
Towards Coordination and
Control of Multi-robot Systems

Ph.D. Thesis

Michael Melholt Quottrup

Automation & Control
Department of Electronic Systems

Aalborg University
Fredrik Bajers Vej 7C, DK-9220 Aalborg Ø, Denmark

Towards Coordination and Control of Multi-robot Systems

Ph.D. Thesis

May, 2007
ISBN 87-90664-31-0

Copyright c© Michael M. Quottrup, 2007

This thesis was typeset using the LATEX 2ε in report document class.

Figures were made in PSTricks and MATLABr.

Simulations were performed in MATLABr, SIMULINK r, and
STATEFLOWr from The MathWorks Inc.

Model checking was performed in UPPAAL developed in collaboration
between the Department of Information Technology at Uppsala Uni-
versity, Sweden and the Department of Computer Science at Aalborg
University, Denmark.

Preface

This thesis is submitted in partial fulfillment of the requirements for the
Doctor of Philosophy at Automation and Control, Department of Elec-
tronic Systems, Aalborg University, Denmark. The work has been carried
out in the period from September 2002 to May 2007 under the supervision
of Prof. Thomas Bak and Associate Prof. Roozbeh Izadi-Zamanabadi.

The thesis considers the coordination and control of mobilemulti-
robot systems.

The thesis is mainly a theoretical approach focusing on automated
strategies for the coordination and control of mobile multi-robot systems
using formal models and model checking techniques.

May 2007, Aalborg, Denmark
Michael Melholt Quottrup

i

Acknowledgement

A special thanks to Prof. T. John Koo for welcoming me to the Depart-
ment of Electrical Engineering and Computer Science, Institute for Soft-
ware Integrated Systems, Vanderbilt University, U.S. in the spring 2004
as a visiting researcher. Thanks for all the fruitful discussions regarding
hybrid systems. The work of Prof. T. John Koo has been a great inspi-
ration for most of the work presented in this thesis. During my stay at
Vanderbilt University i have gained an insight in the various application
areas of hybrid systems theory.

I am sincerely thankful for the unique opportunity to participate in
the initial design phase and construction of the VanderbiltEmbedded
Computing Platform for Autonomous Vehicles (VECPAV). Hopefully,
the VECPAV will become the state of the art in the development and test-
ing of coordinated strategies for automated vehicles. Also, thanks to the
members at the Embedded Computing Systems Laboratory (ECSL) Ab-
hishek Dubey, Jie Chen, Hang Su, and Xianbin Wu. Especially, thanks to
Hang Su, Xianbin Wu, and Lewis F. Saettel for invaluable support in the
construction of the VECPAV.

Further, thanks to Prof. Anders P. Ravn and Prof. Kim G. Larsen, at
the Department of Computer Science, Aalborg University for invaluable
discussions regarding timed automata and UPPAAL.

Thanks also goes to the staff at Automation & Control, AalborgUni-
versity for always making a nice social atmosphere.

The Ph.D. study is supported by the Faculty of Engineering & Science
under grant no. 562/06-8-22565.

Finally, I would like to thank my girlfriend Kikki Henssel and my
family for always believing in me and moral support.

iii

Abstract

This thesis focuses on control and coordination of mobile multi-robot sys-
tems (MRS). In recent years there has been an increasing interest in sys-
tems comprised of several autonomous mobile robots. MRS can often
deal with tasks that are difficult, if not impossible, to be accomplished by
a single robot. In the context of MRS, one of the challenges is the need
to control, coordinate and synchronize the operation of several robots to
perform some specified task. This calls for new strategies and methods
which allow the desired system behavior to be specified in a formal and
succinct way. Temporal logics provide a formal requirementspecification
mechanism with the capability to define desired behaviors quantitatively
due to its similarity to natural languages.

Two different frameworks for the coordination and control of MRS
have been investigated.

Framework I - A network of robots is modeled as a network of multi-
modal hybrid automata. A finite bisimilar quotient for each of the robots
in the network is computed by forming a partition of the environment.
Constructing a timed automaton, one for each robot in the network, from
the finite bisimilar quotient allows coordination among therobots and
timing constraints to be considered. The model checker UPPAAL is used
for formal symbolic model checking against a requirement specification
formulated in Computational Tree Logic (CTL) for a network of multi-
modal robots. The result is a set of motion plans for the robots which
satisfy the requirement specification.

Framework II - A framework for controller synthesis for a single ro-
bot, modeled as a nonlinear system with respect to requirement specifi-
cation in Linear-time Temporal Logic (LTL) is presented. Dynamic feed-

v

vi

back linearization is employed to obtain a linear control system for which
a finite bisimilar quotient, in the form of a finite transitionsystem can be
computed. The bisimilar quotient is subsequently used for controller syn-
thesis together with the formal specification. Since the quotient and the
original linear control system are bisimilar the discrete controller synthe-
sized for the quotient will equivalently work for the linearcontrol system.
However, a refinement of the discrete controller is necessary, resulting in
a hybrid closed loop.

Resume - Danish Summary

Denne afhandling har fokus på kontrol og koordinering af mobile fler-
robot systemer (MRS). I de seneste år har der været en stigende inter-
esse for systemer, der er sammensat af adskillige autonome mobile ro-
botter. MRS kan ofte håndtere opgaver, som kan være vanskelige, hvis
ikke umulige, at løse for en enkelt robot. Indenfor MRS er en afudfor-
dringerne behovet for at kunne kontrollere, koordinere og synkronisere
operationen af adskillige robotter, for at kunne udføre en specificeret op-
gave. Dette kræver nye strategier og metoder, som tillader atspecificere
systemets ønskede opførsel på en formel og præcis måde.

To forskellige konceptuelle strukturer til koordinering og kontrol af
MRS er blevet undersøgt.

Konceptuel struktur I - Et netværk af robotter er modelleret som et
netværk af hybrid automater. En endelig ækvivalent kvotient er beregnet
for hver enkelt robot i netværket ved at opdele robotternes omgivelser.
Ved at konstruere en tidsautomat for hver enkelt robot i netværket ud
fra den endelige ækvivalent kvotient, gøres det muligt at tage højde for
koordinering mellem robotterne samt tidslige krav. Verifikationsværktø-
jet UPPAAL er brugt til formel symbolsk modelverifikation opimod en
kravspecifikation formuleret i Computational Tree Logic (CTL). Resul-
tatet er et sæt bevægelsesplaner for robotterne i netværket, som opfylder
kravspecifikationen.

Konceptuel struktur II - Præsenterer en konceptuel strukturtil syntese
af en regulering for en enkelt robot, der er modelleret som etulineært
system ud fra en kravspecifikation i Linear-time Temporal Logic (LTL).
Dynamisk tilbagekoblinglinearisering er anvendt til at opnå et lineært sys-
tem, for hvilket der kan beregnes en endelig ækvivalent kvotient i form af

vii

viii

et endeligt transitionsystem. Den ækvivalente kvotient er efterfølgende
anvendt til kontrolsyntese sammen med den formelle kravspecifikation.
Da kvotienten og det oprindelige lineære system er ækvivalente, kan den
diskrete kontroller, der er resultatet af syntesen, ligeledes anvendes på det
lineære kontrol system. En forfining af den diskrete kontroller er nød-
vendig, hvilket resulterer i en hybrid lukket sløjfe.

Contents

List of Figures xii

List of Tables xv

List of Algorithms xvi

1 Introduction 1
1.1 Background and Motivation 1
1.2 Scope of Study . 3
1.3 Multi-Robot Systems . 4

1.3.1 Coordination and Cooperation in Multi-Robot Systems . 6
1.4 Previous and Related Work . 8

1.4.1 Formal Methods in Motion Coordination 8
1.5 Contributions of This Work . 10
1.6 Thesis Outline . 11

2 Motion Planning 13
2.1 Motion Planning Algorithms 14
2.2 Motion Planning Problems . 15
2.3 Motion Planning Approaches 15

2.3.1 Single-Robot . 16
2.3.2 Multi-Robot . 17

3 Transition Systems and Bisimulations 19
3.1 Finite Quotients of Transition Systems 19

3.1.1 Partitions and Equivalence Relations 19
3.1.2 Transition Systems and Bisimulations 20
3.1.3 Languages of Transition Systems 25

ix

x Contents

3.1.4 Labeled Transition Systems and Bisimulations 26
3.2 Summary . 29

4 Model Checking Networks of Timed Automata 31
4.1 Networks of Timed Automata in UPPAAL 31
4.2 Declaration of Processes . 32
4.3 Synchronization of Processes 32
4.4 Timed Automata . 33

4.4.1 Urgent and Committed Locations 34
4.5 Semantics of Timed Automata 34
4.6 Requirement Specification in Computation Tree Logic (CTL) . . 36

4.6.1 State and Path Formulas 36
4.7 Summary . 38

5 Multi-robot Motion Planning 39
5.1 Framework . 39
5.2 Modeling a Network of Multi-Modal Robots 42

5.2.1 Assumptions . 43
5.3 Hybrid Automaton as Generic Model 43
5.4 Partitioning the Environment 47
5.5 Cyclic Transitions . 48
5.6 Embedding the Hybrid Automaton 50
5.7 Obtaining the Abstraction . 51
5.8 Constructing the Timed Automaton 55

5.8.1 Modeling the Environment 55
5.8.2 Timed Automaton Model of Robot 57
5.8.3 Automaton Model of Robot Controller 60

5.9 Summary . 62

6 Case Study I : Multi-robot Motion Planning 63
6.1 Test Scenario . 63
6.2 Requirement Specification in Computational Tree Logic 65

6.2.1 Liveness Properties . 65
6.2.2 Safety Properties . 65

6.3 Model Checking Results . 66
6.4 Concluding Discussion . 72
6.5 Summary . 73

Contents xi

7 Robot Controller Synthesis 75
7.1 Modeling . 78
7.2 Dynamic Feedback Linearization 78
7.3 Requirement Specification . 79

7.3.1 LTL Syntax and Semantics 80
7.4 Büchi Automata . 83
7.5 Abstraction . 84

7.5.1 Linear Control Systems 84
7.5.2 Control Abstract Embedding 87
7.5.3 Bisimulation Algorithm 94

7.6 Controller Synthesis . 94
7.7 Refinement . 97

7.7.1 Determining the Input Sets 99
7.8 Software Implementation of Linear Hybrid System 101
7.9 Summary . 102

8 Case Study II : Robot Controller Synthesis 105
8.1 Modeling the Unicycle . 105
8.2 Dynamic Feedback Linearization 106
8.3 Requirement Specification . 111
8.4 Computing the Abstraction . 113
8.5 Constructing the Büchi Automaton 119
8.6 Controller Synthesis . 120
8.7 Refinement . 121

8.7.1 Computing the Input Sets 123
8.8 Software Implementation of Linear Hybrid System 123
8.9 Simulation Results . 124
8.10 Concluding Discussion . 127
8.11 Summary . 128

9 Conclusions and Recommendations 129
9.1 Recommendations . 131

Bibliography 135

A System Parameters 141

xii Contents

B Special Forms of Linear Control Systems 145
B.1 Controller Form . 146
B.2 Brunovsky Normal Form . 148

List of Figures

1.1 Coordination dimensions in multi-robot systems. 6

3.1 Illustration of thePre-operator. 22
3.2 Quotient transition systemT/∼ of transition systemT 24
3.3 Illustration of thePostσ-operator for a regionP ⊆ Q. 27

4.1 Setup for model checking a network of timed automata using
the model checker UPPAAL, given a formal requirement spec-
ification in Computational Tree Logic (CTL). 32

4.2 Path formulas using theE-operator. 37
4.3 Path formulas using theA-operator. 37
4.4 Leads to:φ − > ϕ. 38

5.1 Proposed framework for motion planning of a network of multi-
modal robots with respect to formal requirement specification
in Computational Tree Logic (CTL). 40

5.2 Network of two multi-modal robotsH1 andH2. 44
5.3 A hybrid automatonH is used as a generic model for each of

the multi-modal robots in the networkH1, . . . , HN 46
5.4 Partitionπ of the continuous spaceX into a finite number of

cells and motion capabilities of a robot. 48
5.5 Example of a local motion capability of a robot caused by a

σ2-labeled cyclic transition. 50
5.6 Intermediate steps in the abstraction of hybrid automatonH to

obtain a finite bisimilar quotientTt. 54
5.7 Process template for one static obstacle. 56
5.8 Template for one multi-modal robot. 59
5.9 Template for one robot controller. 61

xiii

xiv List of Figures

6.1 Network with two multi-modal robotsR1 andR2. 64
6.2 Setup for model checking liveness and safety proterties for the

network of two multi-modal robotsR1 andR2. 67
6.3 Symbolic trace (part I) for the network of two robots,R1 and

R2 and their associate controllers,C1 andC2. 68
6.4 Symbolic trace (part II) for the network of two robots,R1 and

R2 and their associate controllers,C1 andC2. 69
6.5 Symbolic trace (part III) for the network of two robots,R1 and

R2 and their associate controllers,C1 andC2. 70
6.6 Network with two multi-modal robotsR1 andR2. 71

7.1 Proposed framework for controller synthesis for linear control
systemΣ with respect to requirement specification in Linear-
time Temporal Logic (LTL). 76

7.2 Extended framework for controller synthesis for linear control
systemΣ with respect to formal requirement specification in
Linear-time Temporal Logic (LTL). 77

7.3 Intermediate steps to a finite bisimilar quotientTP ′

/∼. 92

7.4 Finite refinementsQ andQκ of Υ−1(P) andΥ−1
κ (H(P)). . . 93

7.5 Setup in controller synthesis. 95
7.6 Software implementation of linear hybrid systemH in

SIMULINK and STATEFLOW. 101
7.7 Software implementation of linear hybrid systemH in

SIMULINK and STATEFLOW where linear control systemΣκ

is replaced byΣ. 103

8.1 Unicycle. 106
8.2 System with modified input(a, ω) ∈ R × R. 107
8.3 Nonlinear systemΣ∗ with dynamic compensator. 108
8.4 Decoupled input-output chains of integrators. 109
8.5 Desired goal position represented by a set[yκ]. 112
8.6 Initial partitionP = {S1, S2} of observation-spaceR2. 113
8.7 Refined partitionP ′ = {P1, P21, P22} of state-spaceR4. 115
8.8 Refined partitionP ′ = {P21, P22, P11, P12} of state-spaceR4. . 117
8.9 Finite bisimilar quotientTP ′

/∼ of transition systemTΣκ associ-
ated with linear control systemΣκ. 120

8.10 Underlaying transition systemTφ corresponding to LTL for-
mulaφ. 121

List of Figures xv

8.11 ControllerTc. 121
8.12 Software implementation of linear hybrid systemH in

SIMULINK and STATEFLOW. 124
8.13 Software implementation of hybrid linear systemH whereΣκ

has been replaced withΣ. 125
8.14 Software implementation of hybrid linear systemH whereΣ

has been replaced withΣz. 126
8.15 Simulation results. 127

List of Tables

1.1 Classification dimensions. 5

4.1 Path formulas supported in UPPAAL. 37

5.1 Template parameters for one static obstacle. 56
5.2 Template parameters for one robot. 60
5.3 Template parameters for robot controller. 61

6.1 Results from model checking liveness properties 1 and 2 and
safety properties 3 and 4. 72

7.1 Basic LTL formulas. 81
7.2 Example of complex LTL formulas. 82

8.1 For anyP, P ′ ∈ P ′, P ∩Pre(P ′) 6= ∅ andP ∩Pre(P ′) 6= P are
not satisfied. 118

List of Algorithms

1 State/input transformation . 87
2 Bisimulation Algorithm . 94

xvii

Chapter 1

Introduction

The focus of this thesis is on the development of novel frameworks for automated
deployment of mobile multi-robot systems. In particular, we want to investigate
new methodologies for automated deployment of mobile multi-robot systemsfor
a specific application domain.

1.1 Background and Motivation

In recent years there has been an increasing interest in systems comprised of
several autonomous mobile robots. In the following we will refer to such system
as a multi-robot system (MRS). An autonomous mobile robot is a physically in-
dependent system, equipped with sophisticated sensors and actuators, necessary
and sufficient to accomplish a given task. MRS operate in a shared environment
performing some specific task.

In the last decades MRS have traditionally been used in many transportation
(warehouses and transshipment in harbors), industrial (assembly lines), agricul-
tural, and military (surveillance and scouting) related tasks. What characterize
these tasks are that they typically involve several subtasks that can be performed
in parallel and only little amount of coordination among the robots are required.

New application areas are currently emerging such as underwater and space
exploration, search and rescue, hazardous environments, and service robotics.
In these challenging application areas, MRS can often deal with tasks that are
difficult, if not impossible, to be accomplished by a single robot. MRS are typ-
ically well suited for various application domains which require complex tasks

1

2 Introduction

to be performed effectively and in a coordinated manner. Moreover, even when
a single robot can achieve the given task, the possibility of deploying a MRS
can improve the performance of the overall system. Also, MRS are typically
employed in domains where they give rise to benefits that a single robot can not
provide. Compared to a single robot there are several reasons for deploying a
MRS [Arai et al., 2002].

• a task may be inherently too complex for a single robot to perform due to
the fact that a single robot is spatially limited,

• a MRS can provide redundancy and contribute cooperatively to solve the
assigned tasks,

• a MRS can improve the effectiveness either from the viewpoint of the
performance in accomplishing certain tasks, or in the robustness and reli-
ability of the system,

• a MRS can perform the assigned task in a more reliable, faster, or cheaper
way beyond what is possible with a single robot,

• improve performance of the overall system.

Tasks, which definitely require a MRS, are tasks that typically involve spatially
separate tasks and which require some sort of synchronization among theindi-
vidual robots [Dudek et al., 1996]. However, there exists tasks that donot require
a MRS, but can benefit significant from using a MRS. On the other hand,there
may exist tasks which do not benefit from using a MRS. Tasks that are inher-
ently not suitable for a MRS are often those which involve a single operation at
a single location.

Multi-robot path planning is one of the fundamental problems of MRS and
refers to finding collision free motions for each robot so that a certain taskis
performed. It is obvious that finding collision free motion for all robots in a
MRS requires some sort of coordination. One of the most limiting characteris-
tics of much of the existing path planning work for MRS is the computational
complexity of the approaches.

From an engineering point of view MRS are inherently complex systems.
The control of such complex systems poses new challenges that fall beyond the
traditional approaches in control theory, e.g. stabilization and set-point regula-
tion. One of these challenges is given by the need to control, coordinate and
synchronize the operation of several robots that have to perform somespecified

1.2 Scope of Study 3

task. This calls for new strategies and methods which allow to specify the desired
system behavior in a formal and succinct way.

Temporal logic is chosen for describing the behavior of the system. Specifi-
cations containing both logical and temporal operators translate naturally to tem-
poral logic. Temporal logic provides a formal requirement specification mech-
anism with the capability to define desired behaviors quantitatively and due to
its similarity to natural languages it provides an intuitive and succinct way to
express complex behaviors of a MRS.

1.2 Scope of Study

The scope of this study is I.) The motion coordination and planning of mobile
multi-modal robots modeled as a network of hybrid automata and II.) Controller
synthesis for single mobile robot systems modeled as a nonlinear system. Tem-
poral logics such as Computational Tree Logic (CTL) and Linear-time Temporal
Logic (LTL) are used as requirement specification mechanisms for expressing
the desired behavior of the system. Both I.) and II.) make extensive use ofbisim-
ulations to obtain finite bisimilar quotients of the original system.

The following two frameworks comprise the study.

Framework I - Multi-robot Motion Planning It is a novel framework for the
motion coordination and planning of a multi-modal robots modeled as a
network of hybrid automata with respect to a requirement specification
in Computational Tree Logic (CTL). CTL provides a formal requirement
specification mechanism allowing to quantitatively define the desired be-
havior of the network of multi-modal robots. This framework presupposes
an infra-structure of the multi-modal robots with feedback controllers that
constraint the motion capabilities of the individual robots. This constrains
the individual robot in the network to move in a planar grid where static
obstacles may be present. Motion planning is performed using the model
checking tool UPPAAL, given a requirement specification in CTL for
the network of multi-modal robots. Path tracking the planned paths is not
within the scope of this study.

Framework II - Robot Controller Synthesis A framework for controller syn-
thesis for linear control systems with respect to a requirement specifica-
tion in Linear-time Temporal Logic (LTL). Linear control systems satis-
fying simple controllability assumptions allow finite abstractions in the

4 Introduction

form of finite bisimilar quotients to be computed. The possibility to com-
pute finite bisimulations of linear control systems permits a discrete con-
troller to be synthesized. A refinement of the discrete controller results in
a hybrid closed-loop combining the continuous dynamics of linear con-
trol system with the synthesized logic required to enforce the requirement
specification. The framework is demonstrated for the controller synthesis
for a unicycle.

1.3 Multi-Robot Systems

The study of MRS naturally extends research on single robot systems. Surveys
on existing work in the field of MRS can be found in [Dudek et al., 1996, Cao
et al., 1997, Parker, 2000, Arai et al., 2002, Farinelli et al., 2004]. In [Dudek
et al., 1996] the authors present a taxonomy which classifies MRS based on
communication and computational capabilities. Cao et al. [Cao et al., 1997]
describe the theoretical issues that arise in the study of cooperation in MRSas
well as identifying the primary research topics in MRS with respect to achieving
the "mechanism of cooperation": Group architecture, resource conflict, origin of
cooperation, learning, and geometric problems. Recently, Parker [Parker, 2000]
and Arai et al. [Arai et al., 2002] have identified the primary research topics
within MRS as follows.

• Biological inspirations

• Communication

• Architecture, task planning, and control

• Localization, mapping, and exploration

• Object transportation and manipulation

• Motion coordination

– path planning

– traffic control

– formation generation/keeping

– target tracking/search

1.3 Multi-Robot Systems 5

– docking behavior

• Reconfigurable robots

• Learning

As shown above motion coordination covers several sub-research topics. The
work presented in this thesis is within motion coordination and path planning
and control of robots.

In [Iocchi et al., 2001] and [Farinelli et al., 2004] a new taxonomy for classi-
fication of the approaches to coordination in MRS is proposed. The taxonomy is
characterized by two groups of dimensions, that is the coordination and thesys-
tem dimension. The term dimension refers to specific features that are grouped
together in the taxonomy. The classification dimensions of the taxonomy are
shown in Table 1.1.

Coordination Dimensions System Dimension
Cooperation Communication
Knowledge Team composition

Coordination System architecture
Organization Team size

Table 1.1:Classification dimensions.

The coordination dimensions of the taxonomy are shown in Figure 1.1.

Figure 1.1 shows a hierarchical structure for the coordination dimensionsof
the taxonomy. The different levels of the structure are: A cooperation level, a
knowledge level, a coordination level, and an organization level.

The first level of the taxonomy (cooperation level) is concerned with the abil-
ity of the system to cooperate in order to accomplish a specific task. The second
level (knowledge level) is concerned with how much knowledge each robot in
the system has about the presence of other robots. The third level (coordination
level) is concerned with the mechanism that is used in order to achieve cooper-
ation in the system. The fourth level (organization level) is concerned with the
way the decision system is realized within the MRS.

6 Introduction

C
oo

pe
ra

tio
n

K
no

w
le

dg
e

C
oo

rd
in

at
io

n
O

rg
an

iz
at

io
n

Cooperative

Aware

Str. Coordinated

Str. Centralized Wea. Centralized Distributed

Wea. Coordinated Not Coordinated

Unaware

Figure 1.1:Coordination dimensions in multi-robot systems.

1.3.1 Coordination and Cooperation in Multi-Robot
Systems

Coordination and cooperation are of fundamental importance for any MRSthat
is composed of several interacting mobile robots. In the following we explicitly
define cooperation and coordination in a MRS. The terms cooperation (or to
cooperate) and coordination (or to coordinate) are defined as follows.

"Coordination or to coordinate: The act of making all the ac-
tors/agents involved in a plan or activity work together in an or-
ganized way: There’s absolutely no coordination between the dif-
ferent groups - nobody knows what anyone else is doing. To make
various different things work effectively as a whole [Cambridge
University Press, 2006]."

1.3 Multi-Robot Systems 7

"Cooperation or to cooperate: The action of cooperating, i.e. of
working together towards the same end, purpose, or effect; joint
operation. To work together, act in conjunction (with another ac-
tors/agents, to an end or purpose, or in a work) [Oxford University
Press, 2005]."

