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Abstract—Recently we presented the S-AMP approach, an
extension of approximate message passing (AMP), to be able
to handle general invariant matrix ensembles. In this contribu-
tion we extend S-AMP to non-linear observation models. We
obtain generalized AMP (GAMP) as the special case when the
measurement matrix has zero-mean iid Gaussian entries. Our
derivation is based upon 1) deriving expectation-propagation-
(EP)-like equations from the stationary-points equations of the
Gibbs free energy under first- and second-moment constraints
and 2) applying additive free convolution in free probability
theory to get low-complexity updates for the second moment
quantities.

Index Terms—Approximate Message Passing, Variational In-
ference, Expectation Propagation, Free Probability

I. INTRODUCTION

Approximate message passing techniques, e.g. [1]–[3], have
recently received significant attention by the signal processing
community. Essentially, these methods are based on taking
the large system limit of loopy belief propagation where the
central limit theorem can be applied when the underlying
measurement matrix has independent and zero-mean entries.

Variational inference techniques are well-established in the
field of information theory e.g. [4], [5] and machine learning
e.g. [6], [7]. For example, it is well-known that exact inference
can be formulated as the solution to a minimization problem
of the Gibbs free energy of the underlying probabilistic model
under certain marginalization consistency constraints [4]. We
have recently shown in [8] that for the zero-mean independent
identically distributed (iid) measurement matrix, approximate
message passing (AMP) algorithm [1] can also be obtained
from the stationary-points equations of the Gibbs energy under
first- and second-moment consistency constraints Furthermore,
AMP can be extended to general invariant1 matrix ensembles
by means of the asymptotic spectrum of the measurement
matrix. We call this approach S-AMP (where S comes from
the fact that the derivation uses the S-transform).

In practice there are many interesting cases where the obser-
vation model is non-linear, e.g non-linear form of compressed
sensing, Gaussian processes for classification. In this article
we extend the S-AMP approach [8] to general observation
models. Specifically we address the sum-product generalized
AMP (GAMP for short) algorithm [3].

1Note that we omit to mention the invariance property in [8]. It is however
crucial for the derivation.

The derivation of GAMP is based on certain approximations
(mainly Gaussian and quadratic approximations) of loopy
belief propagation. If the measurement matrix is large and
has zero mean and iid entries, GAMP provides excellent
performance, e.g. [3], [9]. Furthermore, for general matrix en-
sembles it can show quite reasonable accuracy [10]. However
the algorithm itself and its derivation are not well-understood.

To better understand GAMP, in [11] the authors characterize
its fixed points. Specifically, they show that GAMP can be
obtained from the stationary-point equations of some im-
plicit approximations of naive mean-field approximation [11].
These implicit approximations only provide limited insight.
Furthermore, the naive mean-field interpretation is misleading,
because the fixed points of AMP-type algorithms are typically
known as the TAP-like equations, i.e. they include a correction
term to naive mean-field solution. In fact GAMP can also be
obtained from the stationary-points equations of the Bethe free
energy (BFE) of the underlying loopy graph under first- and
second-moment constraints. However, this approach also limits
our understanding, because the BFE formulation of a loopy
graph is suitable for sparsely connected systems.

In this work we focus on the BFE formulation of a tree
graph, i.e. an exact Gibbs free energy formulation. We note
that our approach coincides with expectation propagation (EP)
[12]–[14] since the fixed points of EP are the stationary points
of BFE of the underlying probabilistic graph under a set of
moment consistency constraints [6].

Notations: The entries of the N×K matrix X are denoted
by either Xnk or [X]nk, n ∈ N , {n : 1 ≤ n ≤ N} and
k ∈ K , {k : 1 ≤ k ≤ K}. The transposition is denoted
by (·)†. The entries of a vector u ∈ RT×1 are indicated by
either ut or [u]t, 1 ≤ t ≤ T . Furthermore 〈u〉 ,

∑T
t=1 ut/T .

