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Bayesian analysis of spatial point processes in the

neighbourhood of Voronoi networks

Øivind Skare∗, Jesper Møller†, Eva B. Vedel Jensen‡

ABSTRACT: A model for an inhomogeneous Poisson process with high intensity
near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is
analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and
other model parameters. An MCMC algorithm is constructed to sample from the
posterior, which contains information about the unobserved Voronoi tessellation and
the model parameters. A major element of the MCMC algorithm is the reconstruc-
tion of the Voronoi tessellation after a proposed local change of the tessellation. A
simulation study and examples of applications from biology (animal territories) and
material science (alumina grain structure) are presented.

Keywords: Bayesian inference, Delaunay tessellation, inhomogeneous point pro-
cesses, Markov chain Monte Carlo, Poisson process, Voronoi tessellation.

1 Introduction

Spatial point processes in the neighbourhood of a reference structure are often ob-
served. A diverse set of examples at very different scales are copper deposits in
the neighbourhood of lineaments (Berman 1986), gold coins near Roman roads
(Hodder & Orton 1976), specific tree species along rivers in the rain forest (Valencia
et al. 2004), galaxies at the boundary of cosmic voids (Icke & Van de Weygaert
1987, Van de Weygaert & Icke 1989, Van de Weygaert 1994), pores at the boundary
of grains (Karlsson & Liljeborg 1994) and animal latrines near territory boundaries
(Blackwell 2001, Blackwell & Møller 2003). In most cases the reference structure
is unknown. The object of the statistical analysis of point patterns of this type
may either be to describe the distribution of the point pattern or to reconstruct the
reference structure or perhaps both.

In the present paper, we propose a model for spatial point processes in the
neighbourhood of the edges of a Voronoi tessellation. The model is analysed in a
Bayesian setting. The idea of using Voronoi tessellations for constructing spatial
processes in a Bayesian setting is not new. In the seminal paper Green (1995),
reversible jump Markov chain Monte Carlo has been developed and applied to image
segmentation (subdivision of a digital image into homogeneous regions) via Voronoi
tessellations. Heikkinen & Arjas (1998) and Heikkinen & Arjas (1999) studied a
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nonparametric Bayesian modelling framework for inhomogeneous Poisson processes
where the intensity function is piecewise constant on Voronoi cells. In Møller &
Skare (2001), Voronoi tessellations have been used in a Bayesian setting for reservoir
modelling.

The model discussed in the present paper can be used for modelling inhomo-
geneous point processes. Recently, models for inhomogeneous point processes have
been suggested by several authors, cf. Baddeley et al. (2000), Jensen & Nielsen
(2001), Hahn et al. (2003) and references therein. Although some of these models
may be adapted to include explanatory variables such as the distance to the refer-
ence structure the models are not particularly focused on point patterns lying near
a reference structure. We propose a model for such a point pattern, obtained by
perturbing points on the Voronoi edges with intensity ρ, using a standard normal
distribution with independent coordinates and common variance σ2 for all coordi-
nates. Bayesian inference is developed in both 2D and 3D. A major step in the
posterior simulation from the model is the local change of the Voronoi tessellation
at each iteration. It is easy to modify the simulation algorithm in case another point
intensity function is of interest, including the one suggested in Blackwell (2001).

The present paper is organized as follows. In Section 2, the suggested model is de-
scribed, including likelihood and prior assumptions, while posterior simulation from
the model is discussed in Section 3. A simulation study is presented in Section 4.
Bayesian analysis of two data sets from biology and material science, respectively,
is described in Section 5. Section 6 concludes with a discussion.

2 The model

In this section we specify the various steps of a Bayesian hierarchical model con-
struction for a Poisson process with an intensity function which is concentrated in
the neighbourhood of the edges of a Voronoi tessellation. We consider first the case
where the Voronoi tessellation is known.

2.1 Voronoi tessellations

Before specifying our model we need to introduce some terminology and notation and
to recall a few properties of Voronoi tessellations. For further background material
on Voronoi tessellations, see Møller (1994) and Okabe et al. (2000).