From the above definitions it is clear that cooperation imply that a group of ac-
tors/agents are working together to accomplish some task that is common to all
actors/agents. On the other hand, coordination is related to how the action of
cooperation is achieved among the actors/agents in the group. Further, coordi-
nation clearly requires that each actor/agent has some knowledge of what other
actors/agents are doing. Explicit definitions of cooperation and coordination in
the robotics literature are sparse. However, Iocchi et al. [Iocchi etal., 2001]
defines cooperation and coordination in a MRS as follows.

DEFINITION 1.1 (COOPERATION) Situation in which several robots operate
together to perform some global task that either cannot be achieved by a single
robot, or whose execution can be improved by using more than one robot, thus
obtaining higher performances.

DEFINITION 1.2 (COORDINATION) Cooperation in which the actions per-
formed by each robot take into account the actions executed by the other robots
in such a way that the whole ends up being a coherent and high performance
operation.

Cao et al. [Cao et al., 1997] have a similar definition of what they call cooperative
behavior in a MRS.

DEFINITION 1.3 (COOPERATIVE BEHAVIOR) Given some task specified by
a designer, a MRS displays cooperative behavior if, due to some underlying
mechanism (i.e. the "mechanism of cooperation"), there is an increase inthe
total utility of the system.

The mechanism by which coordination is achieved determines such properties
as how efficient the MRS is in performing a given task and what types of coor-
dinated tasks can be achieved.

8 Introduction

1.4 Previous and Related Work

Several researchers have addressed the problem of coordination ina MRS. In the
following we restrict previous and related work to motion coordination in MRS
and to some extent to control. In particular, we focus on path planning in MRS.
However, in the following we consider control of the robots as a natural part of
motion coordination, and we review some of the more traditional approaches to
motion coordination in MRS. Then, we review some of the approaches to motion
coordination and control that employ formal methods.

In [Alami et al., 1998] multi-robot coordination is achieved by employing a
plan-merging paradigm (at trajectory level) that guarantees coherent behavior of
all the robots in all situations. The plan-merging paradigm enables each robot to
produce a coordinated plan that is compatible with all plans executed by other
robots. Ögren et al. [Ögren et al., 2002] have addressed the class ofMRS for
which control Lyapunov functions can be found. Their results yield an abstract
and theoretically sound coordination strategy for formation control and mainte-
nance in MRS.

1.4.1 Formal Methods in Motion Coordination

In the last decade several researchers have investigated the use of formal methods
for the motion coordination and control of MRS. The methodology advocated
by formal methods requires the construction of a high-level model or description
of the system, typically in the form of a hybrid system. The model can then
be subjected to a variety of mathematical analyses such as simulation, verifi-
cation/model checking, performance evaluation, or controller synthesis.Algo-
rithmic analysis of hybrid systems is a challenging problem since the presence
of continuous variables results in an infinite state-space, and even the simplest
analysis problems turn out to be undecidable. However, useful analysiscan be
performed for a limited class of hybrid systems such as timed automata [Alur
and Dill, 1994].

Traditionally, verification tools such as NUSMV, KRONOS, UPPAAL and
HYTECH, etc. have been used for checking whether a high-level model satis-
fies a requirement specification in some suitable temporal logic. Temporal logic
is the natural framework for specifying the correctness of computer programs.
Temporal logic was originally used to specify the behavior of reactive andcon-
current systems [Manna and Pnueli, 1991].

1.4 Previous and Related Work 9

An approach to formal modeling and design of communication and control
strategies for a MRS was taken in [Alur et al., 1999]. The model of linear hybrid
automata was used to model the high-level behavior of a robot. The verification
tool HYTECH was used to algorithmically analyze parameter constraints in the
model.

A formalism for sequential composition of concurrent robot behaviors,based
on threaded Petri nets, has been developed in [Klavins and Koditschek,2000].
The formalism is used for the construction of automated factories such as mobile
robot bucket brigades. A distributed negotiation mechanism for coordination in
MRS was considered in [Gerkey and Mataric, 2002]. A hybrid control approach
to action coordination and collision avoidance was taken in [Egerstedt and Hu,
2002]. In [Koo, 2001, Koo and Sastry, 2002] a hybrid automaton has been used
to model the multi-modal behaviors of a robot. A computational framework for
automatic generation of provably correct control laws for a fully actuatedplanar
robot in a triangulated polygonal environment has been proposed in [Belta et al.,
2005].

The use of temporal logic as a mechanism for requirement specification and
controller synthesis in mobile robotic systems has been advocated as far back
as [Antoniotti and Mishra, 1995]. Recently, temporal logics have been used as
a specification mechanism for path planning [Fainekos et al., 2005a,b, Kloet-
zer and Belta, 2006a,b] and synthesis of multi-robot motion tasks [Loizou and
Kyriakopoulos, 2004].

A methodology for automatically synthesizing multi-robot motion tasks
based on requirement specifications in linear temporal logic (LTL) was presented
by Loizou and Kyriakopoulos [Loizou and Kyriakopoulos, 2004]. Theresulting
closed-loop system was shown to satisfy the specifications by construction, thus
ensuring correct design.

Recently, several researchers have considered the idea of developing a
framework for automated deployment of single and multi-robot systems. Typ-
ically, these approaches employ temporal logic as a specification mechanism.
Further, simple dynamics are assumed for the robots such that a finite abstrac-
tion (finite bisimilar quotient) can be achieved. Finally, a path or set of paths for
the robot or robots are automatically generated using model checking or verifi-
cation techniques.

Fainekos et al. [Fainekos et al., 2005b] have considered the problem of mo-
tion planning for a single, fully actuated robot in an polygonal environmentin
order to satisfy formulas expressible in LTL. First, discrete abstractions of the

10 Introduction

robots motion based on some environmental decomposition is constructed. Sub-
sequently, discrete plans are generated that satisfy a temporal logic formula us-
ing the verification tool NUSMV. Finally, the discrete plans are translated into
continuous trajectories using hybrid control.

The problem of synthesizing a controller from LTL specifications for
discrete-time linear control systems with semi-linear partitions are considered by
Tabuada and Pappas [Tabuada and Pappas, 2006], where it is shown that finite
bisimulations exist for controllable linear control systems with properly chosen
observations. The framework provided in [Tabuada and Pappas, 2006] is refined
in [Fainekos et al., 2005a], where the authors study the problem of controlling a
planar robot in a polygon so that its trajectory satisfies a LTL formula. It is as-
sumed that a triangulation of the polygon is given, and vector fields are assigned
in each triangle so that the produced trajectories satisfy a given LTL formula
over the triangles.

A fully automated framework for control of continuous-time linear control
systems from specifications given in terms of LTL formulas was provided by
Kloetzer and Belta [Kloetzer and Belta, 2006a]. A single robot was used as an
illustrative example. Recently, Kloetzer and Belta [Kloetzer and Belta, 2006b]
have proposed a fully automated framework for motion planning of a MRS in
a partitioned environment. The task requirement specification for the robotsare
given in terms of a LTL formula over regions of interest in the environment.
In this framework, a robot is modeled as a transition system and verification
methods are used to generate motion plans for the robots that satisfy the task
requirement specification. Collision avoidance among the robots is achievedby
allowing the robots to synchronize upon movement.

1.5 Contributions of This Work

• A novel framework for the motion planning of a network of multi-modal
robots, modeled as a network of hybrid automata, with respect to formal
requirement specifications in Computational Tree Logic (CTL) has been
proposed. The framework presupposed an infrastructure of the multi-
modal robots with feedback controllers that constraint the motion capa-
bilities of the individual robots. This constrains the individual robot in the
network to move in a planar grid where static obstacles may be present.
Motion planning for the multi-modal robots in the network is feasible by
abstracting each robot in the network to a timed automaton. Motion plan-

1.6 Thesis Outline 11

ning for the network of multi-modal robots is performed using the model
checker UPPAAL.

• The motion planning part of the above framework is presented in [Quot-
trup et al., 2004, Andersen et al., 2004] where a network of multi-modal
robots was modeled as a network of interacting timed automata. For-
mal composition was achieved through synchronization channels and UP-
PAAL was used for symbolic model checking, i.e. motion planning
against a requirement specification in computational tree logic (CTL). All
feasible trajectories that satisfy the specification were algorithmically ana-
lyzed. Also, the framework proposed for multi-robot motion planning de-
veloped in [Quottrup et al., 2004, Andersen et al., 2004] has been applied
to a harvesting system in [Andersen and Jensen, 2004] and to multi-modal
aerial robots in [Koo et al., 2006].

• The framework originally developed by Tabuada and Pappas [Tabuada
and Pappas, 2006] has been extended to fit with the problem of synthe-
sizing a controller for a mobile robot, given a requirement specification in
LTL. This required some modifications which were primarily concerned
with the input to the framework and with the software implementation of
the linear hybrid system obtained by refinement.

1.6 Thesis Outline

The remaining chapters are outlined as follows.

Chapter 2 - Motion planning This chapter gives an introduction to various ap-
proaches for both single and multi-robot motion planning

Chapter 3 - Transition Systems and BisimulationsThis chapter gives an in-
troduction to the notions of bisimulations for two classes of transition
systems with observations; transition systems and labeled transition sys-
tems.

Chapter 4 - Model Checking Networks of Timed Automata This chapter
gives an introduction to the notions of model checking networks of timed
automata in the model checker UPPAAL.

12 Introduction

Chapter 5 - Multi-robot Motion Planning This chapter presents a novel
framework for the motion planning of a network of multi-modal robots
given a formal requirement specification in Computational Tree Logic
(CTL).

Chapter 6 - Case Study I: Multi-robot Motion Planning The framework
presented in chapter 5 is applied to a multi-robot system comprised of
two multi-modal robots.

Chapter 7 - Robot Controller Synthesis This chapter presents a framework
for synthesizing a controller for a linear control system given a formal
requirement specification in Linear-time Temporal Logic (LTL).

Chapter 8 - Case Study II: Robot Controller Synthesis The framework pre-
sented in chapter 7 is applied to synthesize a controller for a mobile robot
(unicycle).

Chapter 9 - Conclusions and RecommendationsPresents the conclusions
and recommendations for further work for the two frameworks presented
in chapter 5 and 7, respectively.

Chapter 2

Motion Planning

This chapter deals with motion planning of single-robot and multi-robot mobile
systems. First, a classification of motion planning algorithms is presented.
Motion planning approaches for both single- and multi-robot systems are
reviewed.

The research in robot motion planning can be traced back to the late
1960’s [Latombe, 1991, Laumond, 1991]. In the broadest sense, motion plan-
ning refers to a robot’s ability to plan its own motion. According to Hwang
and Ahuja [Hwang and Ahuja, 1992] motion planning covers both path planning
and trajectory planning. Path planning refers to the design of a geometric (kine-
matic) path of the robot only. Hence, in path planning the dynamics of a robot
is not taken into account. Trajectory planning includes the design of linear and
angular velocities of the robot. Further, motion planning involves such diverse
aspects as finding collision-free paths among possibly moving obstacles, motion
coordination of several robots, etc. Motion planning can be either static ordy-
namic. In static motion planning, complete information about the obstacles in
the environment is known a priori. On the other hand, dynamic motion planning
concerns the case where partial or no information about the obstacles are known
a priori [Hwang and Ahuja, 1992].

Laumond [Laumond, 1991] classify motion planning as either holonomic
or non-holonomic motion planning. Within the 1980’s, motion planning was
mainly considered in the context of holonomic systems. For holonomic sys-
tems all degrees of freedom (DOF) can be changed independently. In this case
the existence of a collision-free path is characterized by the existence of acon-

13

14 Motion Planning

nected component in the configuration space. Thus, motion planning consists of
building the free configuration space and searching for a path in its connected
components. Latombe’s book [Latombe, 1991] constitutes the reference within
the domain of holonomic motion planning.

In the 1990’s, researchers began to investigate motion planning in the pres-
ence of kinematic constraints, also referred to as non-holonomic motion plan-
ning. For non-holonomic systems, the degrees of freedom (DOF) are not inde-
pendent. In fact, most mobile robots are subject to non-holonomic constraints.
A classical example of a non-holonomic constraint is the pure-rolling without
slipping constraint [Oriolo et al., 2002].

2.1 Motion Planning Algorithms

For the classification of motion planning algorithms two aspects are mainly taken
into account, that is the completeness and the scope of the algorithm [Hwang and
Ahuja, 1992]. The classification of motion planning algorithms is shown below.

• Completeness

– exact

∗ resolution complete

∗ probabilistically complete

– heuristic

• Scope

– global

– local

Exact algorithms guarantee to find a solution when one exists. However, exact
algorithms are usually computational expensive. Two types of exact algorithms
exist: Resolution complete and probabilistic complete. A resolution complete
algorithm is guaranteed to find a collision-free path (if one exists) at a given
resolution; otherwise return failure. For a probability complete algorithm the
probability of finding a collision-free path (if one exists) converges to 1 asthe
running time goes to infinity. A long running time may be required to make the
probability converge to 1. Heuristic algorithms are geared at finding a solution
fast but may fail to find one for complex problems.

2.2 Motion Planning Problems 15

Further, algorithms can either have global or local scope. Algorithms with
a global scope take into account all the information in the environment to plan
a path from the initial to the goal configuration. Algorithms with a local scope
only use information in the vicinity of the robot.

2.2 Motion Planning Problems

Any motion planning problem typically involves the following steps.

• Determine the configuration parameters1 of the robot,

• Choose a suitable representation of the robot and possible obstacles in the
environment,

• Select and apply a suitable motion planning approach to the problem at
hand,

• Select and apply a search method to find a solution path to the problem.

In the basic motion planning problem [Laumond, 1991] there is one robot
present in a static and known environment. The task is to compute a collision-
free path that will bring the robot from its initial configuration to its desired
configuration. In this context the robot is the only moving object in the environ-
ment and the dynamical properties of the robot are ignored, thus rendering the
motion planning problem purely geometrical where the motions of the robot is
only constrained by the static obstacles.

Various extensions of the basic motion planning problem exists and include
among others the presence of dynamic obstacles in the environment, multiple-
robots, unknown environment, or the presence of non-holonomic kinematiccon-
straints, etc. Indeed, any of these extensions renders the motion planningprob-
lem more complex.

2.3 Motion Planning Approaches

In the following single-robot and multi-robot motion planning approaches will
be reviewed. Typically, a motion planning approach employ some graph search

1For example position and orientation

16 Motion Planning

method. The graph search methods applied in the context of motion planning
are depth-first, breath-first, best-first, A∗, D∗, bidirectional search, and Dijkstra’s
algorithm.

2.3.1 Single-Robot

The general approaches to single-robot motion planning is outlined in the fol-
lowing as well as the scope that typically apply for each approach.

• Roadmap (global scope)

– visibility graph

– Voronoi diagram

– freeway nets

– silhoutte

• Cell decomposition (global scope)

– approximate

– exact

• Potential field (local scope)

• Sample-based (local scope)

– rapidly-exploring random trees (RRT)

– randomized path planner (RPP)

– probabilistic path planner (PPP)

The roadmap and cell decomposition methods aim at capturing the global con-
nectivity of the robot’s free space into a condensed graph that is subsequently
searched for a path. The roadmap method captures the connectivity of thero-
bot’s free space in a network of 1-D curves called roadmaps. Path planning is
reduced to connecting the initial and goal configurations and then searching for
at path. The constructed path is a concatenation of sub-paths connectingthe ini-
tial configuration to the roadmap, a sub-path contained in the roadmap, and a
sub-path connecting the roadmap to the goal configuration.

The cell decomposition approach typically involves three steps.

2.3 Motion Planning Approaches 17

• Decomposing the robot’s free space into regions (squares, trapezoidal,
triangular, polygon), called cells,

• Construct the connectivity graph that represents the adjacency relation
between the cells in the free space. Nodes in the graph represent a cell
and two nodes are connected by an edge if the corresponding cells are
adjacent. Two cells are adjacent if they have a common edge. A graph
search method (see graph search methods) is applied to find a path in the
connectivity graph, connecting the initial and goal nodes. A path in the
connectivity graph thus corresponds to a path of cells in the free space,

• A free path is computed by connecting the initial configuration to the
goal configuration through the midpoints of the intersections of every two
adjacent cells, etc. The cell decomposition can either be classified as
approximate or exact. In the exact case the free space is decomposed into
cells whose union is exactly the free space.

The potential field approach considers the robot as a particle moving under
the action of forces generated by an artificial potential field attracting the robot
towards the goal configuration and at the same time pushing it away from ob-
stacles. Khatib pioneered the potential field. Early potential field methods had
a problem with getting stuck at a local minima of the potential function other
than at the goal configuration. Koditschek introduced the notion of a navigation
function, a local-minimum-free potential function.

2.3.2 Multi-Robot

Several authors have tried to classify approaches to multi-robot path plan-
ning [Fujimura, 1991, Latombe, 1991, Arai and Ota, 1992, Cao et al., 1997].
Fujimura [Fujimura, 1991] classify path planning as either centralized or distrib-
uted. In centralized planning there is a global planner the makes the decisions.
On the other hand, in distributed planning the individual robots plan and adjust
their paths. Latombe [Latombe, 1991] classify path planning as either central-
ized (complete) or decoupled (not complete). The centralized approach takes
into account all robots and consists of planning the co-ordinated paths ofthe ro-
bots as a path in their composite configuration space. In the decoupled approach
the motion of one robot is planned independently of the other robots. Subse-
quently, in the case of resource conflicts the interactions among the path’s of

18 Motion Planning

the robots are taken into account. Two decoupled planning approaches are de-
scribed, e.g. prioritized planning [Erdmann and Lozano-Pérez, 1986]and path
coordination [O’Donnell and Lozano-Pérez, 1989]. Prioritized planning consid-
ers the path of one robot at the time according to a global priority that the robots
have been assigned. The path coordination method is based on schedulingtech-
niques for dealing with and avoiding collisions among robots.

Chapter 3

Transition Systems and
Bisimulations

In this chapter we review the notions of bisimulations for two classes of transi-
tion systems: Transition systems introduced in [Tabuada and Pappas, 2006] and
labeled transition systems introduced in [Pappas, 2003]. The notions of bisim-
ulation is one of the main complexity reduction methods for the analysis and
synthesis of transition systems. Bisimulations are important since they allow
transition systems to be related.

3.1 Finite Quotients of Transition Systems

3.1.1 Partitions and Equivalence Relations

A partitionP of a setA is a division ofA into non-overlapping blocks or cells
that cover all ofA.

DEFINITION 3.1 (PARTITION) A partitionP of a setA is a collection of non-
empty sets{Pi}i∈I = P, satisfyingA = ∪i∈IPi, wherePi ∩ Pj = ∅, for i 6= j.

For any two elementsPi, Pj ∈ A for i 6= j the intersectionPi ∩ Pj = ∅. The
partitionP is finite if I is finite and infinite otherwise. The partitionP induces
a projection mapπP : A → P which maps each elementa ∈ A to an unique set
πP(a) = P .

19

20 Transition Systems and Bisimulations

Equivalence relations are important because they can be used to group to-
gether objects that are similar in some sense. The setA can be transformed
into another set by considering each equivalence class as a single unit. Every
equivalence relation can be identified with a partition and vice versa.

DEFINITION 3.2 (EQUIVALENCE RELATION) An equivalence relation∼ on
a setA is a binary relation onA, that is

• (Reflexivity)a ∼ a for all a ∈ A,

• (Symmetry) whenevera ∼ b thenb ∼ a,

• (Transitivity) if a ∼ b andb ∼ c thena ∼ c.

An equivalence relation∼⊆ A×A on the setA induces a partitionP = {Pi}i∈I ,
defined bya, b ∈ Pi if (a, b) ∈∼. The elementsPi of the partitionP are the
equivalence classesof ∼. This means, that given a partitionP of A an equiva-
lence relation∼⊆ A×A having the elements ofP can be defined. A refinement
of a partitionP is defined as follows.

DEFINITION 3.3 (REFINEMENT OF PARTITION) LetP be a partition. Par-
tition P ′ is a refinement of partitionP when for everyP ′ ∈ P ′ there exists a
P ∈ P such thatP ′ ⊆ P.

Given a refinementP ′ of partition P the projection mapπP ′P : P ′ → P is
defined which maps every elementP ′ ∈ P ′ to an unique elementπP ′P(P ′) = P
such thatP ′ ⊆ P .

3.1.2 Transition Systems and Bisimulations

The rationale for introducing transition systems is that linear control systems can
be embedded in the class of transition systems. Transition systems will be used
as an abstract model for capturing the dynamics of linear control systems.A
transition system is defined as follows.

DEFINITION 3.4 (TRANSITION SYSTEM) A transition system with observa-
tions is defined as

T =
(
Q, Q0,−→, O,Υ

)
, (3.1)

where

3.1 Finite Quotients of Transition Systems 21

• Q is a (possibly infinite) set of states,

• Q0 ⊆ Q is a (possibly infinite) set of initial states,

• −→⊆ Q × Q is a transition relation,

• O is a (possibly infinite) set of observations,

• Υ : Q → O is an observation map assigning to each stateq ∈ Q an
observationΥ(q) ∈ O.

Transition systems should be thought of as graphs with a possibly infinite num-
ber of nodes representing states and edges between nodes representing transi-
tions. The choice of observation mapΥ is natural since observations are asso-
ciated with states rather than transitions. Transition systemT is finite whenQ
andO are finite and infinite otherwise. Denote byq −→ q′ a pair(q, q′) ∈−→.
A stateq is predecessor of a stateq′, andq′ is a successor ofq. Further,T is
deadlock free if for everyq ∈ Q, there exists a stateq′ ∈ Q such thatq −→ q′.
Given a stateq ∈ Q it is useful to compute the set of states that can reachq in
one step, that is in one transition. Denote byPre(q) the set of states inQ that
can reachq in one step

Pre(q) =
{
q′ ∈ Q | q′ −→ q

}
. (3.2)

ThePre-operatoris extended to sets of statesQ′ ⊆ Q as follows

Pre(Q′) =
⋃

q′∈Q′

Pre(q′). (3.3)

In general,Prei(Q′) for i ≥ 0 denotes the set of states that can reachQ′ in i
steps.Prei(Q′) is recursively defined as follows

Pre0(Q′) = Q′, (3.4)

Pre1(Q′) = Pre(Q′), (3.5)
...

Prei(Q′) = Pre(Prei−1(Q′)), i ≥ 2. (3.6)

The set of states inQ that can reachq ∈ Q in one step and the set of states
that can reach sets of statesQ′ ⊆ Q in one step are graphically illustrated in
Figure 3.1.

22 Transition Systems and Bisimulations

q

Pre(q)

Q

(a) Set of states that can reachq ∈ Q in
one step.

Q′

S
q′∈Q′ Pre(q′)

Q

(b) Set of states that can reachQ′ ⊆ Q
in one step.

Figure 3.1:Illustration of thePre-operator.

The notion ofbisimulationis one of the main complexity reduction meth-
ods for the analysis and synthesis of transition systems. A bisimulation [Milner,
1989] is an equivalence relation between transition systems, associating systems
which behave in the same way in the sense that one system simulates the other
and vice-versa, i.e. they match each others moves while preserving the observa-
tions. Bisimulation relations can be described as symmetric simulation relations.
Bisimulation relations are important since they allow transition systems to be re-
lated. Further, bisimulations preserve properties expressible in severaltemporal
logics [Alur et al., 2000], e.g. Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL). Lets introduce the notion of a bisimulation relation.

DEFINITION 3.5 (BISIMULATION RELATION) Let T1 =
(
Q1, Q

0
1,−→1, O,Υ1

)
and T2 =

(
Q2, Q

0
2,−→2, O,Υ2

)
be transition

systems over a common set of observationsO. Let∼⊆ Q1 × Q2 be a relation
betweenQ1 andQ2. The relation∼ defines a bisimulation relation betweenT1

andT2 if the following holds for any pair(q1, q2) ∈∼

• q1 −→1 q′1 implies the existence ofq′2 ∈ Q2 satisfyingq2 −→2 q′2 and
(q′1, q

′
2) ∈∼,

3.1 Finite Quotients of Transition Systems 23

• q2 −→2 q′2 implies the existence ofq′1 ∈ Q1 satisfyingq1 −→1 q′1 and
(q′1, q

′
2) ∈∼,

• q1 ∈ Q0
1 implies thatq2 ∈ Q0

2 andq2 ∈ Q0
2 implies thatq1 ∈ Q0

1,

• Υ1(q1) = Υ2(q2) if q1 ∼ q2.

The bisimulation relation respects both observations and transitions. The exis-
tence of a bisimulation relation betweenT1 andT2 will be denoted byT1

∼= T2

andT1 andT2 are said to be bisimilar.
The introduction of equivalence and bisimulation relations now allow to in-

troduce a finite bisimilar quotient that is bisimilar to transition systemT .

