}(f) = \mathbf{D}_N(f)\mathbf{x}(f) + \mathbf{v}(f), \quad (1)$$

where $\mathbf{d}_n(f) \in \mathbb{C}^M$ is the steering vector of signal source $X_n(f)$ (for $n = 1, \dots, N$), $X_1(f)$ is the signal of interest (SOI), $\mathbf{x}(f) \in \mathbb{C}^N$ is the collected N signal sources, $\mathbf{v}(f) \in \mathbb{C}^M$ is noise, and

$$\mathbf{D}_{N}(f) = [\mathbf{d}_{1}(f) \mathbf{d}_{2}(f) \cdots \mathbf{d}_{N}(f)] \in \mathbb{C}^{M \times N}.$$
(2)

The correlation matrix of $\mathbf{y}(f)$ (assuming uncorrelated signals) is $\mathbf{\Phi}_{\mathbf{y}}(f) = \mathbf{D}_{N}(f) \mathbf{\Phi}_{\mathbf{x}}(f) \mathbf{D}_{N}^{\mathsf{H}}(f) + \mathbf{\Phi}_{\mathbf{v}}(f) = \mathbf{d}_{1}(f) \phi_{X_{1}}(f) \mathbf{d}_{1}^{\mathsf{H}}(f) + \mathbf{\Phi}_{\mathsf{in}}(f), \quad (3)$ where $\mathbf{\Phi}_{\mathbf{x}}(f) = \operatorname{diag}[\phi_{X_{1}}(f) \phi_{X_{2}}(f) \dots \phi_{X_{N}}(f)], \ \mathbf{\Phi}_{\mathsf{in}}(f) = \mathbf{\Phi}_{\mathbf{i}}(f) + \mathbf{\Phi}_{\mathbf{v}}(f), \text{ and}$ $\mathbf{\Phi}_{\mathbf{i}}(f) = \sum_{n=2}^{N} \mathbf{d}_{n}(f) \phi_{X_{n}}(f) \mathbf{d}_{n}^{\mathsf{H}}(f)$ is the interference correlation matrix. $\mathbf{x}(f) = [\mathbf{x}_{N_1}^{\mathsf{T}}(f) \ \mathbf{x}_{N_2}^{\mathsf{T}}(f)]^{\mathsf{T}}, \text{ and}$ (9) $\mathbf{D}_N(f) = [\mathbf{D}_{N_1}(f) \ \mathbf{D}_{N_2}(f)].$ (10)

Therefore,

$$\mathbf{y}(f) = \mathbf{D}_{N1}(f) \, \mathbf{x}_{N_1}(f) + [\, \mathbf{D}_{N_2}(f) \, \mathbf{x}_{N_2}(f) + \mathbf{v}(f) \,], \tag{11}$$

and

$$\Phi_{\mathbf{y}}(f) = \mathbf{D}_{N_1}(f) \, \Phi_{\mathbf{x}_{N_1}}(f) \, \mathbf{D}_{N_1}^{\mathsf{H}}(f) + \Phi_{\mathsf{in},N_2}(f), \qquad (12)$$

where $\Phi_{\text{in},N_2}(f) = \mathbf{D}_{N_2}(f) \Phi_{\mathbf{x}_{N_2}}(f) \mathbf{D}_{N_2}^{H}(f) + \Phi_{\mathbf{v}}(f)$ is the correlation matrix of N_2 signal sources plus background noise.

The C-LCMV beamformer is designed as

 $\min_{\mathbf{h}(f)} \mathbf{h}^{\mathsf{H}}(f) \mathbf{\Phi}_{\mathsf{in},N_2}(f) \mathbf{h}(f)$

(13)

subject to $\mathbf{h}^{\mathsf{H}}(f) \mathbf{D}_{N_1}(f) = \mathbf{i}_{N_1}^{\mathsf{T}}$.

Then the solution is given like

 $\mathbf{h}_{\mathrm{C}}(f) = \mathbf{\Phi}_{\mathrm{in},N_2}^{-1}(f) \mathbf{D}_{N_1}(f) [\mathbf{D}_{N_1}^{\mathrm{H}}(f) \mathbf{\Phi}_{\mathrm{in},N_2}^{-1}(f) \mathbf{D}_{N_1}(f)]^{-1} \mathbf{i}_{N_1}.$ (14)

Properties:

 $oSINR[\mathbf{h}_{L}(f)] \le oSINR[\mathbf{h}_{C}(f)] \le oSINR[\mathbf{h}_{M}(f)], \quad (15)$

 $oSIR[\mathbf{h}_{M}(f)] \leq oSIR[\mathbf{h}_{C}(f)] \leq oSIR[\mathbf{h}_{L}(f)].$

The output variance of the beamformer h(f) is

 $\phi_{Z}(f) = \mathbf{h}^{\mathsf{H}}(f) \,\mathbf{d}_{1}(f) \,\phi_{X_{1}}(f) \,\mathbf{d}_{1}^{\mathsf{H}}(f) \,\mathbf{h}(f) + \mathbf{h}^{\mathsf{H}}(f) \left[\,\mathbf{\Phi}_{\mathbf{i}}(f) + \,\mathbf{\Phi}_{\mathbf{v}}(f) \,\right] \mathbf{h}(f). \tag{4}$

With the distortionless constraint that $\mathbf{h}^{H}(f)\mathbf{d}_{1}(f) = 1$, we can write

$$oSINR[\mathbf{h}(f)] = \frac{\phi_{X_1}(f)}{\mathbf{h}^{\mathsf{H}}(f) \left[\mathbf{\Phi}_{\mathsf{in}}(f) + \mathbf{\Phi}_{\mathbf{v}}(f) \right] \mathbf{h}(f)},$$
(5)
$$oSIR[\mathbf{h}(f)] = \frac{\phi_{X_1}(f)}{\mathbf{h}^{\mathsf{H}}(f) \mathbf{\Phi}_{\mathsf{in}}(f) \mathbf{h}(f)}.$$
(6)

Experiment: Synthetic Signal

Using a uniform linear array (ULA) with M = 10 microphones and Gaussian noise signal sources in $\theta_1 = 0$, $\theta_2 = \pi$, $\theta_3 = 5\pi/6$, $\theta_4 = 4\pi/6$, and $\theta_5 = \pi/2$, where iSINR = 8 dB and iSIR = 13 dB:

• Optimal steering matrix (in practice): $\mathbf{D}_{i}^{opt}(f) = \arg\max oSINB[\mathbf{h}_{o}(f)]$

$\mathbf{D}_{N_1}^{\text{opt}}(f) = \arg \max_{\mathbf{D}_{N_1}(f)} \operatorname{oSINR}\left[\mathbf{h}_{\mathrm{C}}(f)\right].$

(17)

(16)

Experiment: Real Scenario

We simulated a room $(6 \times 7 \times 3 \text{ m})$ with reverberation time $T_{60} = 0.25 \text{ s}$, and N = 3 speech signals, and used a ULA with M = 5 hypercardioid microphones, SNR= 20 dB.

Conclusion

The C-LCMV beamformer generalizes the MVDR and LCMV beamformers with the ability to control the quality of the output signal.

Experiment results indicate that the C-LCMV beamformer using optimal steering matrix gets better results than the other MV beamformers.