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Abstract

For any point process in R
d that has a Papangelou conditional intensity λ,

we define a random measure of ‘innovations’ which has mean zero. When the
point process model parameters are estimated from data, there is an analogous
random measure of ‘residuals’. We analyse properties of the innovations and
residuals, including first and second moments, conditional independence, a
martingale property, lack of correlation, and marginal distributions.

Keywords: Georgii-Nguyen-Zessin formula; Gibbs point process; set-indexed
martingale; Papangelou conditional intensity; Pearson residuals; scan statistic;
smoothed residual field

2000 Mathematics Subject Classification: Primary 62M30
Secondary 62J20

1. Introduction

The inspection of residuals is an important check on the appropriateness of a
probability model fitted to data [3]. This paper defines residuals for spatial point
processes, and describes their properties.

For a point process in one-dimensional time, residual analysis is well understood.
Let Nt be the associated counting process, and assume it has a conditional intensity
λt given the history up to time t. Informally λt = E[dN(t) | Ns, s < t]/dt. Define

the ‘innovation’ process It = Nt −
∫ t

λs ds; this is a martingale with zero mean [14,
Thm. 2.14, p. 60]. When a point process model is fitted to observed data, the ‘residual’

process is Rt = Nt −
∫ t

λ̂s ds where λ̂s is the conditional intensity of the fitted model,
i.e. with parameters determined by fitting the model to the process (Nt, t > 0). If the
model is correct and the parameter estimate is accurate, then E[Rt] ≈ 0. This fact
enables us to check the validity of a point process model fitted to data. Such techniques
are now familiar in signal processing [15, 5, 7, 6] and survival analysis [2, 10, 13].

For point processes in higher dimensions, the lack of a natural ordering implies that
there is no natural generalisation of the conditional intensity of a temporal process given
the “past” or “history” up to time t. Instead, the appropriate counterpart for a spatial
point process is the Papangelou [17] conditional intensity λ(u,X) which conditions on
the outcome of the process at all spatial locations other than u. In [4] we used the
Papangelou conditional intensity to define residuals for finite point processes in R
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and showed that they have practical utility for checking point process models fitted to
spatial point pattern data.

In this paper we give a more general definition of the innovations and residu-
als for finite or infinite point processes in R

d, and study their properties, including
first and second moments, variance deflation, conditional independence, a set-indexed
martingale property, lack of correlation, and marginal distributions. Section 2 gives
background details about the Papangelou conditional intensity. Section 3 defines
innovations and residuals for spatial point processes. Section 4 obtains expressions
for the variances of innovations and residuals. Section 5 discusses the distribution of
residuals in a special case.

2. Conditional intensities

We consider the general setting of a locally finite point process X on R
d with no

multiple points. Let N denote the set of all locally finite point configurations in R
d,

that is, subsets x ⊂ R
d with n(xB) < ∞ for all bounded B ⊂ R

d, where n(xB)
denotes the number of points in xB = x ∩ B, the restriction of x to B. We view X

as a random variable with values in N , such that N(B) ≡ n(XB) is a finite random
variable whenever B ⊂ R

d is a bounded Borel set [8]. For simplicity, we assume that

P(u ∈ X) = 0 for any fixed point u ∈ R
d, (1)

which is satisfied e.g. if X is stationary. Furthermore, X is assumed to be a Gibbs
point process with Papangelou conditional intensity λ, that is,

E

[
∑

u∈X

h(u,X \ {u})
]

= E

[∫

Rd

h(u,X)λ(u,X) du

]
(2)

for all nonnegative measurable functions h(u,x) on R
d × N . Equation (2) is called

the Georgii-Nguyen-Zessin formula [11, 16], and it is one way of defining the Papan-
gelou conditional intensity. Indeed the Papangelou conditional intensity is uniquely
characterised by (2) up to null-sets: if both λ1 and λ2 satisfy (2), then

P(λ1(u,X) = λ2(u,X) for Lebesgue almost all u ∈ R
d) = 1.

Combining this with (1) we can and do make the assumption that

λ(u,x) = λ(u,x \ {u}) for all u ∈ R
d and x ∈ N . (3)

For instance, this becomes convenient in Section 3 when we define the Pearson and
inverse-λ innovations/residuals.

In [4] we adopted a simpler setting, in which X was assumed to be a finite point
process with an hereditary density f . Suppose that X lives within a bounded Borel
set W ⊂ R

d, and X has a density f with respect to the unit rate Poisson process on
W such that f is hereditary, i.e. f(x) > 0 implies f(x \ {u}) > 0 for all x ∈ NW and
all u ∈ x, where NW is the set of finite point configurations contained in W . It is then
straightforward to verify that the definition

λ(u,x) = f(x ∪ {u})/f(x \ {u}), for all u ∈ W, x ∈ NW (4)
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satisfies (2) and (3) (when the point process is empty outside W ). Here and throughout
the paper we interpret 0/0 = 0.