DEFINITION 3.6 (QUOTIENT TRANSITION SYSTEM) The quotient transi-
tion system of transition systemT = (Q, Q0,−→, O,Υ) with respect to an
equivalence relation∼⊆ Q × Q is given by

T/∼ = (Q/∼, Q0
/∼,−→/∼, O,Υ/∼), (3.7)

where

• Q/∼ = {S ⊆ Q | S is an equivalence class of∼} is a set of states,

• Q0
/∼ = π∼(Q0) is a set of initial states,

• −→/∼⊆ Q/∼ × Q/∼ is a transition relation defined byS −→/∼ S′ if
there existsq ∈ S andq′ ∈ S′ such thatq −→ q′ in T ,

• O is a set of observations,

• Υ/∼ : Q/∼ → O is an observation map assigning to eachS ∈ Q/∼ an
observationΥ/∼(S) = Υ(q) for someq ∈ S.

The set of observationsO is inherited fromT . The observation mapΥ/∼ is well
defined since(q1, q2) ∈∼ implies thatΥ(q1) = Υ(q2). If the relation∼ is a
bisimulation relation betweenT andT it follows that the graph of the projection
π∼ : Q → Q/∼, defined by

{
(q, S) ∈ Q × Q/∼ | S = π∼(q)

}
, (3.8)

is a bisimulation relation betweenT andT/∼. The quotient transition system
T/∼ is called a finite bisimilar quotient of transition systemT with respect to

24 Transition Systems and Bisimulations

Quotient Transition
SystemT/∼

Transition System

T

Bisimulation

Figure 3.2:Quotient transition systemT/∼ of transition systemT .

equivalence relation∼. The quotient transition systemT/∼ of transition system
T is graphically represented as in Figure 3.2.

Given two transition systemsT1 andT2 the parallel composition of transition
systemsT1 andT2 with observation synchronization is natural and defined as
follows.

DEFINITION 3.7 (PARALLEL COMPOSITION) Let T1 = (Q1, Q
0
1,−→1

, O,Υ1) andT1 = (Q2, Q
0
2,−→2, O,Υ2) be two transition systems over a com-

mon observation spaceO. The parallel composition ofT1 andT2 with observa-
tion synchronization is given by

T1 ‖O T2 =
(

Q‖, Q
0
‖,−→‖, O,Υ‖

)

, (3.9)

where

• Q‖ = {(q1, q2) ∈ Q1 × Q2 | Υ1(q1) = Υ2(q2)} is the set of states,

• Q0
‖ =

{
(q1, q2) ∈ Q0

1 × Q0
2 | Υ1(q1) = Υ2(q2)

}
is the set of initial

states,

• −→‖⊆ Q‖×Q‖ is the transition relation defined by(q1, q2) −→‖ (q′1, q
′
2)

for (q1, q2), (q
′
1, q

′
2) ∈ Q‖ if q1 −→1 q′1 in T1 andq2 −→1 q′2 in T2,

• O is the set of observations,

• Υ‖ : Q‖ → O is the observation map defined byΥ‖(q1, q2) = Υ1(q1) =
Υ2(q2).

3.1 Finite Quotients of Transition Systems 25

The observation spaceO of T1 ‖O T2 is inherited from transition systemsT1 and
T2.

3.1.3 Languages of Transition Systems

Given a setS, denote byS∗ the set of all finite strings obtained by concatenating
elements inS. An element ofS∗ is given bys1s2 . . . sn with si ∈ S for i =
1, 2, . . . , n. The length of a strings ∈ S∗ is denoted by|s|. Denote bySω the
set of all infinite strings obtained by concatenating elements inS. An element
of Sω is an infinite strings1s2s3 . . . with si ∈ S for i ∈ N. Given a strings
belonging toS∗ or Sω, denote bys(i) the i-th element ofS. A subset ofS∗ is
called a language while a subset ofSω is called anω-language.

A strings ∈ S∗∪Sω is a run ofT if (s(i), s(i + 1)) ∈−→, i = 1, 2, . . . , |s|−
1 for s ∈ Qω or i ∈ N for s ∈ Q∗. A run of T is initialized if s(1) ∈ Q0. We
now define the languages generated by a transition systemT .

DEFINITION 3.8 (GENERATED L ANGUAGE) Let T =
(
Q, Q0,−→, O,Υ

)

be a transition system. The language generated byT is defined as

L(T) = {r ∈ O∗ | r = Υ(s) for some initialized runs of T} .

Theω-language generated byT is defined as

Lω(T) = {r ∈ Oω | r = Υ(s) for some initialized runs of T} .

Bisimulations preserve language equivalence. Two transition systemsT1 andT2

are language equivalent if they generate the same language.

PROPOSITION 3.1 (LANGUAGE EQUIVALENCE) LetT1 andT2 be two tran-
sition systems and∼ a bisimulation relation betweenT1 andT2. The following
equalities hold

L(T1) = L(T2),

Lω(T1) = Lω(T2).

Further, the languages generated by the parallel composition ofT1 andT2, de-
noted byT1 ‖O T2 can be expressed in terms of the languages generated byT1

andT2

L (T1 ‖O T2) = L (T1) ∩ L (T2) ,

Lω (T1 ‖O T2) = Lω (T1) ∩ Lω (T2) ,

26 Transition Systems and Bisimulations

whereL (T1) ∩ L (T2) denotes language intersection.

3.1.4 Labeled Transition Systems and Bisimulations

Here, we define a labeled transition system with observations. In order to relate
properties of different labeled transition systems, the definitions of simulation
and bisimulation will be introduced.

DEFINITION 3.9 (TRANSITION SYSTEM (L ABELED)) A labeled transition
system with observations is defined as

T = (Q,Σ,−→, O,Υ), (3.10)

where

• Q is a (possibly infinite) set of states,

• Σ is a (possibly infinite) set of labels,

• −→⊆ Q × Σ × Q is a transition relation,

• O is a (possibly infinite) set of observations,

• Υ : Q → O is an observation map assigning to eachq ∈ Q an observa-
tion Υ(q) ∈ O.

The labeled transition systemT is finite whenQ, Σ, andO are finite and infinite
otherwise. Denote byq

σ
−→ p a triple(q, σ, p) ∈−→. A region is a subsetP ⊆

Q of the set of states. Theσ-successor of a regionP is denoted byPostσ(P) and
is defined as the set of states that can be reached fromP with oneσ-transition,
see Figure 3.3.

ThePostσ-operatoris defined as follows

Postσ(P) =
{

q ∈ Q | ∃p ∈ P with p
σ

−→ q
}

. (3.11)

3.1 Finite Quotients of Transition Systems 27

P

Postσ(P)

Q

σ

Figure 3.3:Illustration of thePostσ-operator for a regionP ⊆ Q.

In general,Posti
σ(P) denotes the set of states inQ that are reachable fromP

usingi σ-transitions.Posti
σ(P) for i ≥ 0 is recursively defined as

Post0σ(P) = P, (3.12)

Post1σ(P) = Postσ(P), (3.13)

Post2σ(P) = Postσ (Postσ(P)) , (3.14)
...

Posti
σ(P) = Postσ

(
Posti−1

σ (P)
)
. (3.15)

A relationR betweenQ1 andQ2 is a subsetR ⊆ Q1 × Q2 and we define

R−1 = {(p, q) ∈ Q2 × Q1 | (q, p) ∈ R}, (3.16)

as the inverse relation.

DEFINITION 3.10 (SIMULATION RELATION (L ABELED) Consider two la-
beled transition systemsT1 = (Q1, Σ,−→1, O,Υ1) and T2 = (Q2, Σ,−→2

, O,Υ2) over a common set of labelsΣ and observationsO. A relationR ⊆
Q1 × Q2 is called a simulation relation fromT1 to T2 if it respects both obser-
vations and transitions, that is

• if (q, p) ∈ R thenΥ1(q) = Υ2(p),

28 Transition Systems and Bisimulations

• if (q, p) ∈ R andq
σ

−→ q′, thenp
σ

−→ p′, for some(q′, p′) ∈ R.

DEFINITION 3.11 (BISIMULATION RELATION (L ABELED)) Let
T1 = (Q1, Σ,−→1, O,Υ1) and T2 = (Q2, Σ,−→2, O,Υ2) be two la-
beled transition systems over a common set of labelsΣ and observationsO. A
relationR ⊆ Q1 × Q2 is called a bisimulation relation betweenT1 andT2 if R
is a simulation relation fromT1 to T2 andR−1 is a simulation relation fromT2

to T1.

The property of bisimulations states that equivalent states must be able perform
a transition using the same label to states that are also equivalent. Given a
labeled transition systemT = (Q,Σ,−→, O,Υ) and an equivalence relation
∼⊆ Q × Q the quotient transition system is defined on the quotient spaceQ/∼.
Let Ψ : Q → Q/∼ be the quotient map. The definition of a quotient transition
systems follows as.

DEFINITION 3.12 (QUOTIENT TRANSITION SYSTEM (L ABELED)) The
quotient transition system of a labeled transition systemT = (Q,Σ,−→, O,Υ)
with respect to an equivalence relation∼⊆ Q × Q is given by

T/∼ = (Q/∼, Σ,−→/∼, O,Υ/∼), (3.17)

where

• Q/∼ = {Qs1
∈ 2Q | Qs1

is an equivalence class of∼} is a set of states,

• Σ is a set of labels,

• −→/∼⊆ Q/∼ × Σ × Q/∼ is a transition relation defined byQs1

σ
−→/∼

Qs2
if there existsq ∈ Qs1

andp ∈ Qs2
such thatq

σ
−→ p in T ,

• O is a set of observations,

• Υ/∼ : Q/∼ → O is an observation map defined byΥ/∼(Ψ(q)) = Υ(q).

The set of labelsΣ and the set of observationsO of T/∼ are inherited fromT .
The transition relation−→/∼ of T/∼ is induced from the transition relation−→
of T . The observation mapΥ/∼ is well defined since the partitionπ induced by
∼ is observation preserving[Pappas, 2003], i.e. ifp ∼ q thenΥ(p) = Υ(q).
Thus, equivalent states have the same observation. We now define characteriza-
tion [Pappas, 2003].

3.2 Summary 29

PROPOSITION 3.2 (CHARACTERIZATION) Consider the labeled transition
systemT and observation-preserving partition∼ with quotient mapΨ : Q →
Q/∼. Then,∼ is a bisimulation ofT if for all statesq ∈ Q and for all labels
σ ∈ Σ

Ψ(Postσ(Ψ−1(Ψ(q)))) = Ψ(Postσ(q)), (3.18)

whereΨ−1(Ψ(q)) is the set of all states inQ that are equivalent to stateq.

3.2 Summary

The notions of transitions systems and bisimulations introduced in this chapter
will be used in chapters 5-8.

The class of labeled transition systems is used as an abstract model for a net-
work of multi-modal robots where each robot is modeled as a hybrid automaton.
The abstract models for the network of multi-modal robots are used for motion
planning, given a requirement specification in Computational Tree Logic (see
chapters 5- 6).

The class of transition systems is used as an abstract model for capturing the
dynamics of a robot, modeled as a nonlinear system. The abstract model of the
robot is used as a baseline for controller synthesis with respect to requirement
specification in Linear-time Temporal Logic (see chapters 7-8)

Chapter 4

Model Checking Networks of
Timed Automata

This chapter gives an introduction to the concept of model checking networks of
timed automata using the model checkerUPPAAL, given a formal requirement
specification in Computational Tree Logic (CTL).

4.1 Networks of Timed Automata inUPPAAL

UPPAAL [Uppsala University and Aalborg University, 1995a] is an integrated
tool environment for modeling, simulation and model checking real-time sys-
tems that can be modeled as a network of interacting timed automata extended
with data types (bounded integers, arrays, etc.). The tool is developed incol-
laboration between the Department of Information Technology at Uppsala Uni-
versity, Sweden and the Department of Computer Science at Aalborg University,
Denmark. The tool is appropriate for systems that can be modeled as a collec-
tion of non-deterministic processes with finite control structure and real-valued
clocks, communicating through channels.

Given a system modeled as a network of timed automata and a requirement
specification in computational Tree Logic (CTL), UPPAAL is used for model
checking (verifying) the system against the specification. The result ofmodel
checking or verifying the system is a"property satisfied/not satisfied"and when
relevant asymbolic traceof the system. The symbolic trace shows the trace
for each automaton in the network satisfying or violating the specification. The

31

32 Model Checking Networks of Timed Automata

setup is illustrated in Figure 4.1.

Network of

Timed Automata

"Property Satisfied"/

"not satisfied"

+

Symbolic

Trace

Requirement Specification in CTL

Model Checker

UPPAAL

Figure 4.1:Setup for model checking a network of timed automata us-
ing the model checkerUPPAAL, given a formal requirement specifi-
cation in Computational Tree Logic (CTL).

Since clocks range over the non-negative reals, a timed automata can have
infinitely many states and infinitely many traces. Therefore, it is not possible to
visualize all these concrete traces. Instead, an infinite set of traces arevisualized;
a so called symbolic trace. Each symbolic state of a symbolic trace is a set of
states and their delay successors described by a number of constraints on the
clocks. In a given symbolic state, the active locations and the values of discrete
variables are the same for all states.

4.2 Declaration of Processes

UPPAAL allows the construction of templates for the system being modeled.
Subsequently, the templates are used to declare new processes.

4.3 Synchronization of Processes

In UPPAAL synchronization channels are used to synchronize processes. This
is done by annotating edges in the model with synchronization labels. Synchro-
nization labels are of the forme! ande?, wheree! ande? are in the sending and
receiving process, respectively, ande evaluating to a channel. Two processes
can synchronize on enabled edges annotated with complementary synchroniza-
tion labels, i.e. two edges in different processes can synchronize if the guards

4.4 Timed Automata 33

of both edges are satisfied, and they have synchronization labelse1! ande2?,
respectively, wheree1 ande2 evaluate to the same channel. When two processes
synchronize, both edges are fired at the same time, i.e. the current locationof
both processes is changed. The update expression on an edge synchronizing on
e1! is executed before the update expression on an edge synchronizing one2?.

Three different types of synchronization channels can be used in UPPAAL
to synchronize processes.

Regular Channel Described above.

Urgent Channel Urgent channels are similar to regular channels, except that
it is not possible to delay in the source state if it is possible to trigger a
synchronization over an urgent channel. Clock guards are not allowed on
edges synchronizing over urgent channels.

Broadcast Channel Broadcast channels allow 1-to-many synchronizations.
The intuition is that an edge with synchronization labele! emits a broad-
cast on the channele and that any enabled edge with synchronization label
e? will synchronize with the emitting process. I.e. an edge with an send-
synchronisation on a broadcast channel can always fire, providedthat the
guard is satisfied, no matter if any receiving edges are enabled. But those
receiving edges, which are enabled will synchronize. Notice that clock
guards are not allowed on edges receiving on a broadcast channel.The
update on the receiving edges are executed left-to-right in the order the
processes are given in the system definition.

4.4 Timed Automata

A timed automaton is a finite-state automaton or finite-state machine extended
with a finite collection of real-valued clock variables [Alur and Dill, 1994]. All
clocks are assumed to proceed at the same rate, i.e. they progress synchronously,
and measure the amount of time that have elapsed since they were reset. The
value of a clock may be compared with natural numbers and reset to zero. Let
C be a set of real-valued variables, called clocks. Denote byB(C) the set of
conjunctions over simple constraints of the formx ⊲⊳ c andx − y ⊲⊳ c, where
x, y ∈ C, c ∈ N, and⊲⊳∈ {<,≤, =,≥, >}. Elements ofB(C) are called guards
overC. A timed automaton is defined as [Larsen et al., 1995].

34 Model Checking Networks of Timed Automata

DEFINITION 4.1 (TIMED AUTOMATON) A timed automaton is a tupleAT =
(L, l0, C, A, E, I), where

• L is the set of locations,

• l0 ∈ L is the initial location,

• C is the set of clocks,

• A is the set of actions, co-actions and the internalτ -action,

• E ⊆ L × A × B(C) × 2C × L is the set of edges between locations with
an action, a guard and a set of clocks to be reset,

• I : L → B(C) assigns invariants to locations.

4.4.1 Urgent and Committed Locations

When a process is in an urgent location, time is not allowed to pass, i.e. time
"freezes". Semantically, urgent locations are equivalent to: Adding anextra
clock x, that is reset on every incoming edge, and adding an invariantx ≤ 0 to
the location.

Like urgent locations, committed locations "freeze" time. Furthermore, if
any process is in a committed location, the next transition must involve an edge
from one of the committed locations. Committed locations are useful for creat-
ing atomic sequences and for encoding synchronization between more thantwo
components. Notice that if several processes are in a committed location at the
same time, then they will interleave.

4.5 Semantics of Timed Automata

A timed automaton is a finite directed graph annotated with conditions over and
resets of non-negative real valued clocksx ∈ C, which satisfy the differential
equationẋ = 1. A clock valuation is a functionu : C → R≥0 from the set
of clocksC to the non-negative realsR≥0. Denote byRC the set of all clock
valuations. A state of a timed automatonAT is a pair(l, u), wherel ∈ L is a
location ofAT andu holds the current values for the clock variables. The initial
state ofAT is (l0, u0), whereu0 assigns zero to all clocksx ∈ C. In a timed

4.5 Semantics of Timed Automata 35

automaton all clocks are initialized to zero by definition, that isu0(x) = 0, for
all clocksx ∈ C. An invariant express constraints on the clock values in order
to remain in a particular state. Further,u ∈ I(l) means thatu satisfyI(l). The
semantics of a timed automaton is defined as follows.

DEFINITION 4.2 (SEMANTICS OF T IMED AUTOMATON) Let AT =
(L, l0, C, A, E, I) be a timed automaton. The semantics ofAT is defined as a
transition system

(S, s0,−→), (4.1)

where

• S ⊆ L × RC is the set of states,

• s0 = (l0, u0) is the initial state,

• −→⊆ S × {R≥0 ∪ A} × S is the transition relation defined by

– (l, u)
d

−→ (l, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d ∈ I(l),

– (l, u)
a

−→ (l′, u′) if there∃e = (l, a, g, r, l′) ∈ E such thatu ∈ g,
u′ = [r 7→ 0]u, andu′ ∈ I(l),

where ford ∈ R≥0, u + d maps each clockx ∈ C to the valueu(x) + d
and [r 7→ 0]u denotes the clock valuation which maps each clock inr to
0 and agrees withu overC \ r.

Let ATi = (Li, l
0
i , C, A, Ei, Ii), for 1 < i ≤ n be a network of timed automata

over a common set of clocksC and actionsA. A location vector is given as
l̄ =

[
l1, . . . , ln

]T
. The invariant functions are composed into a common function

over location vectorsI(l̄) = ∧iIi(li). Denote bȳl[l′i/li] the vector where thei-th
elementli of l̄ is replaced byl′i. The semantics of a network of timed automata
is defined as follows.

DEFINITION 4.3 (SEMANTICS OF A NETWORK OF T IMED AUTOMATA)
LetATi = (Li, l

0
i , C, A, Ei, Ii), for i = 1, . . . , n be a network of timed automata

over a common set of clocksC and actionsA. The semantics is defined as a
transition system

(S, s0,−→), (4.2)

where

36 Model Checking Networks of Timed Automata

• S = (L1 × . . . × Ln) × RC is the set of states,

• s0 = (l̄0, u0) is the initial state,

• −→⊆ S × S is the transition relation defined by

– (l̄, u) −→ (l̄, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d ∈ I(l̄),

– (l̄, u) −→ (l̄[l′i/li], u
′), if there∃li

τgr
−→ l′i such thatu ∈ g, u′ =

[r 7→ 0]u, andu′ ∈ I(l̄).

– (l̄, u) −→ (l̄[l′j/lj , l
′
i/li], u

′), if there∃li
e?giri−→ l′i and lj

e!gjrj
−→ l′j

such thatu ∈ (gi ∧ gj), u′ = [ri ∪ rj 7→ 0]u, andu′ ∈ I(l̄).

4.6 Requirement Specification in Computa-
tion Tree Logic (CTL)

For timed automata, problems such as reachability and model checking require-
ment specifications in CTL are decidable1 [Alur et al., 1995, 2000]. UPPAAL
use a subset of Computation Tree Logic (CTL), i.e. a simplified version of CTL.
Like in CTL, the query language consists of path formulas and state formulas.
State formulae describe individual states, whereas path formulas quantifyover
paths or traces of the model. Path formulas can be classified into reachability,
safety and liveness. Figures 4.2-4.4 illustrates the different path formulas sup-
ported by UPPAAL. In contrast to CTL, UPPAAL does not allow nesting of
path formulas. Hence, liveness and safety properties can not be checked at the
same time. A summary of the path formulas supported in UPPAAL is found in
Table 4.1.

State formulae describe individual states, whereas path formulas quantify
over paths or traces of the model.

4.6.1 State and Path Formulas

A state formula is an expression that can be evaluated for a state without looking
at the behavior of the model. The syntax of state formulae is a superset of that
of guards, i.e., a state formula is a side-effect free expression, but in contrast to

1Computational feasible.

4.6 Requirement Specification in Computation Tree Logic (CTL) 37

Property Equivalent to Description
E〈〉φ N/A Possibly: There exists a path where state property

φ eventually hold.
E[]φ N/A Potentially always: There exists a path where state

propertyφ always hold.
A〈〉φ ¬E[]¬φ Eventually: For all paths state propertyφ eventu-

ally hold.
A[]φ ¬E〈〉¬φ Invariantly (always): For all paths state property

φ always hold.
φ − > ϕ A[](φ ⇒ A〈〉ϕ) Leads to: Whenever state propertyφ holds state

propertyϕ eventually hold.

Table 4.1:Path formulas supported inUPPAAL.

φ

(a) Possibly:E〈〉φ.

φ

φ

φ

φ

(b) Potentially always:E[]φ.

Figure 4.2:Path formulas using theE-operator.

φ φ

φ

φ

(a) Eventually:A〈〉φ.

φ

φ

φ

φ φ

φ

φ

φ

(b) Invariantly:A[]φ.

Figure 4.3:Path formulas using theA-operator.

38 Model Checking Networks of Timed Automata

φ

ϕ ϕ

ϕ

Figure 4.4:Leads to:φ − > ϕ.

guards, the use of disjunctions is not restricted. It is also possible to test whether
a particular process is in a given location using an expression on the formP.l,
where P is a process and l is a location. Path formulae can be classified into
reachability, safety and liveness.

4.7 Summary

The concept of model checking networks of timed automata in UPPAAL intro-
duced in this chapter will be used in chapters 5-6. Given a network of robots
modeled as a network of timed automata and a requirement specification in CTL
for the network UPPAAL is used to generate a set of collision-free paths for the
network of robots which satisfy the formal requirement specification.

Chapter 5

Multi-robot Motion Planning

In this chapter a framework for the motion planning of a network of multi-
modal robots with respect to formal requirement specifications in Computational
Tree Logic (CTL) is proposed. CTL provides a formal requirement specification
mechanism allowing to quantitatively define the desired behavior of the network
of multi-modal robots. The framework presented here presupposes an infra-
structure of the multi-modal robots with feedback controllers that constraint the
motion capabilities of the individual robots. This constrains the individual robot
in the network to move in a planar grid where static obstacles may be present.

5.1 Framework

The baseline for the framework is a network ofN multi-modal robots
H1, . . . , HN and a finite partitionπ of the environment that conforms with the
motion capabilities of the robots in the network. Each of the robots in the net-
work is modeled as a hybrid automaton. The framework is depicted in Figure 5.1.

The intermediate steps involved in the proposed framework are briefly de-
scribed below.

(1) Hybrid Automaton Model of Multi-Modal Robot A hybrid automatonH
is used as a generic model for each of the multi-modal robots in the net-
work H1, . . . , HN .

(2) Partitioning the Environment A finite partition π of the environment is

39

40 Multi-robot Motion Planning

CTL Formula

Robot Controllers
Ac1 , . . . , AcN

and Static Obstacles
Ao1

, . . . , AoM

‖

Timed Automata

Network of Robots
Ar1

, . . . , ArN

and Environment

Discrete Transition
SystemTt

Quotient Transition
SystemTh/≈

Infinite Transition
SystemTh

Finite Partition
π

Model Checker

UPPAAL

Hybrid Automata Network of RobotsH1, . . . , HN

Sequences of

Input Synchro-

-zation Actions

Requirement Specification

Embedding

Abstraction

Abstraction

Construction

Environment

Lo
gi

c
A

ut
om

at
a

/
T

im
ed

A
ut

om
at

a
Tr

an
si

tio
n

S
ys

te
m

s
H

yb
rid

Figure 5.1:Proposed framework for motion planning of a network of
multi-modal robots with respect to formal requirement specification in
Computational Tree Logic (CTL).