Let B̄ ⊂ Rd be a bounded closed convex d-dimensional set where d ≥ 2, and let
y = {yi} ⊂ B̄ be a finite set of points called nuclei. In our application examples,
d = 2 or 3 and B̄ is a rectangle or a box containing an observation window B. The
Voronoi cell C(yi|y) with nucleus yi ∈ y and restricted to B̄ consists of all points in
B̄ that is not closer to another nucleus yj ∈ y\yi:

C(yi|y) =
{

s ∈ B̄ : ‖yi − s‖ ≤ ‖yj − s‖ for all yj ∈ y
}

, yi ∈ y,

where ‖·‖ denotes Euclidean distance. The Voronoi tessellation V(y) generated by y

and restricted to B̄ is the collection of Voronoi cells C(yi|y), yi ∈ y. For an example
of planar Voronoi tessellations, see Figure 1 below.
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Henceforth, to avoid “degenerated cases”, see Møller (1994), we assume that the
nuclei satisfy the following conditions:

• n(y) ≥ d where n(y) denotes the number of nuclei;

• y is in general quadratic position, that is, no k + 1 nuclei lie on a k − 1
dimensional affine subspace of Rd, k = 2, . . . , d, and no d + 2 nuclei lie on the
boundary of a sphere.

These conditions and the assumptions imposed on B̄ ensure the following. Any
non-void intersection of j ≥ 2 Voronoi cells is a bounded closed convex (d + 1 − j)-
dimensional set (this set is empty if j ≥ d+2). In particular any non-void intersection
of d Voronoi cells is a finite closed line segment of positive length called a Voronoi
edge. We denote the union of edges by E(y) and the total length of E(y) by L(y).
Note that ∅ 6= E(y) ⊂ B̄ and 0 < L(y) < ∞. An endpoint of an edge is called
an interior or a boundary vertex of V(y) depending on whether it belongs to the
interior or boundary of B̄. The interior vertices are the non-void intersections of
any d + 1 Voronoi cells, and so exactly d + 1 edges emerge at an interior vertex. In
fact, under the prior model for y specified in Section 2.4, with probability one, y is
finite and in general quadratic position, and only one edge emerges at any boundary
vertex. Note that in the spatial case d = 3, a non-void intersection between two
Voronoi cells is a bounded closed convex two-dimensional set called a face.

For the simulation algorithm in Section 3 we need the Delaunay tessellation, the
dual tessellation to V(y). A Delaunay cell is a d-dimensional simplex (i.e. a triangle
if d = 2 or a tetrahedron if d = 3) given by the convex hull of d + 1 nuclei so that
the closed ball containing these nuclei in its boundary does not contain any further
nuclei. Thus the union of Delaunay cells is the convex hull of y which in general will
be strictly contained in B̄. We consider later the extended Delaunay tessellation
T (y) given by adding d + 1 fixed dummy points v = {v0, . . . , vd} ⊂ Rd \ B̄: Each
Delaunay cell in T (y) corresponds to d+1 points (or “nuclei”) from w = v∪y such
that the closed ball containing these d + 1 points in its boundary contains no other
points from w. Here it is required that

• w is in general quadratic position;

• the original Delaunay cells defined by y are contained in T (y);

• B̄ is contained in the convex hull of w;

• the dummy points do not influence the Voronoi tessellation in B̄, i.e. V(y∪v) =
V(y).

The latter requirement is obtained by choosing each vi such that the shortest distance
from vi to any point in B̄ is larger than sup{‖ε − η‖ : ε, η ∈ B̄}. For example for
B̄ = [0, δ] × [0, δ], we chose v0 = −(δ, δ), v1 = (2δ,−δ) and v2 = (0.5δ, 2.5δ). As
explained later in Section 3, the important fact is that from T (y) we can easily
obtain T (y ∪ {ξ}) and hence V(y ∪ {ξ}) when adding a point ξ ∈ B̄ such that
y ∪ {ξ} is in general quadratic position.
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2.2 Data distribution

Suppose that our data is x ∩ B = xB where x is a Poisson process defined on
Rd and observed within a window B ⊂ Rd with d-dimensional Lebesgue measure
|B| ∈ (0,∞). Below we construct the intensity function of this Poisson process by
a two-step procedure such that the intensity function near a given set E ⊂ Rd is
high.