In applications we often consider a Markov point process [19] of finite interaction
range R < ∞. This is a Gibbs process where the conditional intensity is defined with
respect to a so-called potential V as follows [12, 18, 20]. Suppose that V (x) ∈ [−∞,∞)
is defined for all x ∈ N such that V (x) = 0 whenever x contains two points u, v with
distance ‖u − v‖ > R. Then we say that a Gibbs point process X is Markov with
potential V if

λ(u,x) = exp


∑

y⊆x

V (y ∪ {u})


 whenever u 6∈ x. (5)

In other words, the point process is Markov if λ(u,x) depends on x only through
x ∩ b(u, R), where b(u, R) is the closed ball in R

d with centre u and radius R. This
local Markov property implies a spatial Markov property. For B ⊂ R

d, let ∂B be its
R-close neighbourhood, i.e. the set of all points in Bc = R

d \B within distance R from
some point in B. Then for bounded Borel sets B ⊂ R

d, XB conditional on X∂B is
independent of XBc\∂B , with conditional density

fB(x|x∂B) ∝ exp


∑

y⊆x

V (y ∪ x∂B)


 , for all x ∈ NB , x∂B ∈ N∂B (6)

with respect to the unit rate Poisson process on B, where the normalizing constant
on the right side in (6) may depend on X∂B . Combining (4) and (6) we see that the
Papangelou conditional intensity λ(·, ·|x∂B) of the conditional point process XB |X∂B =
x∂B agrees with the conditional intensity of X, meaning that we can take

λ(u,x|x∂B) = λ(u,x ∪ x∂B), for all u ∈ B, x ∈ NB , x∂B ∈ N∂B . (7)

3. Innovations and residuals

This section defines innovations and residuals for (finite as well as infinite) spatial
point processes X governed by a parameter θ and having Papangelou conditional
intensity λ = λθ. We assume that X is Markov with interaction range R < ∞ and that
X is observed within a bounded window W ⊂ R

d, with positive volume |W |, and let

θ̂ = θ̂(XW ) denote an estimator of θ based on XW . If X may have points outside W ,
we account for edge effects by considering inference based on the conditional process
XV |X∂V , where V = W \ ∂(W c). Since ∂V = ∂(W c), the point process XV given
X∂V is independent of XW c and has Papangelou conditional intensity λ(u,XW ) for
u ∈ V , cf. (7). In fact many of our results remain true for general Gibbs point processes
(defined as point processes satisfying the GNZ formula (2)), including non-Markovian
point processes such as Cox processes, but for specificity we have here chosen to restrict
attention to Markov point processes. For example, in Section 3.1.1, Proposition 3.1
but not Proposition 3.2 remains true for a general Gibbs point process.

Throughout this paper we let the set A be defined as follows. If the process X lives
within W , let A = W and ∂A = ∅. If the point process may have points outside W ,
let A = V .



4 Baddeley, Møller & Pakes

The GNZ formula corresponding to the conditional point process XA|X∂A is

E

[
∑

u∈XA

h(u,XW \ {u})
∣∣∣∣X∂A

]
= E

[∫

A

h(u,XW )λ(u,XW ) du

∣∣∣∣X∂A

]
(8)

for nonnegative measurable functions h; we shall often let h = hθ depend on the model
parameter θ. Equation (8) rather than (2) is the relevant form of the Georgii-Nguyen-
Zessin formula when inference is performed on the conditional point process XA|X∂A.
If X lives in W , then XA|X∂A is equivalent to the “marginal” process XW .

We shall exploit (8) intensively when studying the properties of innovations and
residuals. For illustrative purposes we sometimes consider a Poisson process with
intensity function λ(u,x) = λ(u), in which case we take R = 0 so that A = W and
∂A = ∅, meaning that XA|X∂A ≡ XW and the expectations in (8) are with respect to
the point process restricted to W .

In the sequel we always implicitly assume that means, variances, etc. exist whenever
needed. For example, when we apply (8) we assume that the (conditional) expectations
are finite. Finally, B always denotes a Borel set contained in A.