5.1 Framework 41

formed. The partition conforms with the motion capabilities of the multi-
modal robots in the network.

(3) Continuous Transitions Timed and time-abstract transitions are defined for
describing robot movement and stopping a robot, respectively. Further,
the introduction of timed and time-abstract transitions allows cyclic tran-
sitions to be defined. Cyclic transitions allow the hybrid automatonH to
operate continuously by taking cyclic transitions. Cyclic transitions are
essential in the process of embedding the hybrid automatonH into the
class of labeled transition systems.

(4) Embedding the Hybrid Automaton The hybrid automatonH is embedded
in the class of labeled transition systems. The result is a labeled transition
systemTh that captures the hybrid behavior of hybrid automatonH. The
labeled transition systemTh is equivalent to the hybrid automatonH with
respect to desired reachability properties.

(5) Obtaining the Abstraction A finite quotient transition systemTh/≈ is ob-
tained from the labeled transition systemTh by considering a finite parti-
tion π of the environment. By construction, the quotientTh/≈ is bisimilar
to transition systemTh associated with hybrid automatonH and thus the
reachability properties ofH are preserved in the abstraction. Further, the
quotientTh/≈ is abstracted into a finite and discrete transition systemTt.
Again,Tt is bisimilar toTh/≈ by construction.

(6) Constructing the Timed Automata A timed automatonAr is constructed
from transition systemTt such that the reachability properties are pre-
served. The construction ofAr allow timing and coordination of robots
in the network to be considered. Timed automatonAr is used as a tem-
plate for instantiating each of the multi-modal robotsAr1

, . . . , ArN in the
network. To allow the network of multi-modal robots to move concur-
rently a simple automaton controller template is also constructed. In this
way a controller can be instantiated for each of the robots in the network.
Finally, a obstacle template is constructed.

(7) Creating Process InstancesRobot, controller, and obstacle process in-
stances are instantiated from the constructed templates. Each process is
instantiated with a set of specific process parameters.

42 Multi-robot Motion Planning

(8) Requirement Specification A requirement specification is formulated in
Computational Tree Logic (CTL) that express the desired behavior of the
network of multi-modal robots.

(9) Motion Planning The model checker UPPAAL is used to generate a set
of collision-free paths for the network of multi-modal robots in the form
of sequences of synchronization inputs such that the requirement speci-
fication in CTL is satisfied. The sequences of synchronization inputs are
subsequently executed by the network of multi-modal robotsH1, . . . , HN

modeled by hybrid automata.

The steps (1)-(7) are described in this chapter while steps (7)-(9) arethe topic
of chapter 6.

The timed automata formalism merely presents an abstraction (a high-level
model) of environment, robots and associate controller, but allows composi-
tion and formal symbolic reasoning about coordinated motion planning solu-
tions. The model checker UPPAAL is used for formal symbolic model check-
ing against a requirement specification formulated in Computational Tree Logic
(CTL) for a network of multi-modal robots. The result of the verification is a
"Property satisfied"or "Property not satisfied", meaning that the requirement
specification is satisfied or not satisfied, respectively. In case the requirement
specification is satisfied a symbolic trace is generated, containing the sequence
of synchronization inputs required for moving the network of multi-modal robots
to their final positions.

Finally, the generated sequences of input synchronization actions are exe-
cuted by the network of multi-modal robotsH1, . . . , HN . Therefore, the se-
quences of input synchronization actions generated by the model checker are
used as high-level motion plans for the network of multi-modal robots.

5.2 Modeling a Network of Multi-Modal Ro-
bots

In the following we consider a network ofN robots denoted byHi for i =
1, . . . , N .

5.3 Hybrid Automaton as Generic Model 43

5.2.1 Assumptions

The following assumptions are made regarding the modeling of the network of
multi-modal robots

• The robots move concurrently in a planar environment, i.eX ⊆ R2,

• Each robot is assumed to be a single point inX,

• Each of the robots is assumed to have identical motion capabilities,

• Each of the robots is assumed to move with a fixed, but possible different
velocity,

• A set of static obstaclesO1, . . . , OM may be present in the environment.

The position of robotHi is given by

xi =
[
xi1 xi2

]T
∈ X, (5.1)

for i = 1, . . . , N . Thus the velocity of robotHi is given by

ẋi = vi =
[
vi1 vi2

]T
. (5.2)

Thus, for a robot to move from an initial to goal position requires an appropriate
sequence of inputs, where each input corresponds to a motion capability.

To simplify the notation the position of a robot in the network is denoted by
x and the velocity is denoted byv.

5.3 Hybrid Automaton as Generic Model

A hybrid automaton [Koo and Sastry, 2002] is used as a generic model foreach
of the multi-modal robots in the networkH1, . . . , HN . The hybrid automaton is
defined as

H = (Q × X, Σ, Y, Init, f,Υ, I, G, R), (5.3)

where

• Q = {q1, q2, q3, q4, q5} is the set of discrete states,

• X ⊆ R2 is the continuous state-space,

44 Multi-robot Motion Planning

x1

x2

H1

H2

(a) Two robotsH1 and H2 with identical motion capabilities and their corresponding
paths.

x1

x2

H1

H2

(b) Appropriate execution of the motion capabilities of the robotsH1 andH2 results in
paths that are similar to the original paths.

Figure 5.2:Network of two multi-modal robotsH1 andH2.

5.3 Hybrid Automaton as Generic Model 45

• Σ = {σ1, σ2, σ3, σ4, σ5} is the set of events with inputσ ∈ Σ,

• Y ⊆ R2 is the continuous output-space with outputy ∈ Y ,

• Init is the initial set defined byInit = {q1} × X,

• f is the vector field defined by

ẋ = f(q, x) =







[

0 0
]T

if q = q1,
[

v 0
]T

if q = q2,
[

−v 0
]T

if q = q3,
[

0 v
]T

if q = q4,
[

0 −v
]T

if q = q5.

wherev = v1 = v2 > 0,

• Υ : Q × X × Σ → X is the observation map defined byΥ(q, x, σ) =
y = x for q ∈ Q,

• I is the invariant defined byI(qi) = X × {σi} for i = 1, . . . , 5,

• G is the guard relation defined by

G(qi, qj) =

{

σj if qi = q1 andqj ∈ Q \ {q1},

σ1 if qi ∈ Q \ {q1} andqj = q1.

• R is the reset relation defined byR(qi, qj , x) = {x}, for (i, j) ∈
{(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (1, 5), (5, 1)}.

The hybrid automatonH is graphically represented in Figure 5.3.
The hybrid state of hybrid automataH is (q, x) ∈ Q × X. The hybrid

automatonH starts in the hybrid stateInit = {q1}×X. Hence, the robot starts
in the discrete stateq1 at an arbitrary positionx. In stateq1 the vector field is
f(q1, x) =

[
0 0

]T
and hence the continuous statex remains the same. In state

q1 the hybrid automatonH accepts any input from the set of eventsΣ \ {σ1}
as defined by the guard relationG. If the input isσ2 the guardG(q1, q2) is
enabled and the hybrid automatonH takes the transition to discrete stateq2. In
q2 only x1 will increase since the vector field isf(q2, x) =

[
v 0

]T
. In the state

qi ∈ Q \ {q1} the hybrid automatonH accepts only the inputσ1 and takes the
transition back to the discrete stateq1.

46 Multi-robot Motion Planning

q1

ẋ =
[
0 0

]T

(x, σ) ∈ I(q1)

σ2

σ3

σ4

σ5

q2

ẋ =
[
v 0

]T

(x, σ) ∈ I(q2)σ1

σ1q3

ẋ =
[
−v 0

]T

(x, σ) ∈ I(q3)

q4

ẋ =
[
0 v

]T

(x, σ) ∈ I(q4)

σ1

q5

ẋ =
[
0 −v

]T

(x, σ) ∈ I(q5)

σ1

Figure 5.3:A hybrid automatonH is used as a generic model for each
of the multi-modal robots in the networkH1, . . . , HN .

5.4 Partitioning the Environment 47

5.4 Partitioning the Environment

In the following we provide the partitioning of the continuous state-spaceX in
which the robots move. Now, consider that the continuous state-spaceX ⊆ R2

is decomposed into a finite number of cells by a partitionπ = {Xj}
M
j=1, where

M is the number of cells in the partition. We assume that the location of each
robot or static obstacle in the continuous state space belongs to exactly one cell.
The partitionπ of X satisfies the following two properties

X =
⋃

j∈I

Xj , I = {1, . . . , M}, (5.4)

Xi ∩ Xj = ∅, ∀i 6= j, (5.5)

whereM is the number of cells in the partition. Hence, the cells of the partition
π cover the continuous state spaceX and do not overlap.

The partition induces an equivalence relation. In this context, the induced
equivalence relation≈ is calledcell equivalenceand is defined over the contin-
uous state spaceX. The cell equivalence relation≈ is finite since it has a finite
number of equivalence classes, i.e. a finite number of cells. For any two posi-
tionsx′, x′′ ∈ X, x′ ≈ x′′ (x′ is equivalent tox′′) if there existsj ∈ I such that
x′, x′′ ∈ Xj .

The continuous state-spaceX is decomposed in such a way that it conforms
with the motion capabilities of the robots. The partitionπ is constructed by
putting a two-dimensional grid over the continuous state-spaceX. The bound-
aries of each cellXj ∈ π is parallel with exactly one possible motion direction
of a robot, i.e. a motion in thex1 or x2-direction. The obtained partition is
composed of identical cells with lengthǫ > 0 where each cell is defined as the
Cartesian product of two half open intervals. The partitionπ is shown in Fig-
ure 5.4

The motion of a multi-modal robot is restricted to be from one cell in the
partition to an adjacent cell. The rationale behind this restriction is twofold.
First, it reduces the state-space of the system and hence it reduces the complexity
of model checking the system. Second, it reduces the number of cells that needs
to be occupied when the multi-modal robots are moving.

Given a cellXj ∈ π we now define

Ij = {i ∈ I \ {j} | |∂Xj ∩ ∂Xi| > 1} , (5.6)

where∂Xj and∂Xi denote the boundary of cellsXj andXi, respectively. Thus,
everyXi is adjacent toXj for i ∈ Ij .

48 Multi-robot Motion Planning

x1

x2

ǫ

Figure 5.4:Partition π of the continuous spaceX into a finite number
of cells and motion capabilities of a robot.

5.5 Cyclic Transitions

Here, we are interested in the reachability of the robots in the environment.
In [Koo and Sastry, 2002] the time-abstract transitions for describing thecontin-
uous transitions of a hybrid automaton have been introduced. In this multi-robot
motion planning scenario, there are multiple robots operating concurrently and
there is a need to coordinate their motions in order to meet the requirement spec-
ification. However, we are only concerned about the periods of time whenthe ro-
bots are in motion and we are not interested in those robots that are not movingat
all. This is because coordination is needed only when the robots are performing
continuous transitions from one cell to another one, which takes a finite amount
of time. Therefore, we now introduce two types of continuous transitions as-
sociated with hybrid automatonH, that istimedand time-abstracttransitions.
Timed transitions are associated with robot movement and time-abstract transi-
tions are associated with stopping the robot. Timed and time-abstract transitions
are essential in the process of embedding the hybrid automatonH into the class
of labeled transition systems and subsequently for obtaining a finite quotient
transition system.

Now, lets defineφ(t, q, x0) as the solution of the differential equationẋ =
f(q, x) with x(0) = x0 for t ≥ 0.

5.5 Cyclic Transitions 49

DEFINITION 5.1 (σi-LABELED (T IMED) TRANSITION) Considerx′, x′′ ∈
X, ρ ∈ R≥0 andσi ∈ Σ \ {σ1}, the σi-labeled (timed) transitionis defined
as

x′ σi−→ x′′ if x′′ = φ(ρ, qi, x
′).

This transition is defined for a fixed period of timeρ and it describes the contin-
uous transition in discrete stateq1 ∈ Q with inputσi ∈ Σ \ {σ1}.

DEFINITION 5.2 (σ1-LABELED (T IME -ABSTRACT) TRANSITION)
Considerx′, x′′ ∈ X, δ ∈ R≥0 andσ1 ∈ Σ, the σ1-labeled (time-abstract)
transition is defined as

x′ σ1−→ x′′ if x′′ = φ(δ, q1, x
′).

This transition is defined for a fixed period of timeδ and it describes the contin-
uous transition in discrete stateqi ∈ Q \ {q1} with inputσ1 ∈ Σ.

The introduction of timed and time-abstract transitions allows to define
cyclic transitions.

DEFINITION 5.3 (σi-LABELED CYCLIC TRANSITION) Considerx′, x′′ ∈ X
andσi ∈ Σ \ {σ1}, theσi-labeled cyclic transitionis defined as

x′ σi=⇒ x′′ if x′ σi−→ x′′ σ1−→ x′′.

Following the definition of the initial set asInit = {q1}×X, the cyclic transition
enables a transition fromq1 to qi ∈ Q \ {q1} and then back toq1. Hence, the
hybrid automatonH can operate continuously by taking the cyclic transitions.
The definition of cyclic transition allows to introduce the local motion capability
of a robot.

PROPOSITION 5.1 (LOCAL M OTION CAPABILITY) Consider a finite parti-
tion of the continuous state spaceX ⊆ R2 defined byπ = {Xj}

M
i=1. Given a

cell Xj ∈ π and an adjacent cellXi ∈ π with i ∈ Ij there existsσi ∈ Σ \ {σ1}

such that for allx′ ∈ Xj there existsx′′ ∈ Xi such thatx′ σi=⇒ x′′.

Given the partitionπ, due to the definition of adjacent cells, there are at most four
possible adjacent cells for each cell. However, for the cells at the boundary of
the partitionπ there are at most two or three adjacent cells. For an adjacent cell,
since there exists exactly one motion direction that is parallel to each boundary,

50 Multi-robot Motion Planning

one can simply pick a motion direction that will make the robot move towards
the adjacent cell. Due to the simple reachability property of the multi-modal
system modeled by the hybrid automataH, one can easily show that a robot
could start from anywhere within the cell and could reach somewhere inside the
adjacent cell in finite time. An example of a local motion capability of a robot is
graphically illustrated in Figure 5.5.

x1

x2

Xj

Xix′ σ2=⇒ x′′

Figure 5.5:Example of a local motion capability of a robot caused by
a σ2-labeled cyclic transition.

Starting in cellXj a σ2-labeled cyclic transition will move the robot in the
x1-direction and eventually the robot will reach the adjacent cellXi.

5.6 Embedding the Hybrid Automaton

We now introduce a labeled transition system that preserves the reachability
properties of the hybrid automatonH. The hybrid automatonH is embedded
in the class of labeled transition systems with observations. We shall considera
finite set of observationsO associated with the finite set of cells defined by the
partitionπ = {Xj}

M
j=1 of the continuous state-spaceX.

Define a labeled transition system associated with hybrid automatonH as

Th = (Qh, Σh, =⇒h, O,Υh), (5.7)

where

• Qh = X is the set of states,

• Σh = Σ \ {σ1} is the set of labels,

5.7 Obtaining the Abstraction 51

• =⇒h⊆ X × Σh × X is the transition relation defined byx
σ

=⇒h x′ if
x, x′ ∈ X,

• O = BM is the set of observations,

• Υh : Qh → O is the observation map defined as

Υh(x) =
[
Υh1

(x) Υh2
(x) . . . ΥhM

(x)
]T

,

whereΥhj : X → B = {0, 1}, for j = 1, . . . , M is defined as

Υhj (x) =

{

1 if x ∈ Xj ,

0 otherwise.
.

Transition systemTh is infinite since the set of statesQh is defined as the con-
tinuous state spaceX. However, the set of observationsO is finite since the
partition π is finite. By constructing the observation mapΥh according to the
partitionπ the cell equivalence relation≈ is observation-preserving.

5.7 Obtaining the Abstraction

The set of all equivalence classesXj in X, given the cell equivalence relation
≈, is called the quotient spaceX/≈ of X by the cell equivalence relation≈. The
quotient spaceX/≈ is defined as

X/≈ = π (5.8)

= {Xj}
M
j=1,

that is the set consisting of all equivalence classesXj of cell equivalence relation
≈. Given the cell equivalence relation≈, there is a canonical projection map1

Ψh : X → X/≈ defined as

Ψh(x) = Xi if x ∈ Xi, (5.9)

which sends eachx ∈ X to its equivalence classXi. The quotient transition
system obtained from the labeled transition systemTh is defined as

Th/≈ =
(
Qh/≈, Σh, =⇒h/≈, O,Υh/≈

)
, (5.10)

where
1Also called quotient map. The quotient map is always surjective.

52 Multi-robot Motion Planning

• Qh/≈ = X/≈ is the set of states,

• =⇒h/≈⊆ Qh/≈ × Σh × Qh/≈ is the transition relation defined by

Xi
σ

=⇒h/≈ Xj in Th/≈ if there existsx ∈ Xi andx′ ∈ Xj such that

x
σ

=⇒h x′ in Th,

• Υh/≈ : Qh/≈ → O is the observation map defined byΥh/≈(Ψh(x)) =
Υh(x).

The labeled quotient transition systemTh/≈ is finite sinceQh/≈, Σh andO are
finite. Note, thatΣh andO are inherited fromTh. We can show that the cell
equivalence relation≈ is a bisimulation of transition systemTh associated with
hybrid automatonH. Given the transition systemTh and the cell equivalence
relation≈, we can show that≈ is a bisimulation ofTh.

THEOREM 5.1 (BISIMULATION RELATION) Consider the transition system
Th associated with hybrid automataH and the cell equivalence relation≈.
Then,≈ is a bisimulation ofTh.

PROOF 1 (THEOREM 5.1) SinceΨ−1
h (Ψh(x)) is the set of all states inX that

are equivalent tox, it is a cell. According to Proposition 5.1,Postσ(x) ∈
Postσ(Ψ−1

h (Ψh(x))) for all x ∈ X and for all σ ∈ Σh. Furthermore,
Postσ(Ψ−1

h (Ψh(x))) is an adjacent cell which is also an equivalence class.
Therefore,Ψh(Postσ(Ψ−1

h (Ψh(x)))) = Ψh(Postσ(x)). Hence the result.

THEOREM 5.2 Consider the transition systemTh associated with hybrid au-
tomataH, the quotient transition systemTh/≈ of Th and the cell equivalence
relation≈. Then,Th andTh/≈ are bisimilar.

PROOF 2 (THEOREM 5.2) As the states of the quotient transition systemTh/≈

are given by the equivalence classes of cell equivalence relation≈, a finite quo-
tient transition system is obtained since the cell equivalence relation≈ has a
finite number of equivalence classes. Since the cell equivalence relation≈ is a
bisimulation of transition systemTh associated with hybrid automatonH, it can
be shown thatTh is bisimilar toTh/≈ by the relation

Rh = {(x, Xi) ∈ X × π | Ψh(x) = Xi}, (5.11)

betweenTh andTh/≈.

5.7 Obtaining the Abstraction 53

SinceTh andTh/≈ are bisimilar, model checking properties ofTh can equiva-
lently be performed by model checking the properties ofTh/≈, which is discrete
and finite. Therefore, the reachability problem for the multi-modal robot is de-
cidable.

The last step in the process of obtaining a finite quotient transition system
of hybrid automatonH, is to associate each cell of the partition with a discrete
position. Thus, a finite transition system is introduced which has a finite setZ
of discrete positions as the set of states. The midpoint of a cell in the partition
coincides with a discrete position of a robot. Thus, we associate with each cell
Xi ∈ π a discrete positionzi ∈ Z2 of the robot. Lets define an isomorphism2

Ψt : π → Z such that

Ψt(Xi) = zi if zi ∈ Xi ∀i ∈ I, (5.12)

whereI = {1, . . . , M}. Thus,Z is defined as

Z = {zj}
M
j=1. (5.13)

Now, define a labeled transition system

Tt = (Qt, Σh, =⇒t, O,Υt), (5.14)

where

• Qt = Z is the set of discrete states,

• =⇒t⊆ Qt ×Σh ×Qt is the transition relation defined byzi
σ

=⇒t zj in Tt

if there existsΨt(Xi) = zi andΨt(Xj) = zj such thatXi
σ

=⇒h/≈ Xj in
Th/≈,

• Υt : Qt → O is the observation map defined byΥt(zi) = Υh/≈(Xi).

Transition systemTt is finite sinceQt, Σt, andO are finite. Note thatΣh and
O are inherited fromTh/≈. Similarly, one can show that the quotient transition
systemTh/≈ is bisimilar to the finite transition systemTt by the relation

Rt = {(Xi, zi) ∈ π × Qt | Ψt(Xi) = zi} , (5.15)

betweenTh/≈ andTt. The relationship between the state-space of the different
transition systemsTh, Th/≈, andTt is shown in Figure 5.7.

2Informally, an isomorphism is a map that preserves sets and relations among ele-
ments, i.e a structure-preserving mapping.

54 Multi-robot Motion Planning

Discrete Transition
SystemTt

Quotient Transition
SystemTh/≈

Infinite Transition
SystemTh

Hybrid Automaton

H

Abstraction

Abstraction

Embedding

(a) Relationship between transition
systems associated with linear con-
trol systemΣ.

Z

Ψt

X/≈

Ψh

X

X

(b) Corresponding
state-spaces.

Figure 5.6:Intermediate steps in the abstraction of hybrid automaton
H to obtain a finite bisimilar quotientTt.

5.8 Constructing the Timed Automaton 55

5.8 Constructing the Timed Automaton

In this section, we will show how to construct a timed automatonAr such that
the reachability properties of the finite and discrete transition systemTt are pre-
served. SinceTt andTh/≈ are bisimilar andTh/≈ andTh are bisimilar the reach-
ability properties are preserved. Therefore, any sequence of actions that can be
accepted by timed automatonAr can also be accepted by hybrid automatonH.

5.8.1 Modeling the Environment

In UPPAAL the set of discrete statesZ is represented in an occupancy table.
The occupancy table is represented as a two-dimensional boolean array

int[0,1] Z[Z_1][Z_2], (5.16)

whereZ_1, Z_2 ∈ Z define the size of the array in thex1 andx2-direction,
respectively. Thus, elements of the array represent discrete positions, where each
discrete position can be assigned the value 0 (free) or 1 (occupied). A particular
element(1, 2) of the arrayZ is marked occupied by the assignmentZ[1][2]
= 1. By default all elements of the arrayZ are initialized to zero.

Static obstacles may be present in the environment where the robots are
moveing. A static obstacle is modeled as an automaton

Ao = (L, l0, E), (5.17)

where

• L = {l0, l1} is the set of locations,

• l0 ∈ L is the initial location,

• E ⊆ L × L is the set of edges, where an edge contains a location and a
target location. The edges are defined as

e00 = (l0, l0),

e01 = (l0, l1).

AutomatonAo modeling one static obstacle is graphically shown in Figure 5.7.

56 Multi-robot Motion Planning

l_0

l_1

obsNo == obsID and j < 1

Z[z_1Stat][z_2Stat] = 1,
j = j+1

obsNo == obsID and j == 1

j = 0,
obsNo = obsNo+1,
z_1 = z_1Stat,
z_2 = z_2Stat

Figure 5.7:Process template for one static obstacle.

AutomatonAo starts in the locationl0, which is declared committed3. By
declaring this location committed, an element in the arrayZ can be marked
as occupied by an obstacle, without allowing any time delay in locationl0.
When the guardobsNo == obsId and j < 1 is enabled, the assignment
Z[z_1Stat][z_2Stat] = 1 is performed and the index variablej is in-
cremented. The edge froml0 to l1 will then become fired since the guardobsNo
== obsID and j = 1 is satisfied, resulting in an update of index variable
j to zero, an increment ofobsNo and the obstacle withobsNo == obsId is
given a static discrete position by the assignmentsz_1 = z_1Stat andz_2
= z_2Stat.

This automaton is used as a template for declaring static obstacles processes.
Processes declared using the static obstacle template can be declared with the
template parameters specified in Table 5.1.

Parameter Type Description
obsID const int Unique identifier for static obstacle
z_1Stat const int Static position of obstacle inx1-direction
z_2Stat const int Static position of obstacle inx2-direction

Table 5.1:Template parameters for one static obstacle.