First, we introduce a latent Poisson process z with intensity measure Λ concen-
trated on E and such that 0 < Λ(E) < ∞ (ensuring that with probability one z

is finite and with a positive probability z is non-empty). Second, the point process
x = {xi} is obtained from the point process z = {zi} by i.i.d. perturbations {εi}
which are independent of z:

xi = zi + εi.

Assume that εi has density h with respect to Lebesgue measure on Rd. Then x is
a Poisson process with intensity function

χE(x|Λ, h) =

∫

E

h(x − z) Λ(dz),

see the “Displacement Theorem” in Kingman (1993) or Section 3.3.1 in Møller &
Waagepetersen (2003). Note that the total intensity of x is given by

∫

Rd χE(x|Λ, h) dx
= Λ(E).

Specifically, we assume that E = E(y) is specified as in Section 2.1 where B̄ ⊇ B
is “sufficiently large” such that boundary effects can be ignored, see the discussion of
Figure 1 below. Furthermore, we assume that z is homogeneous on E with intensity
ρ > 0 (i.e. Λ(dz) = ρ dz, where dz denotes Lebesgue measure on E), and h is the
density of a radially symmetric d-dimensional normal distribution Nd(0, σ

2Id) with
variance σ2 > 0. Then Λ(E) = ρL(y) ∈ (0,∞) with probability one, as required.

We denote the intensity function χE(x|Λ, h) by

χE(x|ρ, σ2) =
ρ

(2πσ2)d/2

∫

E

exp

(

−
‖x − z‖2

2σ2

)

dz (1)

which can be simplified as follows. For any edge e = [u, v] ∈ E, let pe denote
the orthogonal projection onto the line containing e. By Pythagoras, ‖x − z‖2 =
‖x − pe(x)‖2 + ‖pe(x) − z‖2, whereby (1) reduces to

χE(x|ρ, σ2) = (2πσ2)−(d−1)/2ρ
∑

e∈E

i(σ2, e, x) (2)

with

i(σ2, e, x) = exp

(

−
1

2σ2
‖x − pe(x)‖2

){[

Φ

(

du

σ

)

+ Φ

(

dv

σ

)

− 1

]

1[pe(x) ∈ e]

+

[

Φ

(

max(du, dv)

σ

)

− Φ

(

min(du, dv)

σ

)]

1[pe(x) 6∈ e]

}

where
du = ‖u − pe(x)‖, dv = ‖v − pe(x)‖.
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Figure 1 shows an example of the intensity function χE(x|ρ, σ2) and the Voronoi
tessellation V(y) restricted to a square B = [0, 10]2, when (σ, λ) = (0.4, 0.16) and the
size of B̄ is varied. Boundary effects are clearly seen for the two smallest choices of
B̄, while for the two largest choices the intensity functions and Voronoi tessellations
are essentially equal. Note that the value of χE(x|ρ, σ2), when x is close to an interior
Voronoi vertex, is determined by the following: a) all edges sharing the vertex will
contribute to the intensity; b) on the other hand, i(σ2, e, x) is decreasing when
‖pe(x)−m‖ or ‖x−pe(x)‖ are increasing, where m = (u+v)/2 is the midpoint of e.
In Figure 1, a) is more important than b) as χE(x|ρ, σ2) takes its highest values for
x near the vertices of V(y). In higher dimensions d ≥ 3, a) is even more pronounced,
since more edges emerges from interior vertices.