Moreover, diag(u) is a diagonal matrix with the elements
of vector u on the main diagonal. For a square matrix X ,
diag(X) is a column vector containing the diagonal elements
ofX . Furthermore Diag(X) , diag(diag(X)). We denote by
<z and =z the real and imaginary parts of z ∈ C, respectively.
The Gaussian probability density function (pdf) with mean
µ and the covariance matrix Σ is denoted by N(·;µ,Σ).
Throughout the paper when referring to “in the large system
limit” we imply that N,K tends to infinity with the ratio
α , N/K fixed. All large system limits are assumed to hold
in the almost sure sense, unless explicitly stated.



II. SYSTEM MODEL AND REVIEW OF GAMP
Consider the estimation of a random vector x ∈ RK×1

which is linearly transformed by A ∈ RN×K as z , Ax,
then passed through a noisy channel whose output is given by
y ∈ RN×1. We assume that the conditional pdf of the channel
factorizes according to

p(y|z) =
∏
n∈N

p(yn|zn). (1)

Furthermore for the Bayesian setting we assign a prior pdf for
x that is assumed to factorizes as

p(x) =
∏
k∈K

pk(xk). (2)

A. GAMP summarized
We summarize GAMP here for the sake of streamlining and

making the connection to the extension of S-AMP. We separate
the GAMP iteration rules [3] into two parts: (i) GAMP-1st
order that initializes x̂t, τ t

x and mt from tabula rasa at t ≤ 0
and proceeds iteratively as

κt
z = Ax̂t − (

Λt
z)
−1mt−1 (3)

ẑt = µz(κ
t
z;

Λt
z) (4)

τ t
z = σz(κ

t
z;

Λt
z) (5)

mt =

Λt
z(ẑ

t − κt
z) (6)

κt
x = (

Λt
x)−1A†mt + x̂t (7)

x̂t+1 = µx(κt
x;

Λt
x) (8)

τ t+1
x = σx(κt

x;
Λt

x). (9)

(ii) GAMP-2nd order are the update rules for

Λt
z and

Λt
x:

Λt
z = (diag((A ◦A)τ t

x))−1 (10)

τ t
m =

Λt
z(1−

Λt
zτ

t
z) (11)

Λt
x = diag((A ◦A)†τ t

m). (12)

In these expressions 1 is the all-ones vector of appropriate
dimension and µx and σx are scalar functions. Specifically, if

Λ

is a K ×K diagonal matrix and κ is a K × 1 vector, then
for k ∈ K [µx(κ;

Λ

)]k and [σx(κ;

Λ

)]k are respectively the
mean and the variance of the pdf

qk(xk) ∝ pk(xk) exp

(
−

Λ

kk

2
(xk − κk)2

)
. (13)

Similarly, µz and σz are scalar functions such that if

Λ

is a
N ×N diagonal matrix and κ is a N × 1 vector, for n ∈ N
[µz(κ;

Λ

)]n and [σz(κ;

Λ

)]n are respectively the mean and the
variance of the pdf

qn(zn) ∝ p(yn|zn) exp

(
−

Λ

nn

2
(zn − κn)2

)
. (14)

If the entries of A are iid with zero mean and variance 1/N ,
the iteration steps for the GAMP-2nd order simplify as

Λt
z =

α

〈τ t
x〉

I,

Λt
x =

〈
τ t
m

〉
I, (15)

where I is the identity matrix of appropriate dimension. We
note that if in addition p(y|z) = N(y; z, σ2I), GAMP yields
AMP, see e.g. [2, Appendix C].

III. GIBBS FREE ENERGY WITH MOMENT CONSTRAINTS

For the sake of notational compactness, consider s = (x, z).
Furthermore we introduce the set V , K∪N and assume that
K and N are disjoint. Moreover we define

fA(s) , δ(z −Ax) (16)

fv(sv) ,

{
pv(xv) v ∈ K
p(yv|zv) v ∈ N .

(17)

With these definitions, the posterior pdf of s reads

p(s|y,A) =
1

Z
fA(s)

∏
v∈V

fv(sv). (18)

with Z denoting a normalization constant. The factor graph
representing (18) is a tree. Thus the BFE of (18) is equal to
its Gibbs free energy [4]:

G({b̃v, bA, bv}) , −
∑
v∈V

∫
b̃v(sv) log b̃v(sv)dsv

−
∫
bA(s) log

fA(s)

bA(s)
ds−

∑
v∈V

∫
bv(sv) log

fv(sv)

bv(sv)
dsv.