3.1. Innovations

The h-weighted innovation is the signed random measure defined by

Ih(B) =
∑

u∈XB

h(u,XW \ {u})−
∫

B

h(u,XW )λ(u,XW ) du. (9)

We allow infinite values of h(u,XW ) at points u 6∈ XW , setting h(u,XW )λ(u,XW ) = 0
if λ(u,XW ) = 0. Baddeley et al. [4] study in particular the raw, inverse-λ, and Pearson
innovations given by h = 1, 1/λ and 1/

√
λ respectively. That is,

I(B) ≡ I1(B) = N(B)−
∫

B

λ(u,XW ) du (10)

I1/λ(B) =
∑

u∈XB

1

λ(u,XW )
−
∫

B

1[λ(u,XW ) > 0] du (11)

I1/
√

λ(B) =
∑

u∈XB

1√
λ(u,XW )

−
∫

B

√
λ(u,XW ) du (12)

where 1[·] denotes the indicator function. By equation (8),

E[Ih(B)|X∂A] = 0 (13)

and so the unconditional mean E[Ih(B)] is zero as well; as noticed above, we find (13)
to be the more relevant property when inference is based on XA|X∂A.

3.1.1. Some martingale and independence properties The definition (10) of the raw
innovation is closely analogous to that for temporal processes, i.e. the martingale
obtained by subtracting the compensator from the counting process, except for the
use of the Papangelou conditional intensity in place of the conditional intensity given
the past history. We now show that our raw innovation is indeed a martingale.
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Proposition 3.1. If A = An is increasing in R
d (i.e. An ⊂ An+1, n = 1, 2, . . .), then

In = I(An) is a martingale.

Proof. To stress that the innovation is defined conditionally on XAc (or equivalently,
conditionally on X∂A) we write I(A|XAc) for I(A). Since λ(u,X) = λ(u,XA∪∂A) if
u ∈ A,

I(A|XAc) = N(A)−
∫

A

λ(u,X) du

where by the GNZ formula (8)

E[I(A|XAc)|XAc ] = 0. (14)

Now

E[In+1|XAn
] = E

[
E

(
In+1

∣∣∣∣XAn
,XAc

n+1

) ∣∣∣∣XAn

]

= E

[
In + E

(
I(An+1 \An|X(An+1\An)c)

∣∣∣∣XAn
,XAc

n+1

) ∣∣∣∣XAn

]

and so by (14), since (An+1 \An)c = An ∪Ac
n+1,

E[In+1|XAn
] = E[In + 0|XAn

] = In

which implies the martingale property

E[In+1|In, In−1, . . .] = In.

Lemma 1. Suppose h(u,xW ) is a nonnegative measurable function such that h(u,XW )
= h(u,XW ∩ b(u, R)) for all u ∈ A. Then Ih(B) depends on XW only through XB∪∂B,
and for any Borel set C ⊆ R

d such that C ⊇ ∂B,

E [Ih(B)|XC ] = 0.

Proof. The first property follows from the definition of innovations and the local
Markov property, while the second property follows from a version of the GNZ formula
(viz. (8) with A replaced by B) and the global Markov property (see Section 2).

Proposition 3.2. Suppose B1, B2 ⊂ A are Borel sets at least a distance R apart, i.e.
‖u−v‖ > R for any u ∈ B1 and v ∈ B2, and that h(u,xW ) is a nonnegative measurable
function such that h(u,XW ) = h(u,XW ∩b(u, R)) for all u ∈ A. Let C ⊆ R

d be a Borel
set such that C ⊇ ∂(B1 ∪B2). Then Ih(B1) and Ih(B2) are conditionally independent
given XC . Moreover, conditional on XC , Ih(B1) and Ih(B2) are uncorrelated; and
also without conditioning, Ih(B1) and Ih(B2) are uncorrelated.

Proof. Follows immediately from Lemma 1, the spatial Markov property (see Sec-
tion 2) and basic properties of conditional moments.

As a result of these propositions, one may expect a strong law of large numbers and
a central limit theorem to hold for the asymptotic behaviour of the raw, inverse-λ and
Pearson innovations and residuals as the sampling window W expands. However, we
do not investigate this in the present paper.
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3.2. Residuals

As foreshadowed, we allow the weight function h = hθ to depend on the parameter
θ of the point process model. We assume θ is estimated by θ̂ = θ̂(XW ) and plugged in

to h, yielding ĥ = hθ̂(XW ). The h-weighted residual (or more precisely the ĥ-weighted

residual) is the signed random measure defined by

Rĥ(B) =
∑

u∈XB

hθ̂(XW )(u,XW \ {u})−
∫

B

hθ̂(XW )(u,XW )λθ̂(XW )(u,XW ) du. (15)

In particular, the raw, inverse-λ and Pearson residuals are given by replacing λ(u,XW )
by λθ̂(XW )(u,XW ) on the right hand sides of (10)–(12); we denote these residuals by
R, R1/λ̂, R

1/
√

λ̂
, respectively. In order that the Pearson and inverse-λ residuals be well

defined, we require that λθ̂(XW )(u,XW ) > 0 for all u ∈ XA.