B = [0, 10]2 B = [− 1, 11]2

B = [− 2, 12]2 B = [− 5, 15]2

Figure 1: Grey scale plot of the intensity function χE(x|ρ, σ2) for given Voronoi
tessellations restricted to B = [0, 10]2, where σ = 0.4 and B̄ is varying. The nuclei
generating the Voronoi tessellation is a simulation of a homogeneous Poisson process
on B̄ with intensity λ = 0.16. The nuclei for the smaller sets B̄ are the restriction
to these sets of the nuclei generated in the largest set B̄ = [−5, 15]2.
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2.3 Likelihood

The likelihood based on the data xB turns out to be intractable because it involves
the calculation of the integral

∫

B
χE(x|ρ, σ2) dx. For the Bayesian analysis we use

therefore the “full” likelihood based on x and treat xBc = x \xB as “missing data”.
It turns out that there is no need to include z as “missing data”.

Specifically, let µ denote the distribution of a finite Poisson process on Rd with
strictly positive intensity function k so that

∫

Rd k(x) dx < ∞. Then the “full”
likelihood is given by

l(ρ, σ2,y|x) =

[

∏

xi∈x

χE(xi|ρ, σ2)

k(xi)

]

exp(−ρL(y)), (3)

since this times the constant exp
(∫

k(x) dx
)

is equal to the density of x with respect
to µ, cf. Proposition 3.8 in Møller & Waagepetersen (2003). The choice of k plays
no importance in the sequel.

2.4 Prior assumptions

In cases where we have no immediately available prior knowledge about the param-
eters ρ and σ2, and possibly also no prior knowledge about y, we seek a relatively
non-informative prior distribution. Thus, we assume that ρ, σ2,y are independent,
with ρ ∼ U(0, ρmax) and σ ∼ U(0, σmax), where ρmax > 0 and σmax > 0 are known,
and U(a, b) denotes the uniform distribution on the interval (a, b). If y is unknown,
y is assumed to be a homogeneous Poisson process on B̄ with intensity λ, where we
have conditioned on that n(y) ≥ d (see Section 2.1), and where λ ∼ U(0, λmax), with
λmax > 0 known. Then (with probability one) y is finite and in general quadratic
position, cf. Møller (1994). Note that

π(ρ) ∝ 1[0 < ρ < ρmax], π(σ2) ∝
1

σ
1[0 < σ < σmax], π(λ) ∝ 1[0 < λ < λmax], (4)

where 1[·] denotes the indicator function. We generally choose large values for λmax,
ρmax and σmax such that these limits do not influence the posterior distributions.
For later use, if µ̄ denotes the distribution of a unit rate Poisson process on B̄,

π(y|λ) =
λn(y) exp((1 − λ)|B̄|)

1 − exp(−λ|B̄|)
∑d−1

i=0 (λ|B̄|)i/i!
(5)

is the conditional density of a Poisson process with respect to µ̄, when we condition
on both the intensity λ and the restriction n(y) ≥ d.

2.5 Posterior

By Bayes theorem, the posterior density is

π(ρ, σ2,xBc |xB,y) ∝ π(ρ)π(σ2)l(ρ, σ2,y|x) (6)
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when y is known, and

π(ρ, σ2, λ,y,xBc |xB) ∝ π(ρ)π(σ2)π(y|λ)π(λ)l(ρ, σ2,y|x) (7)

when y is unknown, where the terms on the right hand side are given by (3)–(5).
In both cases of (6) and (7) we need to use Markov chain Monte Carlo (MCMC)
simulations as explained in detail below.

3 Posterior simulation

We presume that the reader has some familiarity to MCMC algorithms, see e.g.
Gilks et al. (1996). For simulation from (6) or (7) we use a fixed scan Metropolis
within Gibbs algorithm (also called a hybrid algorithm), where in each scan ρ, σ2

and xBc , and also y and λ when these are unknown (the case of (7)), are updated in
turn. Briefly, the updates for ρ, σ2 and λ are respectively simple Gibbs, Metropolis
random walk, and independence sampling updates; the updates of xBc are easily
generated by a thinning procedure; and the updates of y are of birth, death or move
types. Details are given below.