(19)

Here bA and bv , v ∈ V , denote the beliefs of the factors in
(18), while b̃v , v ∈ V , denote the beliefs of the unknown
variables in (18). Without loss of generality we assume that
the expressions fA(s)/bA(s) and fv(sv)/bv(sv) in (19) are
strictly continuous; so that the Gibbs free energy is well-
defined. Indeed this is what we will end up with in the analysis.

If we define a Lagrangian for (19) that accounts for certain
marginalization consistency constrains, then at its stationary
point, the belief b̃v(sv) is equal to p(sv|y,A) for all v ∈ V
[4]. Instead, following the arguments of [6], we define the
Lagrangian on the basis of a set of moment consistency
constraints as

L({b̃v, bA, bv}) , G({bv, bA, b̃v}) + Z

−
∑
v∈V

ν†v

∫
φ(sv)

{
bA(s)− b̃v(sv)

}
ds

−
∑
v∈V

ν̄†v

∫
φ(sv)

{
bv(sv)− b̃v(sv)

}
dsv. (20)

Here we consider constraints on the mean and variance, i.e.
φ(sv) = (sv, s

2
v), v ∈ V . For convenience we write the

Lagrangian multipliers as

νv ,

(
γv,−

Λvv

2

)
, ν̄v ,

(
ρv,−

Λ

vv

2

)
, v ∈ V.

The term Z in (20) accounts for the normalization constraints:

Z , −βA
(

1−
∫
bA(s)ds

)
−
∑
v∈V

β̃v

(
1−

∫
b̃v(sv)dsv

)
− βv

(
1−

∫
bv(sv)dsv

)
where βA, βv , β̃v are the associated Lagrange multipliers.



A. The Stationary Points of the Lagrangian

We formulate the estimate of sv, v ∈ V , as

ŝv ,
∫
sv b̃

?
v(sv)dsv, (21)

where b̃?v(sv) represents b̃v(sv) at a stationary point of the
Lagrangian (20).

For notational convenience we introduce first the (K+N)×
(K+N) diagonal matrices Λ and

Λ

as well as the (K+N)×1
vectors γ and ρ whose entries are respectively Λvv ,

Λ

vv , γv
and ρv , v ∈ V . In connection with variables x and z we write

Λ =

(
Λx 0
0 Λz

)
, γ = (γx,γz) (22)

Λ

=

( Λ

x 0
0

Λ

z

)
, ρ = (ρx,ρz). (23)

The dimensions of Λx and

Λ

x are K×K; vectors γx and ρx
have dimension K × 1.

Following the arguments of [6], the stationary points of the
Lagrangian (20) are given by

b̃?v(sv) =
1

Z̃v

exp((νv + ν̄v)†φ(sv)), v ∈ V (24)

b?v(sv) =
1

Zv
fv(sv) exp(ν̄†vφ(sv)), v ∈ V (25)

b?A(s) =
1

ZA
fA(s) exp

(
−1

2
s†Λs+ s†γ

)
(26)

where ZA, Zv , Z̃v are the associated normalization constants.
Let us first consider the marginalization of the belief b?A(s)

with respect to z:

b?A(x) =

∫
b?A(x, z)dz = N(x; x̂,Σx) (27)

where

Σx , (Λx +A†ΛzA)−1, x̂ , Σx(γx +A†γz). (28)

Here we note that Σx is positive definite since b?A(x) is a
well-defined pdf. Let us then consider the marginalization
over x, which basically follows from the linear transformation
property of a Gaussian random vector:

b?A(z) =
e−

1
2z

†Λzz+z
†γz

ZA

∫
δ(z −Ax)e−

1
2x

†Λxx+x
†γxdx

=

∫
δ(z −Ax)N(x; x̂,Σ)dx = N(z; ẑ,Σz) (29)

where ẑ , Ax̂ and Σz , AΣxA
†.