Methods of visualising raw, Pearson and inverse-λ residuals are proposed in [4].

3.2.1. Homogeneous Poisson case Assume that X is a stationary Poisson process in
R

d with intensity θ, i.e. λθ ≡ θ, and we use the maximum likelihood estimator θ̂ =
N(W )/|W |. Recall that in this case, A = W and ∂A = ∅. We have

R(B) = N(B)−N(W )|B|/|W |
R1/θ̂(B) = |W |N(B)/N(W )− |B|
R

1/
√

θ̂
(B) = N(B)

√
|W |/N(W )−

√
N(W )|W |

when N(W ) > 0, and zero otherwise. It can be verified directly that these residuals
have mean zero if the model is true. Notice also that when B = W is the entire
sampling window, we get

R(W ) = R1/θ̂(W ) = R
1/
√

θ̂
(W ) = 0.

This is analogous to the fact that the raw residuals in simple linear regression sum to
zero.

3.2.2. General expressions for mean of residuals By (13) we hope that the (conditional)
mean of the residual measure is approximately zero when the model is true and the
parameter estimate is accurate. If E and λ denote the mean and the Papangelou
conditional intensity for the true model of X, then the h-weighted residual (15) has
true expectation

E[Rĥ(B)|X∂A]

=

∫

B

E

[
hθ̂(X∪{u})(u,XW )λ(u,XW )− hθ̂(XW )(u,X)λθ̂(XW )(u,XW )

∣∣X∂A

]
du

Explicit results for the raw, inverse and Pearson residuals follow directly [4]. Further

analysis depends on the nature of the estimator θ̂.

4. Variances

In this section we give details for deriving variances of residuals and innovations.
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4.1. Variance formulae

Let X⊗X be the point process on R
d × R

d consisting of all pairs (u, v) of distinct
points of X. It follows immediately from the GNZ formula (2) that X⊗X is a Gibbs
point process with (two-point) Papangelou conditional intensity

λ(u, v,x) = λ(u,x \ {v})λ(v,x ∪ {u}), u, v ∈ R
d, x ∈ N , (16)

meaning that the GNZ formula in the form

E


 ∑

u,v∈X: u6=v

h(u, v,X \ {u, v})


 = E

[∫

Rd

∫

Rd

h(u, v,X)λ(u, v,X) du dv

]
(17)

is satisfied for any nonnegative measurable function h(u, v,x) on R
d × R

d ×N . Note
that λ(u, v,X) is symmetric in u and v (more precisely for Lebesgue almost all (u, v)).
If X lives within W and has density f with respect to the unit rate Poisson process,
we can take

λ(u, v,x) = f(x ∪ {u, v})/f(x \ {u, v}).
Below we use the fact that a Markov process with pairwise interaction only (i.e. when
the potential V (x) is zero whenever n(x) > 2) has

λ(u, v,x) = λ(u,x \ {v}) λ(v,x \ {u}) c(u, v) (18)

where log c(u, v) = V ({u, v}) is the second order potential.
By the same arguments as in Section 2, λ(u, v,X) = λ(u, v,XW ) when u, v are points

in A, and (16) also specifies the Papangelou conditional intensity of the conditional
process XA ⊗XA given X∂A. Moreover, the GNZ formula for this conditional point
process on (A×A) \ {(u, u) : u ∈ A} is

E


 ∑

u,v∈XA: u6=v

h(u, v,XW \ {u, v})
∣∣∣∣X∂A




= E

[∫

A

∫

A

h(u, v,XW )λ(u, v,XW )λ(u, v,XW ) du dv

∣∣∣∣X∂A

]
. (19)

Proposition 4.1. For any nonegative measurable function h,

var

[
∑

u∈XA

h(u,XW \ {u})
∣∣∣∣X∂A

]

=

∫

A

E
[
h(u,XW )2 λ(u,XW )|X∂A

]
du +

∫

A

∫

A

T (u, v) du dv (20)

where

T (u, v) = E [h(u,XW ∪ {v})h(v,XW ∪ {u})λ(u, v,x)|X∂A]

−E [h(u,XW )λ(u,XW )|X∂A] E [h(v,XW )λ(v,XW )|X∂A] .