3.1 Updates for ρ, σ2 and λ

The full conditional for ρ is the restriction of a Gamma distribution:

ρ | (σ2, λ,y,x) ∼ Γ(n(x) + 1, L(y)), with the constraint that ρ < ρmax.

Here we use a Gibbs update, using rejection sampling (i.e. sampling from the Gamma
distribution until the constraint is satisfied).

The full conditional

π(σ2|ρ, λ,y,x) ∝ π(σ2)l(ρ, σ2,y|x)

is not a standard distribution, so instead of Gibbs sampling we use Gaussian ran-
dom walk updates for σ2: If (ρ, σ2, λ,y) is the current state, we generate a normal
proposal σ2

∗ ∼ N (σ2, κ) and accept σ2
∗ with probability

min

{

1,
π(σ2

∗)

π(σ2)

∏

xi∈x

χE(y)(xi|ρ, σ2
∗)

χE(y)(xi|ρ, σ2)

}

and retain σ2 otherwise. To get some idea of how to choose κ, we ran Markov chains
for different values of κ and compared their estimated first-order autocorrelations.
This suggested that the optimal value of κ corresponds to an acceptance probability
that is slightly above 0.40, in close agreement with Roberts & Rosenthal (2001) and
Gelman et al. (1996).

The full conditional

π(λ|ρ, σ2,y,x) ∝ π(y|λ)π(λ)
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is a Γ(n(y) + 1, |B̄|) distribution, if we ignore the constraint that n(y) ≥ d. There-
fore, we use independence sampling updates for λ: If (ρ, σ2, λ,y) is the current state,
we generate a proposal λ∗ ∼ Γ(n(y) + 1, |B̄|) and accept λ∗ with probability

min

{

1,
1 − exp(−λ|B̄|)

∑d−1
i=0 (λ|B̄|)i/i!

1 − exp(−λ∗|B̄|)
∑d−1

i=0 (λ∗|B̄|)i/i!
1[λ∗ < λmax]

}

and retain λ otherwise. In our application examples, the acceptance probability is
close to 1.

3.2 Updates for xBc

We simulate from the conditional distribution of xBc given (ρ, σ2, λ,y,xB) by the fol-
lowing thinning procedure which is based on the fact that conditional on (ρ, σ2, λ,y),
the Poisson processes xB and xBc are independent.

• Simulate a homogeneous Poisson process z′ on E(y) with intensity ρ.

• For each z ∈ z′, generate a random variable x(z) from Nd(z, σ2Id), where all
the x(z) are conditionally independent given z′.

• Return the collection of those points x(z) with x(z) ∈ Bc.

3.3 Updates for y

Since y is a point process with a varying number of points, its full conditional

π(y|ρ, σ2, λ,x) ∝ π(y|λ)l(ρ, σ2,y|x)

is more complicated than the full conditionals above. As in Geyer & Møller (1994),
we let each update of y consists of either a birth, death or move proposal, and the
proposal is accepted with probability min{1, H}, where H is the Hastings ratio.

Specifically, suppose that (ρ, σ2,y, λ) is the current state and we want to update
y, where n(y) ≥ d as required. A birth or a death or a move proposal occurs
with probability q, q or 1 − 2q, respectively, where 0 < q ≤ 0.5 is a user-specified
parameter. In case of a birth proposal y → y∪{ξ}, say, the new point ξ is uniformly
distributed on B̄ and H = R(y; ξ), where

R(y; ξ) =
λ|B̄|

n(y) + 1

[

∏

xi∈x

χE(y∪{ξ})(xi|ρ, σ2)

χE(y)(xi|ρ, σ2)

]

exp (ρ(L(y) − L(y ∪ {ξ}))) . (8)