At this stage it is convenient to define

κ , (κx,κz) = (

Λ−1
x ρx,

Λ−1
z ρz) (30)

with κx ∈ RK . In this way we can write the belief in (25) as

b?v(sv) ∝ fv(sv) exp

(
−

Λ

vv

2
(sv − κv)2

)
, v ∈ V. (31)

Thereby (31) has a form identical to (13) and (14) for v ∈ N
and for v ∈ K, respectively. Then let us define

µ(κ;

Λ

) , (µx(κx;

Λ

x), µz(κz;

Λ

z)) (32)

σ(κ;

Λ

) , (σx(κx;

Λ

x), σz(κz;

Λ

z)) . (33)

The entries [µ(κ;

Λ

)]v and [σ(κ;

Λ

)]v are respectively the
mean and variance of the belief (25). Moreover we introduce

Σ ,

(
Σx 0
0 Σz

)
, ŝ = (x̂, ẑ). (34)

With these definitions, the identities resulting from the
moment consistency constraints are given by

ŝ = Diag(Σ)(γ + ρ), ŝ = µ(κ;

Λ

) (35)

Diag(Σ) = (Λ +

Λ

)−1, diag(Σ) = σ(κ;

Λ

). (36)

B. The TAP-like Equations and GAMP-1st Order

By using the fixed-point identities presented in Sec-
tion III-A, one can introduce numerous fixed-point algorithms.
In this work we restrict our attention to TAP-like algorithms,
e.g. [12], [14]. To that end we start with the definitions in (28)
and write

γx = −A†γz + (Λx +A†ΛzA)x̂. (37)

Then, by making use of the identities in (35) and (36) we have

ρx = A†γz − (Λx +A†ΛzA)x̂+ (Λx +
Λ

x)x̂ (38)

= A†(γz −ΛzAx̂) +

Λ

xx̂ (39)

= A†m+

Λ

xx̂ with m , (γz −ΛzAx̂). (40)

Moreover, by the definition of m we also point out that

m = (Λz +

Λ

z)ẑ − ρz −ΛzAx̂ (41)
=

Λ

zẑ − ρz =

Λ

z(ẑ − κz). (42)

Thereby we exactly obtain the fixed-point equations of GAMP-
1st order, i.e. (3)-(9).

Now let us keep the iterations step of GAMP-1st order but
define the update rule for

Λt
x and

Λt
z on the basis of the fixed-

point identities in (36). For example:

Λt
z = (diag(τ t−1

z ))−1 −

Λt−1
z (43)

Σt
x = (Λt−1

x +A†Λt
zA)−1 (44)

Λt
z =

(
Diag(AΣt

xA
†)
)−1
−Λt

z (45)

Λt
x = (diag(τ t

x))−1 −

Λt−1
x (46)

Λt
x =

(
Diag(Σt

x)
)−1 −Λt

x. (47)

In this way we obtain a new fixed-point algorithm whose
fixed points are the stationary point of Lagrangian (20).
However from the complexity point of view these updates are
problematic due to the matrix inversion in (44). In the sequel
we will address how to circumvent this complexity problem
as K,N are large.



C. The Large-System Simplifications

To bypass the need for matrix inversion such as (44) we
utilize the so-called additive free convolution in free probabil-
ity theory [15]. The reduction that we obtain in this way can
be also obtained by means of the self-averaging ansatz in [14,
Section 3.1].

In order to make use of additive free convolution we need
to restrict our consideration to invariant matrix ensembles:

ASSUMPTION 1 Consider the singular value decomposition
A = UDV where UN×N and V K×K are orthogonal
matrices and D is a N × K non-negative diagonal matrix.
We distinguish between the invariance assumption on A from
right and from left: a) A is invariant from right, i.e. V is
Haar distributed; b) A is invariant from left, i.e. U is Haar
distributed.

It indeed makes sense to distinguish between the invariance
from right and the invariance from left. For example, once
we consider the classical linear observation model such as
p(y|z) = N(y; z, σ2I), then Λz = I/σ2. In this case we do
not need to consider Assumption 1-b).