Proof. Follows immediately by expanding the square of the sum on the left side of
(20) as a double sum, and using (8) and (19).
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For example, for a Poisson process with intensity function λ(u), (20) reduces to

var

[
∑

u∈XW

h(u,XW \ {u})
]

=

∫

W

∫

W

E [h(u,XW ∪ {v})h(v,XW ∪ {u})] λ(u)λ(v) du dv

+

∫

W

E
[
h(u,XW )2

]
λ(u) du−

(∫

W

E [h(u,XW )]λ(u) du

)2

.

In the special case h(u,xW ) = h(u), this further reduces to

var

[
∑

u∈XW

h(u)

]
=

∫

W

h(u)2λ(u) du (21)

as expected by the independence properties of the Poisson process.

Lemma 2. For nonnegative measurable functions h and g,

var

[
∑

u∈XA

h(u,XW \ {u})−
∫

A

g(u,XW ) du

∣∣∣∣X∂A

]

=

∫

A

E
[
h(u,XW )2 λ(u,XW )|X∂A

]
du

+

∫

A

∫

A

cov[g(u,XW ), g(v,XW )|X∂A] du dv

+

∫

A

∫

A

T (u, v) du dv − 2

∫

A

∫

A

M(u, v) du dv (22)

where

M(u, v) = E[h(u,XW )g(v,XW ∪ {u})λ(u,XW )|X∂A]

−E[h(u,XW )λ(u,XW )|X∂A]E[g(v,XW )|X∂A].
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Proof. Using standard properties of variances, we expand the left side of (22) as

var

[
∑

u∈XA

h(u,XW \ {u})
∣∣∣∣X∂A

]
+ var

[∫

A

g(u,XW ) du

∣∣∣∣X∂A

]

− 2 cov

(
∑

u∈XA

h(u,XW \ {u}),
∫

A

g(u,XW ) du

∣∣∣∣X∂A

)

= var

[
∑

u∈XA

h(u,XW \ {u})
∣∣∣∣X∂A

]

+

∫

A

∫

A

cov (g(u,XW ), g(v,XW )|X∂A) du dv

− 2E

[
∑

u∈XA

h(u,XW \ {u})
∫

A

g(u,XW ) du

∣∣∣∣X∂A

]

+ 2E

[
∑

u∈XA

h(u,XW \ {u})
∣∣∣∣X∂A

]
E

[∫

A

g(u,XW ) du

∣∣∣∣X∂A

]
. (23)

Denote the four terms on the right-hand side of (23) by V , C, E1 and E2 respectively.
The variance term V is now expanded using Proposition 4.1. The first expectation
E1 is converted to an integral using (8). The second expectation E2 is evaluated by
putting

k(v,x) = h(v,x)

∫

A

g(u,x ∪ {v}) du, v 6∈ x, x ∈ NW ,

so that

k(v,x \ {v}) = h(v,x \ {v})
∫

A

g(u,x) du, v ∈ x, x ∈ NW .

Applying (8) gives

E2 = E

[
∑

u∈XA

k(u,XW \ {u})
∣∣∣∣X∂A

]

=

∫

A

E [k(u,XW )λ(u,XW )|X∂A] du

=

∫

A

E

[
h(u,XW )λ(u,XW )

∫

A

g(v,XW ∪ {u}) dv

∣∣∣∣X∂A

]
du

=

∫

A

∫

A

E

[
h(u,XW )g(v,XW ∪ {u})λ(u,XW )

∣∣∣∣X∂A

]
du dv.

Rearrangement yields the result (22).

Proposition 4.2. The variance of the h-weighted innovation is

var [Ih(B)|X∂A] =

∫

B

E
[
h(u,XW )2 λ(u,XW )|X∂A

]
du

+

∫

B

∫

B

E [S(u, v,XW )|X∂A] du dv (24)
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where

S(u, v,x) = λ(u,x)λ(v,x)h(u,x)h(v,x)

+ λ(u, v,x)h(v,x ∪ {u}) [h(u,x ∪ {v})− 2h(u,x)] . (25)

Proof. Substitute g(u,x) = λ(u,x)h(u,x) in Lemma 2.

As a corollary, by combining (13) and (24) we obtain

var [Ih(B)] =

∫

B

E
[
h(u,XW )2 λ(u,X)

]
du dv. (26)

Again, the conditional variance 24) is a more relevant result for us than (26) when
doing inference conditional on X∂A.

4.2. Variance of innovations in particular cases

4.2.1. Raw innovations For the raw innovations, taking h ≡ 1, equation (25) reduces
to

S(u, v,x) = λ(u,x)λ(v,x)− λ(u, v,x)

so that (24) becomes

var [I(B)|X∂A] =

∫

B

E [λ(u,XW )|X∂A] du

+

∫

B

∫

B

E [λ(u,XW )λ(v,XW )− λ(u, v,XW )|X∂A] du dv. (27)

For a Poisson process with intensity function λ(u), the expression S in (25) is identically
zero, and (27) reduces to (21) with h = 1.