In case of a death proposal y → y \ {η}, say, the point η is chosen uniformly at
random from y and H = 1/R(y \ {η}; η) (setting H = 0 if n(y) ≤ d). In case
of a move proposal y → (y \ {η}) ∪ {ξ}, say, we use a Metropolis random walk
update: choose η uniformly at random from y and propose to replace this by ξ,
drawn from Nd(η, σ2

moveId) (see Sections 4 and 5 for the choice of σmove). Then
H = R(y \ {ξ}; η)/R(y \ {η}; ξ) (setting H = 0 if ξ 6∈ B̄).
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3.4 Construction of the Voronoi tessellation

The critical update is that for y (and partly also that for σ2), since a birth or
death proposal can cause a locally large change of E(y) and hence a low acceptance
probability. We use an incremental method for building the Delaunay tessellation
T (y) and thereby the Voronoi tessellation V(y), cf. Section 2.1. Briefly, for a birth
proposal y → y ∪ {ξ}, we make first an initial tessellation of simplices by searching
for the Delaunay cell T ∈ T (y) that contains ξ. If T has vertices w0, . . . , wd, then
we replace T by the d + 1 new simplices with vertices w0, . . . , wi−1, ξ, wi+1, . . . , wd,
i = 0, . . . , d. Second, a number of edge (if d = 2) or edge and face (if d = 3) flip
operations are performed until the Delaunay property is restored, see Section 2.1
and the algorithm described in Mücke (1993). Our extension of Mücke’s algorithm
simply consists in including reverse operations: A death proposal y → y \ {η}
also involves edge and face flip operations, going in the reverse direction of the
corresponding birth proposal y \ {η} → y. A move proposal y → (y \ {η}) ∪ {ξ}
involves the edge and face flip operations for first the death y → y \ {η} and next
the birth y \ {η} → (y \ {η}) ∪ {ξ}.

4 Simulation study

We considered two simulated data sets: In each case the data xB was generated
using the same underlying tessellation as in Figure 1 with B̄ = [−2, 12]2, where the
nuclei of the Voronoi tessellation was a realisation of a Poisson point process with
λ = 0.16. The first data set was simulated with σ = 0.4 and ρ = 2, the same values
that produced the intensity χE(·|ρ, σ2) shown in Figure 1. The second data set was
simulated with σ = 0.1, while ρ = 2 as before. Thus the second data set was more
informative with respect to y than the first data set.

We used identical and independent uniform priors: λ, ρ and σ follow U(0, 1000).
For the updates of y, we used the MCMC algorithm described in Section 3.3 with
q = 0.35. Furthermore, σmove = 0.8 and σmove = 0.14 for the two cases, and
the acceptance probabilities for a move proposal were 0.22 and 0.25, respectively.
Finally, κ = 0.062 and κ = 0.0052 in the random walk proposal for σ2 for the two
cases, and the acceptance probability were 0.36 and 0.27, respectively.

The posterior edge intensity surface was calculated by dividing B into 200 ×
200 squares of equal size, and estimating by MCMC methods for each square the
probability that the square contains a Voronoi edge. For the first data set the
positions of the Voronoi edges showed a large degree of variability as judged from
the posterior edge intensity, while in the other case the data more or less fixed the
Voronoi tessellation in the posterior simulations. As expected the variability was
largest at the boundary of B. Figure 2 shows the posterior edge intensity surface
together with the simulated data xB obtained in the first case.

A total of 5,000,000 iterations were run with a burn-in of 500,000 iterations.
Trace plots of n(y), n(x), λ, ρ, σ2 and log(π(ρ, σ2, λ,y,xBc |xB)) (similar to Figure 4
below, but omitted here) indicated that the chains were well mixing. The posterior
distributions had heavy tails, notably for σ2, but also for λ (and hence for n(y))
in the first case with true σ2 = 0.16. We estimated the integrated auto-correlation

9



Posterior edge intensity Most likely (Iteration 4097237)

Iteration  1000000 Final

Figure 2: Simulation study. First data set, with B = [0, 10]2, B̄ = [−2, 12]2,
σ = 0.4, ρ = 2 and λ = 0.16. Upper left figure: posterior intensity surface together
with the simulated data. The other figures show realisations from the posterior: the
tessellation with highest posterior probability, the tessellation at iteration 1,000,000
and the final tessellation after 5,000,000 iterations.

time (IACT) from the samples of n(y), using the initial sequence estimator for the
asymptotic variance (Geyer 1992). The estimates were IACT = 31, 400 for the first
case and IACT = 85, 500 for the second case. Hence, as expected, the algorithm
mixed fastest in the first case.