3Committed locations are represented byc©

5.8 Constructing the Timed Automaton 57

5.8.2 Timed Automaton Model of Robot

Recall, that the goal is to generate a set of collision-free paths for the network of
multi-modal robots which satisfy a formal requirement specification in CTL and
which enable the network of multi-modal robots to eventually reach their goal
positions. In CTL, the"eventually reach goal position"property is specified
as a liveness property whereas the"collision-avoidance"property is specified
as a safety property. However, since CTL does not allow nesting of liveness
and safety properties the liveness and safety properties can not be checked to-
gether. This problem is solved in two steps: I.) The collision-avoidance property
is guaranteed by using a correct-by-construction principle where the collision-
avoidance property is embedded in the timed automaton modeling a multi-modal
robot. II.) The eventually reach goal position property is ensured for each multi-
modal robot in the network by using the model checker UPPAAL.

A timed automaton template is now constructed from the finite transition
systemTt. Since the multi-modal robots in the network have fixed speedv =
v1 = v2 and the length of every side of the cells isǫ = 1, we can chooseρ = 1

v
so that for any initial conditionx(0) in a cell a robot can move to an adjacent cell
by taking a proper cyclic transition. The timed automaton associated withTt is
defined as

Ar = (L, l0, C, A, E, I), (5.18)

where

• L = {l0, l1, l2, l3, l4, l5} is the set of locations,

• l0 ∈ L is the initial location,

• C = {c} is the set of real-valued clock variables,

• A = {sigma_2?,sigma_3?,sigma_4?,sigma_5?} is the set of
input synchronization actions,

• E ⊆ L×B(C)×A× 2C ×L is the set of edges, where an edge contains
a source location, a guard to be satisfied, an synchronization action to be
received, a clock variable to be reset, and a target location. The edges4

4eij denote the edge from locationli to lj .

58 Multi-robot Motion Planning

are defined as

e00 = (l0, l0),

e01 = (l0, l1),

ei1 = (li,c == c_m,c = 0, l1), for i = 2, . . . , 5,

e1j = (l1,sigma_j?, lj), for j = 2, . . . , 5,

• I : L → B(C) assigns to each locationl ∈ L an invariantI(l). The
invariant is defined as

I(li) : c <= c_m, for i = 2, . . . , 5.

The timed automatonAr modeling one multi-modal robot is graphically illus-
trated in Figure 5.8.

The state of the timed automaton is(l, u) ∈ L×C, wherel ∈ L is a location and
u : C → R≥0 is a clock valuation function from the set of clocksC = {c} to
the nonnegative realsR≥0. Thus,u holds the current value of the clock variable
c in locationl.

Timed automatonAr is equipped with a real-valued clock variablec in order
to take the timing constraint related to the transitionzi

σ
=⇒t zj for someσ ∈ Σh

into consideration. Thus, a real-valued clock variablec is used to represent the
amount of time a robot spends on moving fromzi = Ψt(Xi) to zj = Ψt(Xj).

Assume that the robot can move with a fixed velocity that is given byc_m
∈ Z. In the timed automaton this is modeled using an invariant on the location.

The timed automatonAr starts in locationl0. In this location the robot is
placed on its initial discrete position as specified byz_1Init andz_2Init.
In locationl1 the robot can move from the initial cell to an adjacent cell in the
partition given that one of the edges are fired and the associate controllersends
the corresponding output synchronization action. In locationl1 the timed au-
tomaton is ready to receive an input synchronization actionsigma_i! for i
= 2, . . . , 5 from the associated controller. If the edgee12 is fired and the syn-
chronization actionsigma_2! is received the timed automaton fires the edge
e12 to locationl2. Note that the edgee12 is only fired if the adjacent cell is free
Z[z_1+1][z_2] == 0 and within the defined partition, i.e.z_1 < Z_1.
The adjacent cell is marked occupiedZ[z_1][z_2]=1 when the edgee12 is

5.8 Constructing the Timed Automaton 59

l_1

l_0

l_3

c <= c_m

l_4

c <= c_m

l_2

c <= c_m

l_5

c <= c_m

robotNo == robotID and i == 1
i = 0,
robotNo = robotNo + 1,
z_1 = z_1Init,
z_2 = z_2Init

robotNo == robotID and i < 1
Z[z_1Init][z_2Init] = 1,
i = i+1

z_1 > 0 and Z[z_1-1][z_2] == 0

sigma_3?

Z[z_1-1][z_2] = 1

c == c_m
c = 0,
Z[z_1][z_2] = 0,
z_1 = z_1-1

z_2 < Z_2 and Z[z_1][z_2+1] == 0

sigma_4?

Z[z_1][z_2+1] = 1

c == c_m
c = 0,
Z[z_1][z_2] = 0,
z_2 = z_2+1

z_2 > 0 and Z[z_1][z_2-1] == 0

sigma_5?

Z[z_1][z_2-1] = 1

c == c_m
c = 0,
Z[z_1][z_2] = 0,
z_2 = z_2-1

z_1 < Z_1 and Z[z_1+1][z_2] == 0

sigma_2?

Z[z_1+1][z_2] = 1

c == c_m
c = 0,
Z[z_1][z_2] = 0,
z_1 = z_1+1

Figure 5.8:Template for one multi-modal robot.

fired. In locationl2 the movement towards the adjacent cell is performed for a
fixed period of time, i.e. as long as the invariantc <= c_m is satisfied. Then,
the edgee21 is fired when the guardc == c_m is enables and a transition is
taken back to locationl1. When the edgee21 is fired the clock variablec is reset
to zero, the previous cell is marked freeZ[Z_1][Z_2] = 0 and the discrete
position of the robot is updatedz_1 = z_1 + 1.

Processes declared using the robot template can be declared with the tem-
plate parameters specified in Table 5.2.

60 Multi-robot Motion Planning

Parameter Type Description
robotID const int Unique identifier for robot
z_1Init const int Initial position of robot inx1-direction
z_2Init const int Initial position of robot inx2-direction
c_m const int Constraint on clock c

sigma_2 chan Synchronization channel to move robot inx1-direction
sigma_3 chan Synchronization channel to move robot in−x1-

direction
sigma_4 chan Synchronization channel to move robot inx2-direction
sigma_5 chan Synchronization channel to move robot in−x2-

direction

Table 5.2:Template parameters for one robot.

5.8.3 Automaton Model of Robot Controller

A controller is associated with each timed automaton modeling a multi-modal
robot. A controller for each robot is needed as the system consists of a network
of concurrent robots moving in the environment. The robot controller is modeled
as an automaton

Ac = (L, l0, A, E), (5.19)

where

• L = {l0} is the set of locations,

• l0 ∈ L is the initial location,

• A = {sigma_2!,sigma_3!,sigma_4!,sigma_5!} is the set of
output synchronization actions,

• E ⊆ L × A × L is the finite set of edges, where an edge contains a
source location, an output synchronization action to be send, and a target
location. The edges are defined as

ei = (l0,sigma_i!, l0), for i = 2, . . . , 5.

The robot controller automaton is shown in Figure 5.9.
The automatonAc start in the locationl0. In this location the automaton can

send an output synchronization actionsigma_i! ∈ A can be sent to the timed

5.8 Constructing the Timed Automaton 61

l_0

sigma_5!

sigma_2!

sigma_4!

sigma_3!

Figure 5.9:Template for one robot controller.

automatonAr modeling a multi-modal robot. The set of output synchronization
actionsA represent all possible movements of a robot.

Complementary synchronization channels are of the form (sigma_i!,
sigma_i?), wheresigma_i! is the sender andsigma_i? is the receiver.
Thus, a robot and its associate control can synchronize on complementary syn-
chronization channels if their respective invariants and guards are satisfied. Thus,
if the automatonAc takes the edge

e2 = (l0,sigma_2!, l0), (5.20)

the timed automatonAr will take the corresponding edge

e12 = (l1,sigma_2?, lj). (5.21)

The automatonAc is used as a template for declaring control process instances.
Processes declared using the controller template can be declared with the tem-
plate parameters specified in Table 5.3.

Parameter Type Description
sigma_2 chan Synchronization channel to move robot inx1-direction
sigma_3 chan Synchronization channel to move robot in−x1-

direction
sigma_4 chan Synchronization channel to move robot inx2-direction
sigma_5 chan Synchronization channel to move robot in−x2-

direction

Table 5.3:Template parameters for robot controller.

62 Multi-robot Motion Planning

5.9 Summary

A novel framework for the motion planning of a network of multi-modal ro-
bots with respect to formal requirement specification in Compuatonal Tree Logic
(CTL) was presented in this chapter. CTL enables to express the desiredliveness
and safety properties that the robots in the network should satisfy.

The robots were assumed to move concurrently in the environment and to
have identical motion capabilities. A hybrid automaton was introduced as a
generic model for each of the multi-modal robots in the network. The embedding
of the hybrid automata into the class of labeled transition systems was possible
by introducing cyclic transitions and by considering a finite partition of the en-
vironment that conforms with the motion capabilities of the robots.

Subsequently, the finite bisimilar quotient obtained from the hybrid automa-
ton was used to construct a timed automaton for the robot. The quotient of the
hybrid automata was obtained in such a way that the reachability properties ofthe
hybrid automata were preserved by the timed automata. The constructed timed
automaton serves as a template for instantiating new robot processes. Also,a
controller and obstacle template is constructed.

The timed automata formalism merely presents an abstraction of a robot but
allows composition and formal symbolic reasoning about coordinated motion
planning solutions. The model checker UPPAAL is used for formal symbolic
model checking against a requirement specification formulated in CTL for anet-
work of multi-modal robots.

Chapter 6

Case Study I : Multi-robot
Motion Planning

In this chapter the novel framework proposed for the motion planning of a net-
work of multi-modal robots, presented in the previous chapter will be demon-
strated for a network of two multi-modal robots in a simple test scenario. The
requirement specification expressing the desired liveness and safety properties
for the network of multi-modal robots is formulated in Computational Tree Logic
(CTL) and subsequently checked using the model checkerUPPAAL. The results
of model checking the system are presented. Finally, a conclusive discussion of
the novel framework proposed is given.

6.1 Test Scenario

In the following a network of two multi-modal robots,R1 andR2 is considered.
The network of robots is shown in Figure 6.1.

The two robotsR1 andR2 are initially located in cell (5,3) and (5,4), re-
spectively (See Figure 6.1.(a)). The goal positions of the two robots aremarked
asG1 andG2, respectively (See Figure 6.1.(b)). The two robots have to move
from their initial to goal positions while avoiding collision with each other and
the static obstacles. The system to be model checked consists of the following
processes: Two robots,R1 andR2 two controllers,C1, andC2 and static obsta-
clesO1, . . . , O32, marked as grey. In UPPAAL the system is defined assystem
R_1, R_2, C_1, C_2, O_1, . . ., O_32;. The global declarations for

63

64 Case Study I : Multi-robot Motion Planning

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

R1

R2

(a) Initial positions of robotsR1 andR2, respectively.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

G1

G2

(b) Goal positionsG1 andG2 of robotsR1 andR2, respectively.

Figure 6.1:Network with two multi-modal robotsR1 andR2.

6.2 Requirement Specification in Computational Tree Logic 65

the system just defined can be found in Appendix A. The network is constructed
in UPPAAL, where process assignments are used to declare instances ofthe
robot, control, and obstacle processes, respectively.

6.2 Requirement Specification in Computa-
tional Tree Logic

The requirement specification expressing the desired liveness and safety proper-
ties for the network of multi-modal robots is formulated in Computational Tree
Logic (CTL) and checked using the model checker UPPAAL.

6.2.1 Liveness Properties

The liveness properties are used for the generation of a feasible motion plan, that
will move the robots from their initial to goal positions, while avoiding collision
among robots and obstacles.

Property 1 (Reachability) There exist a location trajectory, where the robots,
R1 andR2 eventually reach their goal positions,G1 andG2?
E<> (R_1.z_1==2 and R_1.z_2==3 and R_2.z_1==1
and R_2.z_2==5)

Property 2 (Reachability with time requirement) There exist a location
trajectory, where the robots,R1 and R2 eventually reach their goal
positions,G1 andG2, within 15 time units?
E<> (R_1.z_1==2 and R_1.z_2==3 and R_2.z_1==1
and R_2.z_2==5 and time<15)

Property 1 express the behavior that the robots eventually will reach theirgoal
positions, where Property 2 express the behavior that the robots eventually will
reach their goal positions within 15 time units.

6.2.2 Safety Properties

The safety properties are used to check if collision avoidance is achievedamong
the robots when moving and static obstacles and also that the robots will move
within then boundaries of the environment.

66 Case Study I : Multi-robot Motion Planning

Property 3 (Collision avoidance) For all location trajectories the robots,R1

andR2 will never collide after they start to move, i.e. for time > 0?
A[] not (R_1.z_1==R_2.z_2 and R_1.z_1==R_2.z_2
and time > 0)

Property 4 (Bounded movement)For all location trajectories the robots,R1

andR2 will always move within the boundaries of the partition?
A[] (R_1.z_1>=0 and R_1.z_1<=Z_1 and R_1.z_2>=0
and R_1.z_2<=Z_2 and R_2.z_1>=0 and R_2.z_1<=Z_1
and R_2.z_2>=0 and R_2.z_2<=Z_2)

Property 3 express the requirement that collision avoidance is achieved among
the robots once they start to move. Further, the requirement that the robotsal-
ways move within the boundaries of the partition is expressed in Property 4.

In UPPAAL the properties Property 1-4 are verified by typingverifyta
-n0 -o0 -f trace -t2 -u model.xml query.q, where-n0 select
automatic extrapolation,-o0 select breadth first search order,-f trace write
symbolic trace to file trace-n.xtr1, -t2 generate fastest trace,-u show sum-
mary2 after verification,model.xml is the model to be verified against the
CTL formulas as specified in the query filequery.q. The setup is graphically
illustrated in Figure 6.2.

6.3 Model Checking Results

In the following the results from the model checking of the liveness and safety
properties for the system are presented.

Property 1 (Reachability) was checked and satisfied, hence there existsa
location trajectory, where the robots,R1 andR2 eventually reach their goal po-
sitions,G1 andG2 (See Figure 6.6). The symbolic trace for the network of two
multi-modal robots,R1 and R2 and their associate controllers,C1 and C2 is
shown in Figures 6.3-6.5.

The symbolic trace in Figures 6.3-6.5 shows the fastest-time location tra-
jectory, i.e. a trajectory with the shortest accumulated time delay. The location
trajectory for the obstacles is omitted since the obstacles will not move once they
are placed in the environment. The robots start in the initial locationl0. In this

1n denotes the symbolic trace of property n.
2States stored/explored.

6.3 Model Checking Results 67

CTL Formula

Robot Controllers

C_1 andC_2
and Static Obstacles

O_1, . . ., O_32

‖

Timed Automata

Network of Robots

R_1 andR_2
and Environment

Model Checker

UPPAAL

Requirement Specification

Lo
gi

c
A

ut
om

at
a

/
T

im
ed

A
ut

om
at

a

Figure 6.2:Setup for model checking liveness and safety proterties for
the network of two multi-modal robotsR1 andR2.

location the robots are placed in their initial position in the partition as specified
in the System Declarations (See Appendix A). Once the robots are placed inthe
environment they enter the locationl1, where they are ready to move upon a syn-
chronization signal from their respective controller. The dashed lines indicate a
synchronization with an event between a robot and its associate controller.

Property 2 (Reachability with time requirement) was checked and satisfied,
hence there exists a location trajectory, where the robots,R1 andR2 eventually
reach their goal positions,G1 andG2 within 15 time units. The location trajec-
tory is identical to the location trajectory generated for Property 1. RobotR1

reaches its goal position after 9 time units, whereas robotR2 reaches its goal
position after 11 time units.

Property 3 (Collision avoidance) was checked and satisfied. Thus, the col-
lision avoidance among the robots and the obstacles is guaranteed. The colli-
sion avoidance property is guaranteed by using a correct-by-construction prin-
ciple by embedding the collision-avoidance property in the timed automaton
template for a multi-modal robotAr. This property is satisfied using a guard
Z[z_1+1][z_2] == 0 (is adjacent cell inx1-direction free?) and an update
Z[z_1+1][z_2] (occupy adjacent cell) before moving in thex1-direction.

Property 4 (Bounded movement) was checked and satisfied, hence the robots
will always move within the boundaries of the partition. This property is satisfied
using the guardsz_1 < Z_1, z_1 > 0, z_2 < Z_2, andz_2 > 0 in the

68 Case Study I : Multi-robot Motion Planning

R_1 R_2 C_1 C_2

l_0

l_0

l_1

l_4

l_1

l_3

l_1

l_3

l_0

l_0

l_1

l_3

l_1

l_3

l_1

l_4

l_1

l_0

sigma_41

l_0

sigma_31

l_0

sigma_31

l_0

l_0

sigma_32

l_0

sigma_32

l_0

sigma_42

l_0

Comment

Initial location

Initial position

Initial position

Robot movement

Figure 6.3:Symbolic trace (part I) for the network of two robots,R1

andR2 and their associate controllers,C1 andC2.

6.3 Model Checking Results 69

R_1 R_2 C_1 C_2

l_1

l_4

l_1

l_3

l_1

l_3

l_1

l_5

l_3

l_1

l_3

l_1

l_5

l_1

l_5

l_1

sigma_41

l_0

sigma_31

l_0

sigma_31

l_0

sigma_51

l_0

sigma_32

l_0

sigma_32

l_0

sigma_52

l_0

sigma_52

l_0

Comment

Robot movement

Figure 6.4:Symbolic trace (part II) for the network of two robots,R1

andR2 and their associate controllers,C1 andC2.

70 Case Study I : Multi-robot Motion Planning

R_1 R_2 C_1 C_2

l_1

l_5

l_1

l_2

l_1

l_5

l_1

l_4

l_1

l_4

l_1

l_4

l_1

sigma_51

l_0

sigma_21

l_0

sigma_52

l_0

sigma_42

l_0

sigma_42

l_0

sigma_42

l_0

Comment

Robot movement

Goal position

Goal position

Figure 6.5:Symbolic trace (part III) for the network of two robots,R1

andR2 and their associate controllers,C1 andC2.

6.3 Model Checking Results 71

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

R1G1

(a) Path of robotR1 from initial to goal position markedG1.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

R2

G2

(b) Path of robotR2 from initial to goal position markedG2.

Figure 6.6:Network with two multi-modal robotsR1 andR2.

72 Case Study I : Multi-robot Motion Planning

timed automaton for the robotAr (See Figure 5.8).
A summary of the results of model checking the liveness and safety proper-

ties for the system is shown in Table 6.1.

Property Description Property States stored/ Time
satisfied explored [s]

1 Reachability 2654/2813 < 1
2 Reachability with time

requirement
2654/2813 < 1

3 Collision avoidance 5059/5218 < 1
4 Bounded movement 5059/5218 < 1

Table 6.1:Results from model checking liveness properties 1 and 2 and
safety properties 3 and 4.

6.4 Concluding Discussion

The novel framework presented here presupposes an infra-structure of the multi-
modal robots with feedback controllers that constraint the motion capabilities of
the individual robots. A natural next step would be to apply the proposedframe-
work to networks of physical robot with more complex dynamics. However,this
would require the development of a (hybrid) controller for tracking the planned
paths.

Further, the novel framework presented for the motion planning of a network
of multi-modal robots is also applicable to robots moving in a three-dimensional
(3D) environment. This requires the hybrid automata modeling a multi-modal
robot to have two additional states for moving in thex3 and−x3-direction, re-
spectively. However, this would result in an increased computational complexity
of subsequently model checking the system.

Simulations have shown that the computational complexity of model check-
ing the system increases exponential as the number of multi-modal robots in
the network and the size of the occupancy table increases. Basically, UPPAAL
makes an extensive search of the state-space when model checking the system
with respect to a requirement specification in CTL. In order to make the pro-
posed framework applicable for large networks of multi-modal robots (> 3)an
extensive search of the state-space should be avoided or substantially reduced.

6.5 Summary 73

To avoid an extensive search of state-space and thereby reducing thecomputa-
tional complexity of model checking the system the following approach seems
feasible.

UPPAAL CORA3 [Uppsala University and Aalborg University, 1995b]
uses an extension of timed automata called Linearly Priced Timed Automata
which allows to annotate the timed automaton model with the notion of cost.
The idea is then be to have a low cost for moving in a direction that would bring
the robot closer to its goal position, opposed to a high cost if moving in a direc-
tion that brings the robot away from the goal position. Subsequently, UPPAAL
CORA could be used to find the most optimal location trajectory, i.e. a location
trajectory with the lowest accumulated cost for each robot.

6.5 Summary

In this chapter the novel framework proposed for the motion planning of a net-
work of multi-modal robots, presented in the previous chapter was demonstrated
for a network of two multi-modal robots in a simple test scenario. Computational
Tree Logic (CTL) was used to express the desired liveness and safetyproperties
for the network of multi-modal robots. The model checker UPPAAL was used
for checking the desired properties which all showed to be satisfied by thesys-
tem. The result of model checking the system was a set of collision-free paths for
the network of multi-modal robots in the form of sequences of synchronization
inputs such that the requirement specification was satisfied. Subsequently, the
sequences of synchronization inputs could be executed by the network of multi-
modal robotsH1, . . . , HN modeled by hybrid automata. Finally, a conclusive
discussion of the novel framework proposed was given.

3A branch of UPPAAL for cost optimal reachability analysis.

Chapter 7

Robot Controller Synthesis

In this chapter a framework for controller synthesis for linear control systems
with respect to formal requirement specification in Linear Temporal Logic
(LTL) is presented. Linear control systems satisfying simple controllability
assumptions allow finite abstractions in the form of finite bisimilar quotients to
be computed. The possibility to compute finite bisimulations of linear control
systems allows a discrete controller to be synthesized. A refinement of the
discrete controller results in a hybrid closed-loop combining the continuous
dynamics of linear control system with the synthesized switching logic required
to implement the desired requirement specification.

The framework presented in this chapter was developed by Tabuada andPap-
pas [Tabuada and Pappas, 2006] and illustrated in Figure 7.1. In orderto fit with
the problem of synthesizing a controller for a mobile robot, given a requirement
specification in LTL, it needs some modifications. These modifications are pri-
mary concerned with the input to the framework and with the implementation of
the linear hybrid system obtained by refinement.

The framework in Figure 7.1 assumes a discrete-time (time-invariant) con-
trollable linear control systemΣ together with a requirement specification in the
form of a LTL formulaφ. The idea behind the framework is to synthesize a con-
troller for the linear control system enforcing the requirement specification. This
is done in a number of steps to be described later. The controller synthesis results
in a closed-loop hybrid systemTH enforcing the requirement specification, i.e.
TH |= φ.

To make the framework proposed by Tabuada and Pappas [Tabuada and Pap-

75

76 Robot Controller Synthesis

LTL Formula
φ

Framework
Linear Control

SystemΣ

Hybrid Closed-

loopTH |= φ

Figure 7.1:Proposed framework for controller synthesis for linear con-
trol systemΣ with respect to requirement specification in Linear-time
Temporal Logic (LTL).

pas, 2006] applicable for synthesizing a controller for a mobile robot the follow-
ing modifications are necessary.

Modeling In the context of a nonholonomic mobile robot the kinematic model
is appropriately represented by a nonlinear system compared to a discrete-
time linear control system.

Implementation The linear hybrid system obtained from the refinement should
equivalently work for the nonlinear system.

The extended framework for controller synthesis with respect to formal require-
ment specification is depicted in Figure 7.2.

The extended framework involves the following steps that will be described
below.

(1) Modeling It is assumed that the system under consideration can be modeled
as a nonlinear systemΣ∗.

(2) Dynamic Feedback Linearization Using dynamic feedback linearization a
dynamic compensator is obtained. This results in a continuous-time linear
control systemΣz. Subsequently, a discrete-time equivalentΣ of linear
control systemΣz is obtained as baseline for the abstraction.

(3) Requirement Specification LTL is used as a requirement specification
mechanism for describing the desired behavior of transition systemTΣ

associated with linear control systemΣ.

77

Lo
gi

c
A

ut
om

at
a

/
Tr

an
si

tio
n

S
ys

te
m

s
C

on
tin

uo
us

H
yb

rid

LTL Formula
φ

Büchi Automaton
Aφ Tc ‖O TP′

/∼
|= φ

Discrete Controller Finite Bisimilar
QuotientTP′

/∼

Hybrid Closed-

loopTH |= φ

Linear Control
SystemΣ

Nonlinear System

Σ∗

Dynamic
Feedback
Linearization

Language Equivalent

Controller Synthesis

Abstraction

Refinement

Requirement Specification

Modeling

Figure 7.2: Extended framework for controller synthesis for linear
control systemΣ with respect to formal requirement specification in
Linear-time Temporal Logic (LTL).

78 Robot Controller Synthesis

(4) Büchi Automaton The requirement specification is given in the form of a
LTL formula φ. The LTL formulaφ is translated into a Büchi automaton
Aφ that is used for controller synthesis.