4.2.2. Inverse-lambda innovations Suppose for simplicity that λ(·, ·) > 0. Applying
(20) to h(u,x) = 1/λ(u,x), we find that

var
[
I1/λ(B)

∣∣X∂A

]
=

∫

B

∫

B

E

[
λ(u, v,XW )

λ(u,XW ∪ {v})λ(v,XW ∪ {u})

∣∣∣∣X∂A

]
du dv

+

∫

B

E

[
1

λ(u,XW )

∣∣∣∣X∂A

]
du− |B|2. (28)

For example, consider a pairwise interaction process with a finite potential (i.e.
λ(·, ·)) > 0 and c(·, ·) > 0). Then (18) and (28) yield

var
[
I1/λ(B)|X∂A

]
=

∫

B

∫

B

1

c(u, v)
du dv +

∫

B

E

[
1

λ(u,XW )

∣∣∣∣X∂A

]
du− |B|2. (29)

This was derived in [21] in the unconditional case, when the first and second order
potentials are translation invariant (V ({u}) ≡ β, c(u, v) = c(u − v)). For a Poisson
process with intensity function λ(·) > 0, equation (29) reduces to (21) with h(u) =
1/λ(u).
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4.2.3. Pearson innovations For the Pearson innovations (11), h(u,x) = 1/
√

λ(u,x) so
that h(u,x)2 λ(u,x) = 1[λ(u,x) > 0]. Hence by (24)

var
[
I1/

√
λ(B)|X∂A

]
=

∫

B

P(λ(u,XW ) > 0|X∂A) du

+

∫

B

∫

B

E [S(u, v,X)] du dv (30)

where (25) is now

S(u, v,x) =
√

λ(u,x)
√

λ(v,x)

+
λ(u, v,x)√
λ(v, x ∪ {u})

[
1√

λ(u,x ∪ {v})
− 2√

λ(u,x)

]
. (31)

For a Poisson process with intensity function λ(u), S is identically zero and (30) reduces
to

var
[
I1/

√
λ(B)

]
= var

[
∑

u∈X

1√
λ(u)

]
=

∫

B

1[λ(u) > 0] du (32)

in agreement with (21).
For a Markov point process with pairwise interaction only, (31) becomes

S(u, v,x) =
√

λ(u,x)
√

λ(v,x)

+
λ(u,x \ {v}) λ(v,x \ {u}) c(u, v)√

λ(v,x ∪ {u})

[
1√

λ(u,x ∪ {v})
− 2√

λ(u,x)

]

=
√

λ(u,x)
√

λ(v,x)

+
λ(u,x \ {v})

√
λ(v,x \ {u})1[c(u, v) > 0]√

c(u, v)

[
1√

λ(u,x ∪ {v})
− 2√

λ(u,x)

]

by virtue of (18). For u, v 6∈ x this reduces to

S(u, v,x) =
√

λ(u,x)
√

λ(v,x)

+
λ(u,x)

√
λ(v,x)1[c(u, v) > 0]√

c(u, v)

[
1√

λ(u,x)c(u, v)
− 2√

λ(u,x)

]

=
√

λ(u,x)
√

λ(v,x) +

√
λ(u,x)

√
λ(v,x)1[c(u, v) > 0]

c(u, v)

[
1− 2

√
c(u, v)

]

=
√

λ(u,x)
√

λ(v,x)

[
1 +

(
1

c(u, v)
− 2√

c(u, v)

)
1[c(u, v) > 0]

]
.

The expression in brackets on the last line is nonnegative, and positive when c(u, v) 6= 1.
Thus any nontrivial pairwise interaction gives rise to inflation of the variance of the
Pearson innovations, relative to any Poisson point process with an intensity function
such that the support of the intensity function contains {u ∈ A : V ({u}) > −∞}, the
support of λ(u, ∅).
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4.3. Variance of residuals

General formulae for the variances of the residuals can also be obtained from Propo-
sition 2. These formulae are cumbersome, involving characteristics of both the fitted
model and the underlying point process.