5 Examples

5.1 Reconstructing territories of badgers

Animal territories have often been modelled by Voronoi tessellations, see Covich
(1976), Tanemura & Hasegawa (1980), Blackwell (2001), Blackwell & Møller (2003)
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and references therein. The example in this section concerns the reconstruction of
territories of badgers from the positions of latrines. We assume that these territories
form a Voronoi tessellation and that the badgers create latrines near the borders of
their territories. The data set consists of the locations of 124 latrines observed
in Wythan Woods, Oxford, U.K, see the point pattern in the upper left panel of
Figure 3. The data has previously been analysed in Blackwell (2001) and Blackwell
& Møller (2003).

Posterior edge intensity Most likely (Iteration 96112675)

Iteration  150003375 Final

Figure 3: Badgers data. Upper left figure: posterior intensity surface together with
the locations of 124 latrines. The other figures show realisations from the posterior:
the most likely tessellation, the tessellation at iteration 150,003,375 and the final
tessellation after 201,000,000 iterations.

As in Section 4, we used identical and independent priors, U(0, 1000), for λ,
ρ and σ. We assumed an unknown number of generating points in the Voronoi
tessellation, i.e. an unknown number of territories. Figure 3 shows the posterior
edge intensity and realisations from the posterior. A total of 201,000,000 iterations
were run with a burn-in of 1,000,000 iterations. Figure 4 shows trace plots of n(y),
n(x), λ, ρ, σ2 and log(π(ρ, σ2, λ,y,xBc |xB)) as a function of iteration number.

In Figure 5, a plot of L̂(r) − r as a function of the distance r is shown for the
observed data together with the average value of L̂(r)−r obtained from simulations
from the posterior predictive distribution, and upper and lower 2.5% percentiles.

Recall that L̂(r) =

√

K̂(r)/π where K̂(r) is the estimated value of the K-function

at r, see e.g. Stoyan et al. (1995). The samples from the posterior predictive distri-
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Figure 4: Badgers data. Trace plots of n(y), n(x), λ, ρ, σ2 and
log(π(ρ, σ2, λ,y,xBc |xB)) as a function of iteration number.

bution were taken with spacing given by the estimated IACT which was 279,290. In
Figure 6, a few simulated point patterns from the posterior predictive distribution
are compared with the observed point pattern.

Judged from the posterior edge intensity in Figure 3 and the simulated point
patterns in Figure 6, the model captures important features of the data, but align-
ment of points appears to be more pronounced in the observed point pattern. This
is confirmed by Figure 5, which shows that the model somewhat underestimates the
degree of clustering.
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Figure 5: Badgers data. Plot of L̂(r) − r as a function of the distance r is shown
for the observed data (solid thick line), together with the average value of L̂(r) − r
obtained from simulations from the posterior predictive distribution (dashed thick
line) and corresponding upper and lower 2.5% percentiles (dotted lines). In the
Poisson case, L(r)− r = 0, here shown as a dotted-dashed line for comparison. The
distance 5 is half the width of the window in Figure 3.
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Figure 6: Badgers data. Observed point pattern (upper left corner) and simulated
point patterns from the posterior predictive distribution.
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5.2 Distribution of pores in translucent alumina

This example concerns the 3D distribution of pores in translucent alumina. These
pores are located at the boundaries of the alumina grains. In Karlsson & Liljeborg
(1994), the spatial distribution of such pores has been studied, using confocal scan-
ning laser microscopy for the registration of 3D coordinates of centroids of pores. It
was found, using summary statistics, that the pores form a clustered point pattern.
Here, we investigate whether a model of the type discussed in the present paper is
appropriate for the description of the spatial distribution of pores.