(5) Abstraction The linear control systemΣ is embedded in the class of tran-
sition systems with observations. This results in a transition system
TΣ associated with linear control systemΣ. A finite bisimilar quotient
TP ′

/∼ of transition systemTΣ is obtained by forming a finite partition of
observation-spaceRm of the linear control systemΣ.

(6) Controller Synthesis Given a finite bisimilar quotientTP ′

/∼ of the linear con-
trol systemΣ and a requirement specification in the form of a Büchi au-
tomatonAφ, a finite controllerTc for TP ′

/∼ is synthesized such that the

parallel compositionTc ‖O TP ′

/∼ with observation synchronization en-

forces the requirement specification, i.e.Tc ‖O TP ′

/∼ |= φ, meaning that

Tc ‖O TP ′

/∼ satisfiesφ.

(7) Refinement The discrete modelTc ‖O TP ′

/∼ is refined with continuous inputs
such that a closed-loop hybrid systemTH will satisfy the requirement
specification by construction i.e.TH |= φ.

(8) Implementation Linear Hybrid System The linear hybrid systemH is im-
plemented as a simulation model for verifying the correctness of the syn-
thesized controller (Note that this step is not shown in Figure 7.2).

7.1 Modeling

It is assumed that the system under consideration can be modeled as a generic
nonlinear system without drift of the form

Σ∗ : q̇ = G(q)w, (7.1)

with stateq ∈ Rn and inputw ∈ Rm. G(q) ∈ Rn×m.

7.2 Dynamic Feedback Linearization

Dynamic feedback linearization of a non-linear system representing the plant
is employed to obtain a linear control system. Given a nonlinear system as in

7.3 Requirement Specification 79

Eq. (7.1) the purpose is to find a feedback compensator of the form

ξ̇ = α1(q, ξ) + α2(q, ξ)ν (7.2)

w = β1(q, ξ) + β2(q, ξ)ν, (7.3)

with stateξ ∈ Rζ and inputν ∈ Rm such that the closed-loop system in Eq. (7.1)
and Eq. (7.2) is equivalent, under a state transformationz = T (q, ξ) to a linear
systemΣz = (Az, Bz). We now review the steps involved in dynamic feed-
back linearization [Oriolo et al., 2002]. The first step is to choose a desired
m-dimensional outputη = h(q). The outputη is successively differentiated
until the inputν ∈ Rm appears in a nonsingular way. To avoid subsequent dif-
ferentiation of the original inputsw ∈ Rm the concept of dynamic extension
is employed, where additional integrators with stateξi ∈ R are added to some
of the input channels of the system in Eq. (7.1). The system in Eq. (7.1) with
extended state-spaceRn+ζ is then full input-state-output linearizable if the sum
of the differentation orders of the outputη ∈ R equals the dimensionn + ζ.
The resulting closed-loop system in Eq. (7.1) and Eq. (7.2) is then equivalent to
a set ofm decoupled input-output chains of integrators from inputνi ∈ R to
outputηi ∈ R for i ∈ 1, . . . , m. Defining the state asz ∈ Rn the following
continuous-time linear control system is obtained

Σz : ż(t) = Azz(t) + Bzν(t), (7.4)

with system matricesAz ∈ Rn×n andBz ∈ Rn×m and state variablez ∈ Rn

and control variableν ∈ Rm.

7.3 Requirement Specification

Temporal logic is usually used as a specification mechanism in verification of
formal models. Properties about the behavior of a system over time are naturally
expressible in temporal logics, such as linear-time temporal logic (LTL).

In this context, LTL is used as a specification mechanism for expressing the
desired behavior of transition systemTP

Σ . Each predicatep ∈ P corresponds to
an element of a finite partitionP of observation-spaceRm of transition system
TΣ.

In this section LTL syntax and semantics are defined.

80 Robot Controller Synthesis

7.3.1 LTL Syntax and Semantics

The construction of LTL formulas is based on a finite setP of state predicates.
More complex LTL formulas can then be constructed from the setP. In this
context the setP is identified with a finite partition of observation-spaceRm of
transition systemTP

Σ . Thus, each predicatep ∈ P corresponds to an element of
P.

LTL Syntax

LTL formulas are constructed through simple formulas together with the logical
connectives

• ∧ (conjunction),

• ∨ (disjunction),

• ¬ (negation),

• ⇒ (implication),

and the temporal operators

• ◦ (next),

• U (until).

LTL formulas are then recursively defined as follows.

• true, false, andp are LTL formulas for allp ∈ P,

• if φ1 andφ2 are LTL formulas, thenφ1 ∧ φ2 and¬φ1 are LTL formulas,

• if φ1 andφ2 are LTL formulas, then◦φ1 andφ1Uφ2 are LTL formulas.

From the until operatorU two commonly used operators can be defined

• ♦ (eventually),

• � (always).

7.3 Requirement Specification 81

Formula Read as Description
◦φ nextφ Specify thatφ has to be true at the next time step.

· ·
φ

· ·

φ1Uφ2 φ1 until φ2 Specify thatφ1 must be true untilφ2 will be true.

·
φ1

·
φ1

·
φ1

·
φ2

♦φ eventuallyφ Specify thatφ has to be true at some point in time in
the future.

· · ·
φ

·

�φ alwaysφ Specify thatφ has to be true for all future time.

·
φ

·
φ

·
φ

·
φ

Table 7.1:Basic LTL formulas.

These two operators are defined as

♦φ = trueUφ, (7.5)

�φ = ¬♦¬φ. (7.6)

The LTL formulas defined above are summarized in Table 7.1.
The until operatorU is used to describe temporal ordering. The formula

φ1Uφ2 would requireφ1 to be true untilφ2 will be true. The always operator
� defines an invariance property by requiringφ to hold for allt ∈ N. Complex
LTL formulas are constructed by nesting the temporal operators. Examplesof
complex LTL formulas are shown in Table 7.2.

The formulaφ1U�φ2 can be used to model convergence towards the oper-
ating conditions described byφ2 through a particular subset of the observation-
space described byφ1.

LTL Semantics

An unique interpretation of LTL formulas is obtained by defining LTL semantics.
In this context LTL formulas are interpreted over sequences of predicate values

82 Robot Controller Synthesis

Formula Read as Description
φ1U�φ2 φ1 until alwaysφ2 Specify thatφ2 must be true for all time,

or that φ1 must be true until at some later
timeφ2 must be true for all future time.

�♦φ Always eventuallyφ Specify that alwaysφ should eventually be
satisfied.

�(φ1Uφ2) Always (φ1 until φ2) Specify thatφ1Uφ2 must be true for all
time, which implies that for all time either
φ2 must hold orφ1 must hold untilφ2 will
be true at some future time.

Table 7.2:Example of complex LTL formulas.

s ∈ Pω, wherePω denote the set of all infinite strings obtained by concatenating
elements inP. An element ofPω is an infinite string

s = p1 p2 p3 . . . with pi ∈ P for i = N. (7.7)

Thus, for eacht ∈ N only one predicate is satisfied. Lets ∈ Pω be a string and
denote bys(t) |= φ that strings satisfies formulaφ at timet, if formula φ holds
at timet along trajectorys. For anyp ∈ P, LTL formulasφ1, φ2 andt ∈ N the
satisfaction relation|= is defined as follows.

• s(t) |= p if p = s(t),

• s(t) |= ¬p if p 6= s(t),

• s(t) |= φ1 ∧ φ2 if s(t) |= φ1 ands(t) |= φ2,

• s(t) |= ◦φ1 if s(t + 1) |= φ1,

• s(t) |= φ1Uφ2 if there existst′ ≥ t such that for allk, t ≤ k ≤ t′,
s(k) |= φ1 ands(t′) |= φ2,

Finally, a sequences satisfies formulaφ if s(0) |= φ.
When a LTL formulaφ is interpreted over an observed sequence inLω(TP

Σ)
and each predicatep ∈ P corresponds to a subset of observation-spaceRm,
the LTL formulaφ defines how trajectories of linear control systemΣ interact
with these sets. This is a convenient and formal way of expressing control re-
quirements for discrete-time linear control systems. If every string inLω(TP

Σ)

7.4 Büchi Automata 83

satisfies formulaφ then the transition systemTP
Σ satisfiesφ, denoted by

TP
Σ |= φ. (7.8)

A similar notation is used for transition systemTP ′

Σ even though predicates in
LTL formula φ do not correspond to sets in the finite partitionP ′ of state-space
Rn. When for everyr ∈ Lω(TP ′

Σ), whereπP ′P(r) |= φ we say that

TP ′

Σ |= φ. (7.9)

7.4 Büchi Automata

To fit with the framework proposed in [Tabuada and Pappas, 2006] the translation
of LTL formulaφ into a Büchi automatonAφ is required. Given any requirement
specification formulated as a LTL formulaφ it is possible to construct a Büchi
automatonAφ accepting every string satisfyingφ [Büchi, 1962]. The rationale
for choosing alanguage equivalencetranslation is that language equivalence
preserves properties expressible in LTL.

DEFINITION 7.1 (BÜCHI AUTOMATON) A Büchi automaton is defined as

A = (TA, F) = ((Q, Q0,−→, O,Υ), F),

whereTA = (Q, Q0,−→, O,Υ) is a finite transition system (See Definition 3.4)
andF ⊆ Q is a set of accepting states.

A Büchi automaton can be seen as a transition system extended with a mech-
anism for describing the behavior of strings at infinity. Thus, every Büchi
automatonA necessarily carries an underlying transition system structureTA.
Thus, Büchi automata defines generated languages andω-languages (See Defin-
ition 3.8).

Let Qω denote the set of all infinite strings obtained by concatenating ele-
ments inQ. A strings ∈ Qω is a run ofA if s(1) ∈ Q0, s(i) −→ s(i + 1) for
i ∈ N and there exists infinitely manyi ∈ N such thats(i) ∈ F . The language
accepted by Büchi automatonA is defined as follows.

DEFINITION 7.2 (ACCEPTED L ANGUAGE) Let A = (Q, Q0,−→, O,Υ, F)
be a Büchi automaton. The language accepted byA is defined as

Lω = {r ∈ Qω | r = Υ(s) for some initialized runs of A} . (7.10)

84 Robot Controller Synthesis

ChoosingF = Q we have

Lω(A) = Lω(TA) = Lω(T) (7.11)

Tools to automatically translate a LTL formulaφ into a Büchi automaton exists.
For further details on the translation from LTL formulaφ into Büchi automaton
the reader is referred to [Wolper, 2000].

7.5 Abstraction

In this section it is shown that finite abstractions of a discrete-time controllable
linear control systemsΣ can be obtained if the linear control systems satisfy
certain simple controllability assumptions and by forming a finite partition of
observation-spaceRm of linear control systemΣ. The finite abstraction of linear
control systemΣ is required for controller synthesis.

7.5.1 Linear Control Systems

Lets assume that a discrete-time (time-invariant) controllable linear control sys-
tem is obtained from nonlinear systemΣ∗ as

Σ : x(t + 1) = Ax(t) + Bu(t), (7.12)

where the system matricesA ∈ Rn×n andB ∈ Rn×m are generally constant
and state variablex ∈ Rn and control variableu ∈ Rm are discrete. In the
following x is referred to as the state of the system andu as the input to the
system. Further,Rn is referred to as the state-space (or set of states) of the
system andRm as the observation-space (or set of observations) of the system.
n denotes the dimension of the system whereasm denotes the dimension of the
input-space.

Brunovsky Normal Form

The Brunovsky normal form is a special form of a linear control systemΣ, where
the pair of matrices(A, B) ∈ Rn×n × Rn×m have a special structure.

DEFINITION 7.3 (CONTROLLABILITY I NDICES) Let Σ be a linear control
system as defined in Eq. (7.12). The sequence of positive integersκ =

7.5 Abstraction 85

(κ1, κ2, . . . , κm), whererankB = m are called the controllability indices of
the system satisfying

κ1 ≥ κ2 ≥ . . . ≥ κm,

such that

κ1 + κ2 + . . . + κm = n.

DEFINITION 7.4 (BRUNOVSKY NORMAL FORM [SONTAG , 1998]) Let Σ
be a linear control system as defined in Eq. (7.12). Letκ = (κ1, κ2, . . . , κm) be
a sequence of controllability indices. The system is in Brunovsky normal form if
A andB are of the following form

A =








Aκ1
0 . . . 0

0 Aκ2
. . . 0

...
...

. . .
...

0 0 . . . Aκm








, B =








bκ1
0 . . . 0 0 . . . 0

0 bκ2
. . . 0 0 . . . 0

...
...

. . .
...

...
. ..

...
0 0 . . . bκm 0 . . . 0








,

where each blockAκi ∈ Rκi×κi andbκi ∈ Rκi for i = 1, . . . , m are of the form

Aκi =










0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0










, bκi =










0
0
...
0
1










.

86 Robot Controller Synthesis

The Brunovsky normal formΣκ of a controllable linear control systemΣ with
controllability indicesκ = (κ1, . . . , κm) is given by

Σκ :







x1(t + 1) = x2(t)

x2(t + 1) = x3(t)
...

xκ1
(t + 1) = u1(t)

xκ1+1(t + 1) = xκ1+2(t)

xκ1+2(t + 1) = xκ1+3(t)
...

xκ1+κ2
(t + 1) = u2(t)

...

xκ1+...+κm−1+1(t + 1) = xκ1+...+κm−1+2(t)

xκ1+...+κm−1+2(t + 1) = xκ1+...+κm−1+3(t)
...

xκ1+...+κm(t + 1) = um(t)

(7.13)

Any controllable linear control systemΣ can be effectively transformed to
Brunovsky normal formΣκ by feedback and a change of state and input co-
ordinates as asserted in the following result.

PROPOSITION 7.1 [Brunovsky, 1970] For every controllable linear control
systemΣ there exists a sequence of controllability indicesκ = (κ1, κ2, . . . , κm),
invertible linear transformationsH ∈ Rn×n andV ∈ Rm×m, and linear trans-
formationF ∈ Rm×n such that the pair(Aκ, Bκ) =

(
H(A + BF)H−1, HBV

)

is in Brunovsky normal formΣκ.

The system in Brunovsky normal formΣκ with statexκ ∈ Rn and input
uκ ∈ Rm is related to linear control systemΣ by an invertible state/input trans-
formation matrix (isomorphism) U : Rn × Rm → Rn × Rm, that is

[
xκ

uκ

]

= U

[
x
u

]

=

[
H On×m

F V

] [
x
u

]

. (7.14)

The computation of the state/input transformation matrixU is outlined in Algo-
rithm 1 and described in detail in Appendix B.

7.5 Abstraction 87

Algorithm 1 State/input transformation
Input: Linear control systemΣ with matricesA ∈ Rn×n andB ∈ Rn×m

Output: State/input transformationU =

[
H On×m

F V

]

∈ R(n+m)×(n+m)

1: Chooseκ = (κ1, κ2, . . . , κm) such thatκ1 ≥ κ2 ≥ . . . ≥ κm andκ1 + κ2 + . . . +
κm = n, whererankB = m

2: C = [b1 . . . bm Ab1 . . . Abm A2b1 . . . A2bm . . . An−1b1 . . . An−1bm]
3: C̄ = [b1 Ab1 A2b1 . . . Aκ1−1b1 b2 Ab2 A2b2 . . . Aκ2−1b2 . . .

bm Abm A2bm . . . Aκm−1bm]
4: for i = 1 : m do
5: σi = Σm

i=1κi

6: di = C̄−1(σi, :)
7: end for
8: H =

[
d1 d1A . . . d1A

κ1−1 . . . dm dmA . . . dmAκm−1
]T

9: Ac = HAH−1

10: Bc = HB

11: Am =
[
Ac(σ1, :) . . . Ac(σm, :)

]T

12: Bm =
[
Bc(σ1, :) . . . Bc(σm, :)

]T

13: F = B−1
m AmH

14: V = B−1
m

In order for Algorithm 1 to be defined we require thatrank C = n and
rankB = m. The matrixH is called asimilarity transformation[Sontag, 1998].

7.5.2 Control Abstract Embedding

Discrete-time linear control systems are naturally embedded in the class of tran-
sition systems with observations. The dynamics of discrete-time linear control
systems are close to transition systems due to the existence of an atomic time
step. Different embeddings of both continuous and discrete-time linear systems
can be found in [Pappas, 2003]. In the context of controller synthesis, acontrol
abstract embeddingis desirable. The transition system associated with linear
control systemΣ in Eq. (7.12) is defined as (See Definition 3.4)

TΣ = (Rn, Rn,−→, O,Υ) ,

where

• Rn is the set of states,

88 Robot Controller Synthesis

• Rn is the set of initial states,

• −→⊆ Rn × Rn is the transition relation defined byx −→ x′, if there
exists an inputu ∈ Rm such thatx′ = Ax + Bu,

• O is the set of observations,

• Υ : Rn → O is the observation map defined byΥ(x) ∈ O.

Note that the set of observationsO and observation mapΥ are unspecified. They
will be defined when a finite bisimilar quotient of transition systemTΣ is con-
structed. The embedding ofΣ in TΣ is control abstractin the sense that the input
value required to perform a transitionx −→ x′ is not explicitly captured by the
transition system. However, the value of the input can be recovered fromthe pair
(x, x′) by solvingx′ = Ax + Bu for the inputu ∈ Rm.

The following two assumptions must be satisfied to obtain a finite bisimilar
quotient of linear control systemΣ.

Assumption I (Controllability) The linear control systemΣ is controllable if
the columns of the controllability matrixC ∈ Rn×mn

C =
[
b1 . . . bm Ab1 . . . Abm A2b1 . . . A2bm . . .

An−1b1 . . . An−1bm

]
, (7.15)

are linearly independent (matrixC has full row rank), i.e.rank C = n. If
the system is controllable then any state is reachable from any initial state,
giving the system proper inputs through the variableu(t).

Assumption II (Independent Inputs) A linear control systemΣ hasm inde-
pendent inputs if the columns of matrixB are linearly independent (ma-
trix B has full column rank), i.e.rankB = m.

If Assumption I is satisfied it allows a decomposition of the state-spaceRn of Σ.
If the m columns of matrixB are not linearly independent (rankB = s < m),
then the same input action to the system can be accomplished with onlys inputs,
instead ofm inputs, and hence there is a redundancy of inputs to the system.
However, without loss of generality linearly dependent columns of matrixB
can always be removed without destroying essential properties ofΣ, in order to
satisfy Assumption II.

The decomposition of state-spaceRn results in a new controllability matrix
for the system.

7.5 Abstraction 89

PROPOSITION 7.2 [Antsaklis and Michel, 1997]Let Σ be a linear control
system satisfying Assumptions I and II. Then, there exists a sequence ofcontrol-
lability indicesκ = (κ1, κ2, . . . , κm) satisfying

span
{

b1, . . . , bm, Ab1, . . . , Abm, A2b1, . . . , A
2bm, . . . ,

An−1b1, . . . , A
n−1bm

}

= (7.16)

span
{

b1, Ab1, A
2b1, . . . , A

κ1−1b1, b2, Ab2, A
2b2, . . . , A

κ2−1b2, . . . ,

bm, Abm, A2bm, . . . , Aκm−1bm

}

, (7.17)

where columnAκibi is linearly dependent on the previous ones, i.e. the vectors
to the left ofAκibi.

The decomposition of state-spaceRn for linear control systemΣ according to
controllability indicesκ = (κ1, κ2, . . . , κm) results in a new controllability ma-
trix C̄ ∈ Rn×n

C̄ =
[

b1 Ab1 A2b1 . . . Aκ1−1b1 b2 Ab2 A2b2 . . . Aκ2−1b2 . . .

bm Abm A2bm . . . Aκm−1bm

]

, (7.18)

for the system. To obtain̄C see Appendix B. Using the sequence of controllabil-
ity indicesκ = (κ1, κ2, . . . , κm) we can introduce the subspaceV ∼= Rn−m of
state-spaceRn defined by

V ∼= span
{

b1, . . . , A
κ1−2b1, b2, . . . , A

κ2−2b2, . . . , bm, . . . , Aκm−2bm

}

.

(7.19)

SubspaceV induces the observation map

Υ : Rn → Rn/V ∼= Rm, (7.20)

which is defined as the natural projection from state-spaceRn to the quotient
spaceRn/V ∼= Rm. Thus, observation mapΥ maps a vectorx ∈ Rn into its
equivalence class inRn/V which is identified with an observationy ∈ Rm. The
introduction of observation mapΥ motivates the definition of transition system
TΣ with observation-spaceRm.

90 Robot Controller Synthesis

DEFINITION 7.5 LetΣ be a linear control system satisfying Assumptions I and
II. Transition systemTΣ associated withΣ is defined by

TΣ = (Rn, Rn,−→, Rm, Υ). (7.21)

The next step is to obtain a transition system, denoted byTP
Σ which has a finite

observation-space, denoted byP. Since linear control systems are considered, a
natural choice ofP for transition systemTP

Σ is a finite partition of observation-
spaceRm of transition systemTΣ. The change of the observation-spaceRm is
necessarily accompanied with a change of observation mapΥ. Transition system
TP

Σ with finite observation-spaceP is defined as

TP
Σ = (Rn, Rn,−→,P, πP ◦ Υ) , (7.22)

where

• P = {Pi}i∈I is a finite partition of observation-spaceRm satisfying
∪i∈IPi = Rm wherePi ∩ Pj = ∅ for i 6= j,

• πP ◦ Υ : Rn → P is the observations map defined byπP (Υ(x)) = P .

The partition of observation-spaceRm is represented by semi-linear sets.

DEFINITION 7.6 (SEMI -LINEAR SET) The class of semi-linear subsets ofRm

consists of finite unions, intersections and complements of the following elemen-
tary sets

{
x ∈ Rm | fTx + c ∼ 0

}
,

wheref ∈ Qm, c ∈ Q, and∼∈ {<,≤, =,≥, >}.

The next step is to obtain a transition systemTP ′

Σ where the observation-space is
identified with a finite refinement of state-spaceRn through the finite partitionP
of observation-spaceRm. LetP = {Pi}i∈I be a finite partition of observation-
spaceRm for transition systemTP

Σ , then we have that

P ′ = Υ−1(P)

= Υ−1 {Pi}i∈I , (7.23)

is a finite refinement of state-spaceRn sinceΥ−1 : Rm → Rn. Transition
systemTP ′

Σ with P ′ = Υ−1(P) being a finite refinement of state-spaceRn is
now defined as

TP ′

Σ =
(
Rn, Rn,−→,P ′, πP ′

)
, (7.24)

where

7.5 Abstraction 91

• P ′ = Υ−1(P) is a finite refinement of state-spaceRn,

• πP ′ : Rn → P ′ is the observation map defined byπP ′(x) = P ′.

Transition systemsTP
Σ andTP ′

Σ both admit finite abstractions in the form of finite
transition systems [Tabuada and Pappas, 2006]. The finite bisimilar quotientof
transition systemTP ′

Σ with respect to equivalence relation∼⊆ Rn×Rn is defined
as

TP ′

/∼ =
(

Q/∼, Q0
/∼,−→/∼, O,Υ/∼

)

, (7.25)

where

• Q/∼ = {S ⊆ Rn | S is an equivalence class of∼} is the set of states,

• Q0
/∼ = Q/∼ is the set of initial states,

• −→/∼⊆ Q/∼ × Q/∼ is the transition relation defined byS −→/∼ S′ if

there existsx ∈ S andx′ ∈ S′ such thatx −→ x′ in TP ′

Σ ,

• O = P ′ is the set of observations, whereP ′ is a finite refinement of state-
space partitionΥ−1(P),

• Υ/∼ : Q/∼ → O is the observation map such thatΥ/∼(S) = Υ(x) for
somex ∈ S.

The finite bisimilar quotient of transition systemTP
Σ is defined in a similar way.

The intermediate steps in the abstraction of linear control systemΣ to obtain a
finite bisimilar quotientTP ′

/∼ are shown in Figure 7.5.2.
Let Σκ be the discrete-time linear control system in Brunovsky normal

form obtained fromΣ through an invertible state/input transformationU (See
Eq. (7.14)). For any finite partitionP of observation-spaceRm of transition sys-
temTΣ there exists a finite refinementQ of state-space partitionΥ−1(P) making
the quotientTQ

/∼ of TΣ with respect toQ a finite bisimilar quotient if there exists

a finite refinementQκ of state-space partitionΥ−1
κ (H(P)) making the quotient

TQκ

/∼ of TΣκ with respect toQκ a finite bisimilar quotient. This is shown in the
commutative diagram in Figure 7.5.2.