For example, suppose a Poisson process model with intensity function λθ(u) is fitted
to a realisation of a Poisson process with true intensity λ(u). Then the raw residuals
have variance

var R(B) =

∫

B

λ(u) du +

∫

B

∫

B

cov
[
λθ̂(XW )(u), λθ̂(XW )(v)

]
du dv

− 2

∫

B

∫

B

E

[
λθ̂(XW∪{u})(v)− λθ̂(XW )(v)

]
λ(u) dv du

where the expectation is with respect to the true model.
In the very special case where a homogeneous Poisson process model is fitted to a

realisation of a homogeneous Poisson process with intensity θ, the residual variances
are

varR(B) = θ |B|/(1− |B||W |)
varR1/θ̂(B) = |B|(|W | − |B|)E (1[N(W ) > 0]/N(W ))

varR
1/
√

θ̂
(B) = |B|(1− |B|/|W |).

Note that the residual variances are smaller than the corresponding innovation vari-
ances

var I(B) = θ |B|, var I1/θ(B) = |B|/θ, var I1/
√

θ(B) = |B|.

This is analogous to the deflation of residual variance in the linear model; cf. [4].

5. Null distribution of smoothed residual field

In practice it is useful to smooth the residual measure [4]. Let the smoothing kernel
k(·) be a probability density on R

d. The smoothed residual field is the random function

s(u) = e(u)

∫

A

k(u− v) dRĥ(v)

for u ∈ A, where e(u) is a correction for edge effects in the window W given by
e(u)−1 =

∫
W

k(u−v) dv, see [4]. An important question for applications is to determine
the distribution of S = s(u) at a fixed location u ∈ W under a null hypothesis,
especially under the hypothesis of a stationary Poisson process. This is related to the
distribution of the scan statistic [1] as explained in [4, p. 643].

In this section we assume X is a stationary Poisson process with intensity λ in
R

2, and that the fitted model is also a stationary Poisson process. We calculate the
distribution of S = s(u) at a fixed u ∈ W when h = 1. Note that for the stationary
Poisson process model, the raw, inverse-λ and Pearson innovations/residuals are all
proportional to each other. We ignore the effect of parameter estimation, that is, we
consider the kernel-smoothed innovation measure, rather than the kernel-smoothed
residual measure. Edge effects will also be ignored, and edge correction is not applied.
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Letting X = {xi, i = 1, 2, . . .} denote the points of the process, we consider the
uncorrected, smoothed, raw innovation field

s(u) =
∑

i

k(u− xi)− λ

where the kernel is the isotropic Gaussian density

k(u) =
1

2πσ2
exp(−||u||2/(2σ2))

so that

S = s(u) =
1

2πσ2

∑

i

exp(−||u− xi||2/(2σ2))− λ.

The ordered values ||u−xi||2 are the event times Ti of a homogeneous Poisson process
of intensity λπ on R+. Since the inter-event times Vi = Ti − Ti−1 are exponentially
distributed with rate λπ we can represent S as

S =
λ

µ

∑

i




i∏

j=1

Uj




1/µ

− λ (33)

where Uj are i.i.d. uniform [0, 1] r.v.’s and µ = 2λπσ2.

Let X = µ(1 + S/λ) be the sum in (33). Then X satisfies the distributional
equivalence

X ≡ U1/µ(1 + X) (34)

where U is a uniform [0, 1] random variable independent of X. This equivalence
is discussed by Vervaat [23] with references to its prior occurrence. As shown in
Appendix A, equation (34) leads to an integral equation for the c.d.f. F (x) of X,

F (x) = µxµ

∫ ∞

(x−1)+

F (z)

(1 + z)1+µ
dz = xµ

[
C − µ

∫ (x−1)+

0

F (z)

(1 + z)1+µ
dz

]
(35)

where

C = µ

∫ ∞

0

F (z)

(1 + z)1+µ
dz = E[(1 + X)−µ] = e−γµ/Γ(1 + µ)

where γ ≈ 0.5772 is Euler’s constant. For x ∈ [0, 1] the integral in (35) is zero and

F (x) = Cxµ, 0 ≤ x ≤ 1.

One may then apply (35) recursively to obtain the values of F on successive intervals
[n, n + 1] for n = 1, 2, . . ., see Appendix A. We have no analytic form for the solution,
but it may be computed numerically.

For any given value of µ, these recursive computations yield the distribution of
X = µ(1 + S/λ), so the c.d.f. of Y = (µ/λ)S = 2πσ2S is G(y) = F (y + µ) for
−µ ≤ y ≤ ∞. Figure 1 shows the computed G for the cases µ = 0.5, 1, and 2.
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Figure 1: Cumulative distribution function of Y = 2πσ2S for the cases µ = 0.5, 1, 2
(left to right), where S = s(0) is a typical value of the kernel-smoothed raw innovation field
for a homogeneous Poisson process of rate λ, smoothed by an isotropic Gaussian kernel with
standard deviation σ, and µ = 2λπσ2.
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Appendix A. Study of the distributional equivalence

Here we consider the distributional equivalence (34) where X is a positive continuous
random variable X with c.d.f. F . This gives the following integral equation for F :

F (x) =

∫ 1

0

F (u−1/µx− 1) du = µxµ

∫ ∞

x−1

F (z)
dz

(1 + z)1+µ
.