We consider one of the data sets analysed in Karlsson & Liljeborg (1994), con-
sisting of the 3D coordinates of 122 pore centroids xi in a block B = [0, 94]× [0, 94]×
[0, 54] (measures are in micro meter (µm)), see Figure 7. In the analysis, we used
identical and independent priors, U(0, 1000), for λ, ρ and σ. We used a standard
deviation of 0.25 in the random walk proposal for σ2. This gave an acceptance
probability around 50 % for σ2. For the updates of y, we chose σmove = 2.0. A
simulation of 205,000,000 iterations was run with a burn-in of 5,000,000. Plots of
n(y), n(x), λ, ρ, σ2 and log(π(ρ, σ2, λ,y,xBc |xB)) as a function of iteration number
were well-behaved as in the case of badgers data.

Figure 7: The alumina pore data. The 3D coordinates of the centroids of 122 pores
in a 94×94×54 µm3 block B of translucent alumina have been recorded by confocal
scanning laser microscopy.

The estimated value of the posterior mean of λ is 7.14 × 10−5 µm−3. Instead of
specifying the intensity of cells, we may use the mean width w of a Voronoi cell. By
Stoyan et al. (1995), page 330, w can be estimated by

w =

[

16π5

243

]1/3
Γ(1/3)

5
λ−1/3 = 35.1µm.

This estimate appears plausible from visual inspection of images of serial sections
through the matrix of alumina grains, cf. Karlsson & Liljeborg (1994).

In Figure 8, a plot of L̂(r) − r as a function of the distance r is shown for the
observed data together with the average value of L̂(r)−r obtained from simulations
from the posterior predictive distribution, and upper and lower 2.5% percentiles.
The samples from the posterior predictive distribution were taken with spacing
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given by the estimated IACT which was 1,903,600. Since the points are now in 3D,
we have

L̂(r) =
[

K̂(r)/(4π/3)
]1/3

.

As judged from Figure 8, the observed point patterns appear to be somewhat more
clustered at small distances that predicted. Simulated point patterns from the pos-
terior distribution were also compared with the observed point pattern, using pro-
jection. No marked difference was found.

In Figure 9, a 3D illustration of the posterior edge intensity surface is shown
together with the observed pore centroids.
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Figure 8: Pore data. Plot of L̂(r) − r as a function of the distance r is shown for
the observed data (solid thick line), together with the average value of simulated
L̂(r)−r obtained from simulations from the posterior predictive distribution (dashed
thick line) and corresponding upper and lower 2.5% percentiles (dotted lines). In
the Poisson case, L(r) − r = 0, here shown as a dotted-dashed line for comparison.
The distance is in µm.

6 Discussion

In the analysis of both simulated and real data we have used uniform priors. If prior
knowledge is available about some of the parameters in the model, non-uniform pri-
ors should be used instead for these parameters. In Blackwell (2001) and Blackwell
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Figure 9: Pore data. The posterior intensity surface together with the observed pore
data.

& Møller (2003), information about the locations of the setts (burrows) of the bad-
gers has been used in the analysis. A total of 16 setts was identified for the data
analysed in Section 5.1. The setts were used as nuclei of the Voronoi tessellation.
However, as shown in Blackwell (2001) and Blackwell & Møller (2003), nuclei located
away from the setts give a better fit to the data. Apart from that, the biological
reasons for using the setts as y are somewhat unclear. For these reasons we have
chosen not to include the setts in our analysis of the badger’s data.

It turns out that the model considered in the present paper is of considerable
interest in cosmology, cf. Van de Weygaert (2005, personal communication). It
is part of our future research plans to use the developed model and its natural
extensions in the study of the spatial distribution of galaxies.
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