We also make the following technical assumption on the
limiting spectrum of the respective matrices:

ASSUMPTION 2 As N,K → ∞ with the ratio α = N/K
fixed the spectra of Λx, Λz and A†A converge almost surely
to some limiting spectra whose supports are compact.

Due to lack of an explicit definition of the “Lagrangian” matrix
Λ, Assumption 2 is rather implicit. Nevertheless it can be
considered in the same vein as the so-called thermodynamic
limit in statistical physics: all microscopic variables converge
to deterministic values in the thermodynamic limit [16].

Under Assumption 1-a) and Assumption 2, it turns out that
Λx and Jz , A†ΛzA are asymptotically free [17] and from
[15, Lemma 3.3.4] we have that2

RK
Λx+Jz

(ω) ' RK
Λx

(ω) + RK
Jz

(ω), =ω < 0. (48)

Here for a T × T symmetric matrix X RT
X denotes the R-

transform of the spectrum ofX , see e.g. [15], and ' stands for
the large system approximation that turns to an almost surely
equality in the large system limit. Furthermore we introduce

RT
X(r) , lim

ω→r
<RT

X(ω), =r = 0 (49)

whenever the limit exists.
It turns out that by solely invoking “additive free convolu-

tion”, e.g. (48), we can easily solve the complexity issue of
the fixed-point identities for

Λ

x and

Λ

z which do not require
matrix inversion. First we consider the simplification for

Λ

x.
To that end let us first define the auxiliary variable

q ,
1

K
tr{(Λx + Jz)

−1} =
1

K

∑
k∈K

1

[Λx]kk + [

Λ

x]kk
. (50)

2In fact we can define the R-transform on the negative real line. However
this requires the implicit assumption that Λ is positive-definite.

Then by invoking (48) we easily obtain that

q ' 1

K

∑
k∈K

1

[Λx]kk +RK
Jz

(−q)
. (51)

Thereby, we conclude that

[

Λ

x]kk ' RK
Jz

(−q), k ∈ K. (52)

The average of (52) over the random matrixA agrees with [14,
Eq. (51)]. Note that the simplification in (52) is still implicit
due to the definition of q in (51). Subsequently we present
an explicit complexity simplification for [

Λ

x]kk. First we note
that (52) states that we can replace all the elements [

Λ

x]kk,
k ∈ K by a single scalar quantity, say

Λ

x. This allows us to
write q ' 〈σx(κx,

Λ

xI)〉 with κx =

Λ−1
x A†m + x̂. Then,

from (52) we write an explicit fixed-point identity for

Λ

x as

Λ

x = RK
Jz

(−〈σx(κx;

Λ

xI)〉). (53)

We now address a similar complexity simplification for
[

Λ

z]nn for n ∈ N . To that end let us introduce an auxiliary
N × 1 vector τ̃m whose entries are defined as

[τ̃m]n , [Λz]nn − [Λz]
2
nn[A(Λx +A†ΛzA)−1A†]nn (54)

= [(Λ−1z +AΛ−1x A†)−1]nn, (55)

where (55) follows directly from Woodbury’s matrix inversion
lemma. Furthermore by making use of (36) for (54) we can
write the following fixed-point identity

[(Λ−1z +AΛ−1x A†)−1]nn = [Λz]nn −
[Λz]

2
nn

[Λz]nn + [
Λ

z]nn
(56)

=
1

[Λ−1z ]nn + [

Λ−1
z ]nn

. (57)

Thus, we can invoke identical arguments on the additive
free convolution approximation above for [

Λ

z]nn as well.
Specifically, under Assumption 1-b) and Assumption 2, for
large N,K we have

[

Λ

z]nn '
1

RN
Jx

(−〈τ̃m〉)
, n ∈ N (58)

with Jx , AΛ−1x A†. The complexity simplification (58) is
still implicit due the definition of τ̃m. To present an explicit
form of it consider first (56) and (57) such that we can write

[τ̃m]n = [

Λ

z]nn −
[

Λ

z]
2
nn

[

Λ

z]nn + [

Λ

z]nn
(59)

= [

Λ

z]nn (1− [

Λ

z]nn[σz(κz;

Λ

z)]n) . (60)