In view of Figure 7.5.2 we can assume, without loss of generality, thatΣ
is in Brunovsky normal form since any controllable linear system can be trans-
formed into this form by a change of coordinates and an invertible feedback (See

92 Robot Controller Synthesis

Quotient Transition
SystemTP′

/∼

Transition System

TP′

Σ

Transition System

TP
Σ

Transition System

TΣ

Linear Control
SystemΣ

Bisimulation

Bisimulation

Bisimulation

Embedding

(a) Relationship between transition
systems associated with linear con-
trol systemΣ.

Q/∼

Υ/∼
O

Refinement

R
n

πP′

P ′

Υ−1

R
n

πP ◦ Υ
P

πP

R
n

Υ
R

m

R
n

R
m

(b) Corresponding state and observa-
tion spaces.

Figure 7.3:Intermediate steps to a finite bisimilar quotientTP ′

/∼.

7.5 Abstraction 93

Υ−1

P

πP

R
m

H
H(P)

Υ−1(P)
H

Υ−1
κ (H(P))

Refinement Refinement

Υ−1
κ

Qκ

H
Q

Figure 7.4:Finite refinementsQ andQκ of Υ−1(P) andΥ−1
κ (H(P)).

Eq. (7.14)). For a linear control system in Brunovsky normal form the observa-
tion map is of the form

Υ = φ ◦ π, (7.26)

whereπ : Rn → Rm is a projection map such that

π(x) =








x1

xκ1+1
...

xκ1+...+κm−1+1








, (7.27)

andφ : Rm → Rm is an arbitrary linear isomorphism.

94 Robot Controller Synthesis

7.5.3 Bisimulation Algorithm

In the previous section the existence of finite bisimilar quotient transitions sys-
tems for linear control systems satisfying certain assumptions was established.
The following well known bisimulation algorithm can be used to compute the
coarsest possible bisimulation [Bouajjani et al., 1990] provided that every set
operation is effectively computable1.

Algorithm 2 Bisimulation Algorithm
Input: Initial partitionP ′ = Υ−1(P) of state-spaceRn of transition systemTΣ

Output: Coarsest refinementP ′ of state-spaceRn

1: while ∃P, P ′ ∈ P ′ such that∅ 6= P ∩ Pre(P ′) 6= P do
2: P1 = P ∩ Pre(P ′)
3: P2 = P ∩ Pre(P ′)
4: P ′ = (P ′ \ {P}) ∪ {P1, P2}
5: end while

Computing the coarsest bisimulation results in maximum complexity reduc-
tion. The input to the bisimulation algorithm (Algorithm 2) is transition system
TΣ associated with linear control systemΣ and an initial partitionP ′ = Υ−1(P)
of state-spaceRn. The initial partitionP ′ is based on the finite partitionP of
observation-spaceRm of transition systemTΣ. Algorithm 2 terminates with the
coarsest refinementP ′ such thatTP ′

/∼ is a finite bisimilar quotient of transition
systemTΣ. The termination of Algorithm 2 is ensured by the controllability of
linear control systemΣ associated with transition systemTΣ.

7.6 Controller Synthesis

The existence of finite bisimilar quotients (bisimulations) for linear control sys-
tems enables the design of controllers enforcing a given LTL specificationat a
discrete level. The concept of parallel composition with observation synchro-
nization of transition systems is used to model the interconnection of the con-
troller and the system to be controlled, i.e. the finite bisimilar quotientTP ′

/∼ of
linear control systemΣ. In the following the steps involved in controller synthe-
sis are described.

1There exists an algorithm that is able to perform the set operations

7.6 Controller Synthesis 95

To satisfy a given LTL specificationφ the controllerTc is required to restrict
the behavior of the linear control system. The notion of parallel composition
with observation synchronization of transition systems is employed. Thus, the
parallel composition with output synchronization of the controllerTc and the fi-
nite bisimilar quotientTP ′

/∼ of the linear control systemΣ are required to enforce
the specification.

The controllerTc is employed to restrict the behavior of transition system
TΣ such that a LTL specificationφ is enforced. The setup in controller synthesis
is shown in Figure 7.5.

Aφ Tc ‖O TP′

/∼
|= φ TP′

/∼

Controller Synthesis

Figure 7.5:Setup in controller synthesis.

The baseline for controller synthesis is a Büchi automatonAφ obtained from
a given LTL formulaφ and a finite bisimilar quotientTP ′

/∼ of linear control system
Σ.

The idea is to synthesize a controllerTc that can restrict the behavior ofTΣ

such that a given LTL formulaφ is satisfied. Recall that since transition systems
TΣ andTP ′

/∼ are bisimilar, i.e. TΣ
∼= TP ′

/∼, then controllerTc synthesized for

TP ′

/∼ will equivalently work forTΣ (See Proposition 4.3 in [Tabuada and Pappas,
2006]).

Let P be a finite partition of observation-spaceRm of transition systemTΣ

and letP ′ be a finite refinement of state-space partitionΥ−1(P). Then, there
exists a finite controllerTc satisfying

Tc ‖O TP ′

Σ |= φ,

if there exists a controllerTc satisfying

Tc ‖O TP ′

/∼ |= φ.

Further,TP ′

Σ
∼= TP ′

/∼ implies thatTc ‖O TP ′

Σ
∼= Tc ‖O TP ′

/∼. Thus, the parallel

composition ofTc andTP ′

/∼ makes the controllerTc restrict the behavior of tran-

sition systemTP ′

Σ . Working withTP ′

Σ is preferable since the observation-space

96 Robot Controller Synthesis

P ′ of TP ′

Σ offers more detailed information regarding the dynamics of transition
systemTΣ than the observation-spaceP of transition systemTP

Σ . Recall thatP
is a finite partition of observation-spaceRm whereasP ′ = Υ−1(P) is a finite
refinement of state-spaceRn.

Recall that for any LTL formulaφ it is always possible to construct a Büchi
automatonAφ recognizing every string satisfyingφ. Given a finite bisimilar
quotientTP ′

/∼ it is possible to construct a Büchi automatonAP ′

/∼ satisfying

Lω

(

AP ′

/∼

)

= Lω

(

TP ′

/∼

)

. (7.28)

Now, a Büchi automaton controllerAc is constructed that satisfy

πP ′P









Lω(Ac) ∩ Lω

(

AP ′

/∼

)

︸ ︷︷ ︸

Lω

�
Ac ‖O AP′

/∼

� 







⊆ Lω(Aφ), (7.29)

whereπP ′P : P ′ → P is a projection map which maps every elementP ′ ∈ P ′

to an unique elementπP ′P(P ′) = P such thatP ′ ⊆ P . In the following we
assume that a Büchi automaton controllerAc exists and can be modeled by a
transition systemTc satisfying

Lω(Tc) ∩ Lω

(

AP ′

/∼

)

= Lω(Ac) ∩ Lω

(

AP ′

/∼

)

. (7.30)

For any Büchi automaton controllerAc enforcing a given LTL formulaφ there
exists a finite controllerTc satisfying

Lω

(

Tc ‖O TP ′

/∼

)

= Lω(Tc) ∩ Lω

(

TP ′

/∼

)

= Lω(Ac) ∩ Lω

(

AP ′

/∼

)

. (7.31)

The parallel composition of the controllerTc and the finite bisimilar quotient
TP ′

/∼ with observation synchronization is given by (See Definition 3.7)

7.7 Refinement 97

Tc ‖O TP ′

/∼ =
(

Q‖, Q
0
‖,−→‖, O,Υ‖

)

, (7.32)

where

• Q‖ =
{
(qc, S) ∈ Qc × Q/∼ | Υc(qc) = Υ/∼(S)

}
is a set of states,

• Q0
‖ =

{

(qc, S) ∈ Q0
c × Q0

/∼ | Υc(qc) = Υ/∼(S)
}

is a set of initial states,

• −→‖⊆ Q‖ × Q‖ is a transition relation defined by(qc, S) −→‖ (q′c, S
′)

for (qc, S), (q′c, S
′) ∈ Q‖ if qc −→c q′c in Tc andS −→/∼ S′ in TP ′

/∼,

• O ⊆ P ′ is a set of observations,

• Υ‖ : Q‖ → O is an observation map defined byΥ‖(qc, S) = Υc(qc) =
Υ/∼(S).

A state ofTc ‖O TP ′

/∼ will be denoted byq‖ = (qc, S) ∈ Qc × Q/∼. Note that
O is a subset of the finite refinementP ′ of state-spaceRn of transition system
TP ′

Σ since the controllerTc may restrict some transitions in the finite bisimilar
quotientTP ′

/∼.

7.7 Refinement

In the previous section a finite controllerTc for the finite bisimilar quotientTP ′

/∼,
enforcing a given LTL formulaφ was synthesized. In this section the continuous
inputs will be extracted fromTc that is required to enforce a LTL formulaφ on
the linear control systemΣ. The explicit modeling of the control inputs available
to linear control systemΣ will result in a closed-loop hybrid system. The result-
ing closed-loop hybrid system is guaranteed to enforce the requirement spec-
ification in LTL by construction. This motivates the definition of discrete-time
linear hybrid systemH [Tabuada and Pappas, 2006] and the associated transition
systemTH .

DEFINITION 7.7 (DISCRETE-TIME L INEAR HYBRID SYSTEM) A discrete-
time linear hybrid system is defined as

H =
(

X, X0, {Aq, Bq}q∈Q , δ,U
)

, (7.33)

where

98 Robot Controller Synthesis

• X = ∐q∈QRnq is the state-space whereQ is a finite set of discrete states
andnq ∈ N for each discrete stateq ∈ Q,

• X0 ⊆ X is a set of initial states,

• {Aq, Bq}q∈Q is the continuous dynamics where for each discrete state
q ∈ Q, the pair (Aq, Bq) ∈ Rnq×nq × Rnq×mq defines a discrete-time
linear control systemx(t + 1) = Aqx(t) + Bqu(t) with inputs restricted
to a setU (q(t), x(t)) ⊆ Rmq ,

• δ : Q×Rnq → 2Q is the discrete dynamics which assigns to each discrete
stateq ∈ Q and continuous statex ∈ Rnq the discrete successor states
δ (q(t), x(t)) ⊆ Q.

State-spaceX is the disjoint union of the underlaying setsRnq , denoted by the
coproduct∐. Note that the definition of linear hybrid systemH allows to have
different continuous dynamicsx(t + 1) = Aqx(t) + Bqu(t) for each discrete
stateq ∈ Q.

The discrete-time linear hybrid systemH can also be embedded in the class
of transition systems with observations. The embedding of linear hybrid system
H in the class of transition systems with observations will allow the definition
of correct implementation. Assuming the continuous dynamics of linear hybrid
systemH to be controllable the transition system associated with linear hybrid
systemH is

TH =
(
X, X0,−→H , O,Υ

)
, (7.34)

where

• −→H⊆ (Q × Rnq) × (Q × Rnq) is a transition relation defined by
(q, x) −→H (q′, x′) if x′ = Aqx+Bqu with q′ ∈ δ(q, x) andu ∈ U(q, x),

• O = ∐q∈QOq is a set of observations,

• Υ : Q × Rnq → O such thatΥ(q, x) = Υq(x) ∈ O.

State-spaceX and the set of initial statesX0 are inherited from linear hybrid
systemH. The pair(q, x) ∈ Q × Rnq is the hybrid state of transition system
TH associated with linear hybrid systemH. Oq andΥq are the observation-
space and observation map associated with linear control systemx(t + 1) =

7.7 Refinement 99

Aqx(t) + Bqu(t) defined by the pair(Aq, Bq) for each discrete stateq ∈ Q,
respectively.

A linear hybrid systemH is said to be a correct hybrid implementation of
the closed-loop behaviorTc ‖O TP ′

Σ if Tc ‖O TP ′

Σ satisfies the transition system
TH associated with linear hybrid systemH. i.e. Tc ‖O TP ′

Σ |= TH . The desired
closed loop behaviorTc ‖O TP ′

Σ is the parallel composition of controllerTc and
transition systemTP ′

Σ .
A correct hybrid implementation in the form of a linear hybrid systemH of

the desired closed loop behaviorTc ‖O TP ′

Σ (Defined in Eq. (7.32)) is obtained
from

Tc ‖O TP ′

Σ =
(

Q‖, Q
0
‖,−→‖, O,Υ‖

)

, (7.35)

by defining the linear hybrid system as

H =
(
X, X0, {Aq, Bq}q∈Q, δ,U

)
, (7.36)

where

• X = Q‖ is the set of states,

• X0 = Q0
‖ is the set of initial states,

• Aq = A ∈ Rn×n, Bq = B ∈ Rn×m are the matrices of linear control
systemΣ : x′ = Aqx + Bqu,

• δ : Q‖ × Rn → 2Q‖ is the discrete dynamics whereδ(q‖, x) =
{

q′‖ ∈ Q‖ | q‖ −→‖ q′‖

}

,

• U(q‖, x) =
{
u ∈ Rm | πP ′(Ax + Bu) ∈ Υ‖

(
δ
(
q‖, x

))}
is the input set.

Linear hybrid systemH is a control system in the sense that at every discrete
stateq‖ ∈ Q‖ different future evolutions are possible under the action of different
input values.

7.7.1 Determining the Input Sets

Linear hybrid systemH already has all the information except the continuous
inputs to be sent to linear control systemΣ. Thus, all that is left to do to obtain

100 Robot Controller Synthesis

linear hybrid systemH is to compute these input sets for each discrete state
q‖ ∈ Q‖.

The semi-linear description of the setsq‖ ∈ Q‖ induces a semi-linear de-
scription of the set of continuous inputsU(q‖, x) enabling transitions in the lin-
ear control systemΣ corresponding to transitions in the finite bisimilar quotient
TP ′

/∼.
The discrete transitions in linear hybrid systemH are given byδ : Q‖ ×

Rn → 2Q‖ . Now, recall that a transitionq‖ −→‖ q′‖ in Tc ‖O TP ′

/∼ corresponds to
a pair of transitionsqc −→c q′c in the controllerTc andS −→/∼ S′ in the finite

bisimilar quotientTP ′

/∼, respectively. Thus, from the transitions inTc ‖O TP ′

/∼ we

can determine which transitions inTP ′

/∼ are allowed by the controllerTc. Lets
denote byπ‖ : Q‖ → Q/∼ the projection map recoveringS ∈ Q/∼ from
q‖ = (qc, S) ∈ Qc × Q/∼ such that

π‖

(
q‖

)
= S. (7.37)

Having determined which transitions inTP ′

/∼ are allowed byTc the input set
U(q‖, x) can be determined for each discrete stateq‖ ∈ Q‖. From the transi-
tion S −→/∼ S′ and bisimilarity between bisimilar quotient transition system

TP ′

/∼ and transition systemTΣ it follows that for any continuous statex ∈ S the
following is satisfied

x −→Σ x′ ∈ S′. (7.38)

This is equivalent to the existence of an inputu ∈ Rm such thatx′ = Ax + Bu,
wherex′ ∈ S′. From the definition ofS′ ∈ Q/∼ and linear control systemΣ the
input setU(q‖, x) in discrete stateq‖ ∈ Q‖ is defined by

U(q‖, x) =
{
u ∈ Rm | πP ′ (Ax + Bu) ∈ Υ‖

(
δ
(
q‖, x

))}
, (7.39)

whereπP ′ : Rn → P ′ is an observation map such that

πP ′(Ax + Bu) = P ′, (7.40)

wherex′ = Ax+Bu. ObservationP ′ belongs toΥ‖

(
δ
(
q‖, x

))
, whereδ : Q‖×

Rn → 2Q‖ defines the discrete dynamics such that

δ(q‖, x) =
{

q′‖ ∈ Q‖ | q‖ −→‖ q′‖

}

. (7.41)

7.8 Software Implementation of Linear Hybrid System 101

7.8 Software Implementation of Linear Hy-
brid System

Linear hybrid systemH =
(

Q‖, Q
0
‖, (A, B), δ,U

)

defined in Eq. (7.36) can be

seen as an abstract description of the embedded software required forits imple-
mentation.

The continuous elements of linear hybrid systemH is a linear control system
Σκ defined by the pair(Aκ, Bκ) which is assumed to be in Brunovsky normal
form and the input setsU(q‖,1, xκ), . . . ,U(q‖,i, xκ) for i = 1, . . . , |Q‖|. The
discrete elements ofH are the set of statesQ‖, set of initial statesQ0

‖, and

δ : Q‖ × Rn → 2Q‖ defining the discrete dynamics.
The software implementation of linear hybrid systemH in SIMULINK and

STATEFLOW is shown in Figure 7.6.

Q‖, Q0
‖
, δ

Tr
an

si
tio

n
S

ys
te

m

STATEFLOW

C
on

tin
uo

us

SIMULINK

U(q‖,1, xκ)

...
U(q‖,i, xκ)

Linear Control
SystemΣκ

q‖

xκuκ

Continuous elements ofH

Input sets

Discrete elements ofH

Figure 7.6: Software implementation of linear hybrid systemH in
SIMULINK andSTATEFLOW.

Transition system defined by(Q‖, Q
0
‖, δ) starts in initial discrete stateq0 ∈

Q0
‖ determined by initial continuous statexκ,0 ∈ Rn. Recall, that for discrete

stateq‖,i ∈ Q‖ for i = 1, . . . , |Q‖| an input setU(q‖,i, xκ) has been determined.

102 Robot Controller Synthesis

This means that if transition system (Q‖, Q0
‖, δ) is in discrete stateq‖,2 ∈ Q‖

then input setU(q‖,2, xκ) is chosen. Thus, in discrete stateq‖,i ∈ Q‖ the input
uκ to linear control systemΣκ has to be chosen such thatuκ ∈ U(q‖,i, xκ).
If transition system (Q‖, Q0

‖, δ) takes a transitionq‖,2 −→‖ q‖,1 then input
setU(q‖,1, xκ) is chosen. This will generate a new inputuκ ∈ U(q‖,1, xκ) to
linear control systemΣκ and the continuous statexκ changes according tox′

κ =
Aκxκ + Bκuκ which then becomes the new input to transition system (Q‖, Q0

‖,
δ).

Recall that linear control systemΣκ in Brunovsky normal form and linear
control systemΣ is related by the isomorphismU , defined in Eq. (7.14), that is

[
x
u

]

= U−1

[
xκ

uκ

]

=

[
H−1 0n×m

−V −1FH−1 V −1

] [
xκ

uκ

]

. (7.42)

This allows linear control system in Brunovsky normal formΣκ from Figure 7.6
to be replaced withΣ as shown in Figure 7.7.

7.9 Summary

In this chapter a framework for controller synthesis for linear control systems
with respect to formal requirement specification in Linear-time Temporal Logic
(LTL) was presented. However, in order to fit with the problem of synthesiz-
ing a controller for a mobile robot, given a requirement specification in LTL,
some modifications of the framework originally developed by Tabuada and Pap-
pas [Tabuada and Pappas, 2006] were required (See steps 1,2, and8 in the be-
ginning of this chapter). Finally, the software implementation of linear hybrid
systemH in SIMULINK and STATEFLOW was presented.

7.9 Summary 103

Q‖, Q0
‖
, δ

Tr
an

si
tio

n
S

ys
te

m

STATEFLOW

C
on

tin
uo

us

SIMULINK

U(q‖,1, xκ)

...
U(q‖,i, xκ)

Linear Control
SystemΣκ

q‖

xκuκ

Continuous elements ofH

Input sets

Discrete elements ofH

uκ

V −1

+
Σ

u Linear Control
SystemΣ

x
H

xκ

−V −1F

+

Figure 7.7: Software implementation of linear hybrid systemH in
SIMULINK and STATEFLOW where linear control systemΣκ is re-
placed byΣ.

Chapter 8

Case Study II : Robot Controller
Synthesis

In this chapter the framework for controller synthesis presented in the previous
chapter is applied to a simple model model of a nonholonomic wheeled mobile
robot, i.e. an unicycle. The requirement specification expressing the desired
behavior of the unicycle is formulated in Linear-time Temporal Logic (LTL). The
results of simulating the software implementation of the linear hybrid system are
presented. Finally, a conclusive discussion of the novel framework proposed is
given.

8.1 Modeling the Unicycle

The simplest model of a nonholonomic wheeled mobile robot is the unicy-
cle [Oriolo et al., 2002], i.e. a single upright wheel rolling on the plane, see
Figure 8.1.

The generalized coordinates for the unicycle is defined as

q =
[
p1 p2 θ

]T
∈ R2 × S1, (8.1)

where(p1, p2) ∈ R2 is the position (m) of the vehicle in theFw-frame andθ ∈
S1 is the orientation (rad) of the vehicle. The kinematic model of the unicycle is

105

106 Case Study II : Robot Controller Synthesis

Fw

p1

p2

θ

v

Figure 8.1:Unicycle.

of the formq̇ = G(q)w, that is

Σ∗ : q̇ =





cos θ
sin θ

0



 v +





0
0
1



ω,

=





cos θ 0
sin θ 0

0 1





[
v
ω

]

, (8.2)

where the inputsv ∈ R andω ∈ R are the linear velocity (m/s) and angular
velocity (rad/s), respectively. The constraint that the wheel cannot slip in the
lateral direction is expressed as

A(q)q̇ =
[
sin θ − cos θ

]
[
ṗ1

ṗ2

]

= 0. (8.3)

8.2 Dynamic Feedback Linearization

Define the linearizing output as

η =

[
p1

p2

]

. (8.4)

8.2 Dynamic Feedback Linearization 107

Differentiation ofη with respect to time yields

η̇ =

[
cos θ 0
sin θ 0

] [
v
ω

]

. (8.5)

This shows that only the linear velocityv affect η̇. Further, the angular velocity
ω can not be recovered from Eq. (8.5). Therefore, we need to have the linear
accelerationa as input to the system. Thus, we need to add an integrator on the
linear velocity inputv as shown in Figure 8.2.

ξ̇ = a

ω

1

s

v = ξ

Σ∗ : q̇ = G(q)w
η

Figure 8.2:System with modified input(a, ω) ∈ R × R.

The state of the integrator is denoted byξ ∈ R. The modified input to the
system then becomes(a, ω) ∈ R × R, wherea is the linear acceleration (m/s2)
of the unicycle. The introduction of the stateξ of the integrator allows Eq. (8.5)
to be rewritten as

η̇ = ξ

[
cos θ
sin θ

]

. (8.6)

Differentiation of Eq. (8.6) once more then yields

η̈ = ξ̇

[
cos θ
sin θ

]

+ ξθ̇

[
− sin θ
cos θ

]

=

[
cos θ −ξ sin θ
sin θ ξ cos θ

] [
a
ω

]

. (8.7)

The matrix multiplying the modified input(a, ω) is nonsingular forξ 6= 0. Under
the assumption thatξ 6= 0, we have from Eq. (8.7) that

[
a
ω

]

=

[
cos θ −ξ sin θ
sin θ ξ cos θ

]−1 [
ν1

ν2

]

=

[
cos θ sin θ

−1
ξ sin θ 1

ξ cos θ

] [
ν1

ν2

]

, (8.8)

108 Case Study II : Robot Controller Synthesis

where(ν1, ν2) ∈ R×R is input to the dynamic compensator. Inserting Eq. (8.8)
into Eq. (8.7) yields

η̈ =

[
ν1

ν2

]

, (8.9)

showing that the input appears. The resulting dynamic compensator is obtained
from Eq. (8.8) and has the form of Eq. (7.2), i.e.

ξ̇ =
[
cos θ sin θ

]
[
ν1

ν2

]

, (8.10)

[
v
ω

]

=

[
ξ
0

]

+
1

ξ

[
0 0

− sin θ cos θ

] [
ν1

ν2

]

. (8.11)

The system with dynamic compensator is shown in Figure 8.3.

ξ̇ = a

ω

1

s

v = ξ

Σ∗ :

q̇ = G(q)w

η

ξ̇ = cos θ sin θ
ν1

ν2

v
ω

=
ξ
0

+ 1

ξ

0 0

− sin θ cos θ
ν1

ν2

ν

θ

Figure 8.3:Nonlinear systemΣ∗ with dynamic compensator.

The dynamic compensator has a singularity atξ = 0, i.e. when the unicycle
is not rolling. We now apply the state transformationz = T (q, ξ) to obtain

z1 = p1, (8.12)

z2 = ṗ1 = ξ cos θ, (8.13)

z3 = p2, (8.14)

z4 = ṗ2 = ξ sin θ. (8.15)

8.2 Dynamic Feedback Linearization 109

Further, we have that

z̈1 = p̈1 = ξ̇ cos θ − ξθ̇ sin θ = a cos θ − ξω sin θ,

= ν1, (8.16)

z̈3 = p̈2 = ξ̇ sin θ + ξθ̇ cos θ = a sin θ + ξω cos θ,

= ν2. (8.17)

Thus, the closed-loop system is equivalent to a set of decoupled input-output
chains of integrators fromνi to ηi for i = 1, 2 as illustrated in Figure 8.4.