Since F (z) = 0 if z < 0, we have

F (x) = µxµ

∫ ∞

(x−1)+
F (z)

dz

(1 + z)1+µ
(36)

whereby (35) is verified.

A.1. Solutions

In principle we can solve (36) section-wise. For the case 0 ≤ x ≤ 1,

F (x) = C0 xµ

where

C0 = µ

∫ ∞

0

F (z)
dz

(1 + z)1+µ
= E

[
(1 + X)−µ

]
< 1.

It can be shown that

C0 =
1

Γ(µ)

∫ ∞

0

vµ−1 exp

(
−v − µ

∫ 1

0

1− e−vy

y
dy

)
dv.

Now consider the case 1 ≤ x ≤ 2. We have

F (x) = µxµ

[∫ ∞

0

F (z)
dz

(1 + z)1+µ
−
∫ x−1

0

C0z
µ dz

(1 + z)1+µ

]

= C0x
µ

[
1− µ

∫ x−1

0

zµ

(1 + z)1+µ
dz

]
.

The last integral transforms to an incomplete beta integral:

∫ x−1

0

zµ

(1 + z)1+µ
dz =

∫ 1

1/x

u−1(1− u)µ du = Hµ(x), say.

So

F (x) = C0x
µ [1− µHµ(x)] .

For example, if µ = 1, we have H1(x) = log x−1+1/x, giving F (x) = C0[2x−x log x−1]
for 1 ≤ x ≤ 2, and F (2) = (3− 2 log 2)C0. If instead µ = 2, then F (x) = C0x

2 for 0 ≤
x ≤ 1 and F (x) = C0((2x− 1)2 − 2x2 log x) for 1 ≤ x ≤ 2 with F (2) = (9− 8 log 2)C0.
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A.2. Evaluation of constant C0

We now prove that C0 = e−γµ/Γ(1 + µ) where γ is Euler’s constant. Write φ(θ) =
E[e−θX ] as

φ(θ) = exp

{
−µ

∫ 1

0

1− e−θx

x
dx

}
= exp

{
−µ

∫ θ

0

1− e−y

y
dy

}
.

For θ > 1 the integral above is

∫ 1

0

1− e−y

y
dy + log θ −

∫ θ

1

e−y

y
dy

whence, as θ →∞,

φ(θ) ∼ θ−µ exp

[
−µ

(∫ 1

0

1− e−y

y
dy −

∫ ∞

1

e−y

y
dy

)]

= θ−µ exp(−γµ).

A.3. Further notes on F

The Tauberian theorem for Laplace-Stieltjes transforms [9, p. 445] implies that

F (x) ∼ xµe−γµ/Γ(1 + µ), x → 0.

This comes effectively from Takacs [22, p. 376]. He observes that

φ(θ) = θ−µe−γµ exp(−µE1(θ))

where

E1(θ) =

∫ ∞

θ

e−y

y
dy =

∫ ∞

1

e−θz

z
dz.

Since clearly

θ−µ =
1

Γ(µ)

∫ ∞

0

xµ−1e−θx dx,

the p.d.f. of X can be expressed as

f(x) =
e−γµ

Γ(µ)


xµ−1 +

∑

n≥1

(−µ)n

n!
Hn(x)


 (37)

where

Hn(x) =

∫ x

0

(x− y)µ−1fn(y) dy

and fn is the n-fold convolution of y−11(1,∞)(y), i.e. f̂n(θ) = (E1(θ))
n. Obviously

fn(y) = 0 if y < n, and hence for a given x the series at (37) has only finitely many
nonzero terms. Similarly

F (x) =
e−γµ

Γ(1 + µ)


xµ +

∑

n≥1

(−µ)n

n!
Jn(x)
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where

Jn(x) =

∫ x

0

(x− y)µfn(y) dy.

For example, if µ = 1, since f1(y) = 1
y 1(1,∞)(y) we get H1(x) = (log x)1(1,∞)(x).

Since Hn(x) = 0 if 1 ≤ x ≤ 2 for all n ≥ 2, we find that

f(x) = e−γ [1− log x], 1 ≤ x ≤ 2,

which agrees with the expression found for F in this case. For 2 ≤ x ≤ 3 it becomes
more difficult to study f and F analytically although they can still be evaluated.