On the other hand, (58) implies that we can replace all the
elements [

Λ

z]nn, n ∈ N by a single scalar quantity, say

Λ

z.
Now for convenience let us define N × 1 vector τm whose
entries are given by

[τm]n ,

Λ

z (1−

Λ

z[σz(κz;

Λ

zI)]n) , n ∈ N . (61)

Then following (58) we introduce an explicit fixed-point
identity for

Λ

z as

Λ

z =
1

RN
Jx

(−〈τm〉)
. (62)



So far we have shown in (53) and (62) how to bypass the
need for matrix inversion to “update”

Λ

x and

Λ

z, respectively.
However this treatment requires solving a highly non-trivial
random matrix problem i.e. deriving the closed-form solution
for RK

Jz
and RN

Jx
. This is usually, though not always, not pos-

sible. On the other hand deriving the solution of e.g RK
Jz

in the
limiting case is rather simpler. Due to the uniform convergence
property of the R-transform [15, Lemma 3.3.4], this approach
would allow us to accurately predict, for example RK

Jz
, for

large N,K. This is what we show in the next subsection for
the zero-mean iid Gaussian matrix ensemble.

The zero-mean and iid case, i.e. GAMP: In the sequel we
provide the explicit solutions for

Λ

x and

Λ

z when the entries
of A are assumed to be iid Gaussian with zero mean and
variance 1/N .

Under Assumption 2 we obtain that

RK
Jz

(ω) ' 1

N

∑
n∈N

1

[Λ−1z ]nn − ω/α
(63)

RN
Jx

(ω) ' 1

αK

∑
k∈K

1

[Λx]kk − ω
. (64)

These results can be simply derived by conveniently formu-
lating the well-known Marc̆henko-Pastur theorem in terms of
the R-transform. While the Marc̆henko-Pastur theorem relies
on the assumptions that the entries ofA are iid (not necessarily
Gaussian) with zero mean andA is independent of Λ [18], due
to the asymptotic freeness, the same holds when the entries
are restricted to be Gaussian distributed but without restriction
that A and Λ are independent. From (63) and (64) we have

Λ

x '
1

N

∑
n∈N

1

[Λ−1z ]nn + 〈σx(κx;

Λ

xI)〉 /α
(65)

1

Λ

z
' 1

αK

∑
k∈K

1

[Λx]kk + 〈τm〉
. (66)

From these equations one can conclude that

Λ

z '
α

〈σx(κx;

Λ

xI)〉
,

Λ

x ' 〈τm〉. (67)

Thereby we recover the fixed points of the GAMP-2nd order
updates for the zero-mean iid matrix ensemble as in (15).

IV. CONCLUSION

For the given zero-mean iid Gaussian matrix ensemble, the
fixed points of GAMP “asymptotically” coincide with the
stationary points of the Gibbs free energy under first- and
second-moment constraints. It turns out that the only critical
issue for GAMP is the update rules for ”variance” parameters

Λ

x and

Λ

z. These parameters play a central role. Specifically
a crude update rule for a given measurement matrix ensemble
would completely spoil the optimality of the algorithm. If
for general invariant matrix ensembles,

Λ

x and

Λ

z can be
updated based on the R-transform formulation in (53) and (62)
the algorithm “asymptotically” fulfills the stationary points
identities of the Gibbs free energy formulation. Once the
closed form expressions of (53) and (62) are obtained, the

resulting algorithm includes solely O(N) operations. But the
computation of the solutions to these identities is not trivial.
Nevertheless it is sometimes doable, e.g. for the random row
orthogonal matrix ensembles. Furthermore once either the
prior or the likelihood is expressed in terms of a Gaussian
function, the R-transform formulation becomes rather trivial.
In general updating

Λ

x and

Λ

z requires a matrix inversion at
each iteration, for example the iteration steps in (43)–(47).

ACKNOWLEDGMENT

This work was supported by the European Commission in
the framework of the FP7 Network of Excellence in Wireless
COMmunications NEWCOM] (Grant agreement no. 318306).

REFERENCES

[1] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proceedings of the National Academy
of Sciences, vol. 106, pp. 18 914–18 919, September 2009.
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