ν1
1

s

z2
1

s

η1

ν2
1

s

z4
1

s

η2

Figure 8.4:Decoupled input-output chains of integrators.

Defining the state asz =
[
z1 z2 z3 z4

]T
∈ R4 the following

continuous-time linear control system is obtained

Σz : ż(t) = Azz(t) + Bzν(t), (8.18)

where matricesAz ∈ R4×4 andBz ∈ R4×2 are given as

Az =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







, Bz =







0 0
1 0
0 0
0 1







. (8.19)

The system in Eq. (8.18) is controllable since the controllability matrix has full
rank. The discrete equivalent1, i.e. discrete-time linear control system is ob-
tained as

Σ : x(t + 1) = Ax(t) + Bu(t), (8.20)

1Using ZOH method with a sample time ofTs = 1s.

110 Case Study II : Robot Controller Synthesis

where matricesA ∈ R4×4 andB ∈ R4×2 are given as

A =







1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1







, B =







1
2 0
1 0
0 1

2
0 1







. (8.21)

Choosing the controllability indices2 asκ = (2, 2) allows to find invertible linear
transformationsH ∈ Rn×n andV ∈ Rm×m, and linear transformationF ∈
Rm×n such that the pair(Aκ, Bκ) ∈ R4×4 × R4×2 given as

Aκ = H(A − BF)H−1 =







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1







, Bκ = HBV =







0 0
1 0
0 0
0 1







,

(8.22)

of linear control system

Σκ : xκ(t + 1) = Aκxκ(t) + Bκuκ(t), (8.23)

are in Brunovsky normal form. The system in Brunovsky normal form is re-
lated to linear control systemΣ by an invertible state/input transformation matrix
U : Rn × Rm → Rn × Rm that is computed using Algorithm 1, that is

[
xκ

uκ

]

= U

[
x
u

]

=






















1 −1
2 0 0

1 1
2 0 0

0 0 1 −1
2

0 0 1 1
2







︸ ︷︷ ︸

H

04×2

(
1 3

2 0 0
0 0 1 3

2

)

︸ ︷︷ ︸

F

(
1 0
0 1

)

︸ ︷︷ ︸

V
















[
x
u

]

. (8.24)

The controllability indicesκ = (2, 2) leads to subspaceV ∼= R2 of state-space
R4 defined by

V ∼= span{bκ,1, bκ,2} = span













0
1
0
0







,







0
0
0
1













. (8.25)

2Note that controllability indicesκ = (3, 1) would equivalently work.

8.3 Requirement Specification 111

The observation-space is given by

R2 ∼= R4/V = R4/ span













0
1
0
0







,







0
0
0
1













= span













1
0
0
0







,







0
0
1
0













. (8.26)

SubspaceV induces the observation mapΥΣκ : R4 → R4/ span{bκ,1, bκ,2}.
Thus, the observationyκ ∈ R2 is given by

[
yκ,1

yκ,2

]

=

[
1 0 0 0
0 0 1 0

]







xκ,1

xκ,2

xκ,3

xκ,4







. (8.27)

Transition systemTΣκ associated with linear control systemΣκ is defined by

TΣκ = (R4, R4,−→, R2, ΥΣκ), (8.28)

where,

• −→⊆ R4×R4 is a transition relation defined byxκ −→ x′
κ if there exists

an inputuκ ∈ R2 such thatx′
κ = Aκxκ + Bκuκ,

• ΥΣκ : R4 → R2 is an observation map defined byΥΣκ(xκ) = yκ.

8.3 Requirement Specification

In the following a simple requirement specification is formulated in LTL. For
simplicity lets assume that the unicycle starts at some initial position, given by
the observationyκ ∈ R2. The requirement is now to eventually bring the unicy-
cle, i.e. the observationyκ ∈ R2 to a set[yκ] ⊆ R2 defined by

[yκ] =

{

yκ ∈ R2 | −
1

2
≤ yκ,1 ≤

1

2
∧ −

1

2
≤ yκ,2 ≤

1

2

}

, (8.29)

within 3 time units and stay there for all future time. The set[yκ] representing
the desired goal position is shown in Figure 8.5. This requirement is captured in
the following LTL formula

φ = ♦3�S1, (8.30)

112 Case Study II : Robot Controller Synthesis

1 2−1−2

1

2

−1

−2

yκ,1

yκ,2

[yκ]

Figure 8.5:Desired goal position represented by a set[yκ].

whereS1 denotes the set defined byp1 ∧ p2 ∧ p3 ∧ p4 wherepi for i = 1, . . . , 4
are defined as

p1 = yκ,1 +
1

2
> 0, (8.31)

p2 = −yκ,1 +
1

2
> 0, (8.32)

p3 = yκ,2 +
1

2
> 0, (8.33)

p4 = −yκ,2 +
1

2
> 0, (8.34)

Thus, the initial partition of the observation-spaceR2 is

P = {S1, S2}, (8.35)

whereS2 denotes the compliment ofS1. The setsS1 andS2 cover observation-
spaceR2 and are defined as

S1 =

{

yκ ∈ R2 | −
1

2
< yκ,1 <

1

2
∧ −

1

2
< yκ,2 <

1

2

}

, (8.36)

S2 =

{

yκ ∈ R2 |

(

yκ,1 ≤ −
1

2
∨ yκ,1 ≥

1

2

)

∧

(

yκ,2 ≤ −
1

2
∨ yκ,2 ≥

1

2

)}

.

(8.37)

The initial partition of the observation-spaceR2 is shown in Figure 8.6.

8.4 Computing the Abstraction 113

1 2−1−2

1

2

−1

−2

yκ,1

yκ,2

S1

S2

Figure 8.6:Initial partition P = {S1, S2} of observation-spaceR2.

8.4 Computing the Abstraction

We now compute the finite bisimilar quotient using the bisimulation algorithm
(Algorithm 2). The initial partition of state-spaceR4 is

P ′ = Υ−1(P),

=
{
Υ−1(S1), Υ

−1(S2)
}

, (8.38)

where

P1 = Υ−1(S1) =

{

xκ ∈ R4 | −
1

2
< xκ,1 <

1

2
∧ −

1

2
< xκ,3 <

1

2

}

, (8.39)

P2 = Υ−1(S2) =

{

xκ ∈ R4 |

(

xκ,1 ≤ −
1

2
∨ xκ,1 ≥

1

2

)

∧

(

xκ,3 ≤ −
1

2
∨ xκ,3 ≥

1

2

)}

. (8.40)

114 Case Study II : Robot Controller Synthesis

ChoosingP = P2 andP ′ = P1 we compute

Pre(P ′) =

{

xκ ∈ R4 | −
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 <

1

2

}

, (8.41)

P ∩ Pre(P ′) =

{

xκ ∈ R4 |

((

xκ,1 ≤ −
1

2
∨ xκ,1 ≥

1

2

)

∧

(

xκ,3 ≤ −
1

2
∨ xκ,3 ≥

1

2

))

∧

(

−
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 <

1

2

) }

. (8.42)

SinceP ∩ Pre(P ′) 6= ∅ andP ∩ Pre(P ′) 6= P , the setP2 is split into setsP21

andP22 which are computed as follows

P21 = P ∩ Pre(P ′)

=

{

xκ ∈ R4 |

((

xκ,1 ≤ −
1

2
∨ xκ,1 ≥

1

2

)

∧

(

xκ,3 ≤ −
1

2
∨ xκ,3 ≥

1

2

))

∧

(

−
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 <

1

2

) }

,

(8.43)

P22 = P ∩ Pre(P ′)

=

{

xκ ∈ R4 |

((

xκ,1 ≤ −
1

2
∨ xκ,1 ≥

1

2

)

∨

(

xκ,3 ≤ −
1

2
∨ xκ,3 ≥

1

2

))

∧

((

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

)) }

. (8.44)

The refined partition is now given by

P ′ = ({P1, P2} \ {P2}) ∩ {P21, P22} = {P1, P21, P22}, (8.45)

and shown in Figure 8.7.

8.4 Computing the Abstraction 115

1 2 3−1−2−3

1

2

3

−1

−2

−3

xκ,1

xκ,2

P1P21 P21

P22 P22

P22 P22

(a) xκ,1 − xκ,2-plane.

1 2 3−1−2−3

1

2

3

−1

−2

−3

xκ,3

xκ,4

P1P21 P21

P22 P22

P22 P22

(b) xκ,3 − xκ,4-plane.

Figure 8.7:Refined partitionP ′ = {P1, P21, P22} of state-spaceR4.

116 Case Study II : Robot Controller Synthesis

Now, choosingP = P1 andP ′ = P21 we compute

Pre(P ′) =

{

xκ ∈ R4 |

(

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

) }

, (8.46)

P ∩ Pre(P ′) =

{

xκ ∈ R4 |

(

−
1

2
< xκ,1 <

1

2
∧ −

1

2
< xκ,3 <

1

2

)

∧

((

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

)) }

.

(8.47)

SinceP ∩ Pre(P ′) 6= ∅ andP ∩ Pre(P ′) 6= P , the setP1 is split into setsP11

andP12. The setsP11 andP12 are computed as follows

P11 = P ∩ Pre(P ′)

=

{

xκ ∈ R4 |

(

−
1

2
< xκ,1 <

1

2
∧ −

1

2
< xκ,3 <

1

2

)

∧

((

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

)) }

, (8.48)

P12 = P ∩ Pre(P ′)

=

{

xκ ∈ R4 |

(

−
1

2
< xκ,1 <

1

2
∧ −

1

2
< xκ,3 <

1

2

)

∧

(

−
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 <

1

2

) }

. (8.49)

The refined partition is now given by

P ′ = ({P1, P21, P22} \ {P1}) ∩ {P11, P12} = {P21, P22, P11, P12}, (8.50)

and shown in Figure 8.8.
We further compute the following to show that for anyP, P ′ ∈ P ′, P ∩

Pre(P ′) 6= ∅ andP ∩ Pre(P ′) 6= P are not satisfied, see Table 8.1.
The finite bisimilar quotient is now defined as

TP ′

/∼ = {Q/∼, Q0
/∼,−→/∼, O,Υ/∼}, (8.51)

where

8.4 Computing the Abstraction 117

1 2 3−1−2−3

1

2

3

−1

−2

−3

xκ,1

xκ,2

P11

P11

P12P21 P21

P22 P22

P22 P22

(a) xκ,1 − xκ,2-plane.

1 2 3−1−2−3

1

2

3

−1

−2

−3

xκ,3

xκ,4

P11

P11

P12P21 P21

P22 P22

P22 P22

(b) xκ,3 − xκ,4-plane.

Figure 8.8:Refined partitionP ′ = {P21, P22, P11, P12} of state-space
R4.

118 Case Study II : Robot Controller Synthesis

∩ Pre(P1) Pre(P2) Pre(P3) Pre(P4)
P1 ∅ ∅ P1 P1

P2 P2 P2 ∅ ∅
P3 P3 P3 ∅ ∅
P4 ∅ ∅ P3 P3

Table 8.1:For anyP, P ′ ∈ P ′, P ∩Pre(P ′) 6= ∅ andP ∩Pre(P ′) 6= P
are not satisfied.

• Q/∼ = {q ⊆ R4 | q is an equivalence class of∼⊆ R4 × R4} =
{q1, q2, q3, q4} = {P21, P22, P11, P12} defined by

q1 =

{

xκ ∈ R4 |

((

xκ,1 ≤ −
1

2
∨ xκ,1 ≥

1

2

)

∧

(

xκ,3 ≤ −
1

2
∨ xκ,3 ≥

1

2

))

∧

(

−
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 <

1

2

)}

,

q2 =

{

xκ ∈ R4 |

((

xκ,1 ≤ −
1

2
∨ xκ,1 ≥

1

2

)

∨

(

xκ,3 ≤ −
1

2
∨ xκ,3 ≥

1

2

))

∧

((

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

))}

,

q3 =

{

xκ ∈ R4 |

(

−
1

2
< xκ,1 <

1

2
∧ −

1

2
< xκ,3 <

1

2

)

∧

((

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

))}

,

q4 =

{

xκ ∈ R4 |

(

−
1

2
< xκ,1 <

1

2
∧ −

1

2
< xκ,3 <

1

2

)

∧

(

−
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 <

1

2

) }

,

• Q0
/∼ = Q/∼,

• −→/∼⊆ Q/∼ × Q/∼ defined as−→/∼= {(q1, q3), (q1, q4), (q2, q1),
(q2, q2), (q3, q1), (q3, q2), (q4, q3), (q4, q4)},

• O = {q1, q2, q3, q4},

8.5 Constructing the Büchi Automaton 119

• Υ/∼ : Q/∼ → O defined asΥ/∼(qi) = qi for i = 1, . . . , 4.

Transition relation−→/∼⊆ Q/∼ × Q/∼ is determined by computing

Pre(q1) =

{

xκ ∈ R4 |

(

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

) }

,

= {q2, q3} (8.52)

Pre(q2) =

{

xκ ∈ R4 |

(

xκ,2 ≤ −
1

2
∨ xκ,2 ≥

1

2

)

∧

(

xκ,4 ≤ −
1

2
∨ xκ,4 ≥

1

2

) }

,

= {q2, q3} (8.53)

Pre(q3) =

{

xκ ∈ R4 | −
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 ≥

1

2

}

,

= {q1, q4} (8.54)

Pre(q4) =

{

xκ ∈ R4 | −
1

2
< xκ,2 <

1

2
∧ −

1

2
< xκ,4 ≥

1

2

}

,

= {q1, q4}. (8.55)

The finite bisimilar quotientTP ′

/∼ is graphically represented in Figure 8.9.

8.5 Constructing the Büchi Automaton

The Büchi automaton is given as

Aφ = (Tφ, F) = ((Q, Q0,−→, O,Υ), F), (8.56)

where

• Q = {q1, q2, q3, q4},

• Q0 = Q,

• −→⊆ Q × Q defined as−→= {(q1, q2), (q2, q3), (q3, q4), (q4, q1),
(q4, q2), (q4, q3), (q4, q4)},

120 Case Study II : Robot Controller Synthesis

q1 q2

q3q4

P21 P22

P11P12

Figure 8.9:Finite bisimilar quotientTP ′

/∼ of transition systemTΣκ as-
sociated with linear control systemΣκ.

• O = P = {S1, S2},

• Υ : Q → O defined as

Υ(qi) =

{

S1 if i = 1, . . . , 3

S2 if i = 4
.

• F = Q.

SinceF = Q the Büchi automatonAφ can equivalently be represented by its
underlying transition systemTφ as shown in Figure 8.10.

8.6 Controller Synthesis

The controller is defined as

Tc =
(
Qc, Q

0
c ,−→c, O,Υc

)
, (8.57)

where

• Qc = {qc,1, qc,2, qc,3} is a set of states,

• Q0
c = Qc is a set of initial states,

8.7 Refinement 121

q1 q2 q3

q4

S1

S1

S1

S2

Figure 8.10:Underlaying transition systemTφ corresponding to LTL
formulaφ.

• −→c⊆ Qc × Qc is a transition relation defined as−→c=
{(qc,1, qc,1), (qc,1, qc,2), (qc,2, qc,3), (qc,3, qc,1)},

• O = {P11, P12, P21} is a set of observations,

• Υc : Qc → O is an observation map defined as

Υc (qc,1) = P12, Υc (qc,2) = P11, Υc (qc,3) = P21.

The controllerTc is graphically illustrated in Figure 8.11.

qc,1qc,2qc,3

P21 P11 P12

Figure 8.11:ControllerTc.

8.7 Refinement

We now refine that closed-loop system to obtain a linear hybrid system given by

122 Case Study II : Robot Controller Synthesis

H =
(

Q‖, Q
0
‖, {Aκ, Bκ}, δ,U

)

, (8.58)

where

• Q‖ = {q‖,1, q‖,2, q‖,3} is a set of states,

• Q0
‖ = Q‖ is a set of initial states,

• Aκ ∈ R4×4, Bκ ∈ R4×2 are the system matrices ghegjkhdhher in BNF of
Σκ : x′

κ = Aκxκ + Bκuκ,

• δ : Q‖ × R4 → 2Q‖ is the discrete dynamics defined by

δ
(
q‖,1, xκ

)
=

{
q‖,3

}
,

δ
(
q‖,2, xκ

)
=

{
q‖,1

}
,

δ
(
q‖,3, xκ

)
=

{
q‖,2, q‖,3

}
.

• U(q‖, xκ) =
{
uκ ∈ R2 | πP ′(Aκxκ + Bκuκ) ∈ Υ‖

(
δ
(
q‖, xκ

))}
is the

input set defined by

U
(
q‖,1, xκ

)
=

{
uκ ∈ R2 | πP ′ (Aκxκ + Bκuκ) ∈

{
q‖,3

}}
,

=

{

uκ ∈ R2 | −
1

2
< uκ,1 <

1

2
∧ −

1

2
< uκ,2 <

1

2

}

,

U
(
q‖,2, xκ

)
=

{
uκ ∈ R2 | πP ′ (Aκxκ + Bκuκ) ∈

{
q‖,1

}}
,

=

{

uκ ∈ R2 | −
1

2
< uκ,1 <

1

2
∧ −

1

2
< uκ,2 <

1

2

}

,

U
(
q‖,3, xκ

)
=

{
uκ ∈ R2 | πP ′ (Aκxκ + Bκuκ) ∈

{
q‖,3, q‖,2

}}
,

=

{ (

uκ ∈ R2 | −
1

2
< uκ,1 <

1

2
∧ −

1

2
< uκ,2 <

1

2

)

∧

(

uκ,1 ≤ −
1

2
∨ uκ,1 ≥

1

2

)

∧

(

uκ,2 ≤ −
1

2
∨ uκ,2 ≥

1

2

)}

.

Each stateq‖ ∈ Q‖ is equipped with a linear control system of the form
Σκ : x′

κ = Aκxκ + Bκuκ with input uκ ∈ U
(
q‖, xκ

)
. Thus, inq‖,3 ∈ Q‖ if

the input is chosen such thatuκ ∈ U
(
q‖,3, xκ

)
this will result in a transition to

q′‖ ∈ δ(q‖,3, xκ).

8.8 Software Implementation of Linear Hybrid System 123

8.7.1 Computing the Input Sets

In the following we show how to compute the input setU
(
q‖,1, xκ

)
for q‖,1 ∈

Q‖. First, we need to determine which transitionsTP ′

/∼ are allowed inq‖,1 ∈ Q‖

by the controllerTc. Thus, we need to recover fromq‖,1 ∈ Q‖ the state of the
finite bisimilar quotientQ/∼ as

π‖

(
q‖,1

)
= q1. (8.59)

From the transitionq1 −→/∼ q4 given by

π‖

(
q‖,3

)
= q4, (8.60)

and bisimilarity between bisimilar quotient transition systemTP ′

/∼ and transition
systemTΣκ it follows that for any continuous statexκ ∈ q1 the following is
satisfied

xκ −→Σκ x′
κ ∈ q4. (8.61)

This is equivalent to the existence of an inputuκ ∈ R2 such thatx′
κ = Aκxκ +

Bκuκ, wherex′
κ ∈ q4. From the definition ofq4 ∈ Q/∼ and linear control

systemΣκ the input setU(q‖,1, xκ) in discrete stateq‖,1 ∈ Q‖ is defined by

U(q‖,1, xκ) =
{
uκ ∈ R2 | πP ′ (Aκxκ + Bκuκ) ∈

{
q‖,3

}}
,

=

{

uκ ∈ R2 | −
1

2
< uκ,1 <

1

2
∧ −

1

2
< uκ,2 <

1

2

}

. (8.62)

The other input sets are computed in a similar way.

8.8 Software Implementation of Linear Hy-
brid System

The software implementation of linear hybrid systemH, defined in Eq. (8.58) is
illustrated in Figure 8.12.

For a detailed description of the software implementation of linear hybrid
systemH the reader is referred to section 7.8 in the the previous chapter.

Now, since the system in Brunovsky normal formΣκ is related to linear
control systemΣ by an invertible state/input transformation matrixU , defined in
Eq. (7.14),Σκ can be replaced withΣ as shown in Figure 8.13.

124 Case Study II : Robot Controller Synthesis

Subsystem
Input Sets

q
u_

k

Linear Control System (Sigma_k)

u_k x_k

Chart
Transition System

x_kq

2

2
4

4

Figure 8.12: Software implementation of linear hybrid systemH in
SIMULINK andSTATEFLOW.

Notice, that replacingΣκ with Σ requires the generation of a new inputu ∈
R2 from the original inputuκ ∈ R2 and statexκ ∈ R4 of Σκ (See Eq. (7.14)).

Further, Σ can be replaced with linear control systemΣz which is a
continuous-time linear control system. This is shown in Figure 8.14.

8.9 Simulation Results

The initial position of the unicycle isp(0) =
[
1.625 2.05

]T
(m) and the initial

orientation of the unicycle isθ(0) = π (rad). Thus, the initial coordinates of

the unicycle isq(0) =
[
1.625 2.05 π

]T
. The initial state of the integrator is

ξ(0) = 0.001 (m/s).

The result of simulating the system is shown in Figure 8.15.

As shown in Figure 8.15 the vehicle start at positioneta =
[
1.625 2.05

]

and moves towards the set representing the goal position as described in Fig-
ure 8.5.

8.9 Simulation Results 125

x_k

1

Linear Control System (Sigma)

u x

Gain
inv(V)

K*u

Gain
H

K*u

Gain
−inv(V)*F

K*u

u_k

1
2 2 2

2

2

4

4
4 4

Figure 8.13:Software implementation of hybrid linear systemH where
Σκ has been replaced withΣ.

126 Case Study II : Robot Controller Synthesis

x_k

1

Rate Transition
ZOH

Linear Control System (Sigma_z)

nu z

Gain
inv(V)

K*u

Gain
H

K*u

Gain
−inv(V)*F

K*u

u_k

1
4

4

4
4

2

2

222 2

Figure 8.14:Software implementation of hybrid linear systemH where
Σ has been replaced withΣz.

8.10 Concluding Discussion 127

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3
Discrete state (output)

Time (s)

q || (
−

)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

Position (output)

η
1
 (m)

η 2 (
m

)

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4
Input

Time (s)

u
(−

)

u

1

u
2

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5
Input

Time (s)

u κ (
−

)

uκ,1

uκ,2

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3
Continuous state

Time (s)

x
(−

)

x
1

x
2

x
3

x
4

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4
Continuous state

Time (s)

x κ (
−

)

xκ,1

xκ,2

xκ,3

xκ,4

Figure 8.15:Simulation results.

8.10 Concluding Discussion

The novel framework presented here is applicable to a large class of nonholo-
nomic mobile robots, including the unicycle, that can be transformed into linear
systems using e.g. dynamic feedback linearization and dynamic extension.

The framework originally developed by Tabuada and Pappas [Tabuadaand
Pappas, 2006] was extended to fit with the problem of synthesizing a controller
for a mobile robot, given a requirement specification in LTL. This requiredsome
modifications which were primarily concerned with the input to the framework
and with the software implementation of the linear hybrid system obtained by
refinement.

A software implementation of the hybrid linear system was not provided
in [Tabuada and Pappas, 2006] for the purpose of simulating the synthesized

128 Case Study II : Robot Controller Synthesis

controller and the linear control system. Therefore, to demonstrate the correct-
ness of the synthesized controller a software implementation of the linear hybrid
system was provided in SIMULINK and STATEFLOW, showing that the synthe-
sized controller equivalently would work on the nonlinear system.

8.11 Summary

In this chapter the framework for controller synthesis presented in the previous
chapter was applied to a simple model of a nonholonomic wheeled mobile ro-
bot, i.e. an unicycle. The nonlinear unicycle model was transformed into a linear
control system by using dynamic feedback linearization and dynamic extension.
The requirement specification expressing the desired behavior of the unicycle
was formulated in Linear-time Temporal Logic (LTL). The bisimulation algo-
rithm was used for obtaining an abstraction in the form of a finite bisimilar quo-
tient of the linear control system. A controller was then synthesized from the
Büchi automaton and the finite abstraction. Subsequently, the closed loop sys-
tem of discrete nature is refined resulting in a linear hybrid system. A software
implementation of linear hybrid systemH in SIMULINK and STATEFLOW was
provided and a simulation was performed. The results of simulating the software
implementation of the linear hybrid system are presented showing that the sys-
tem operate as expected. Finally, a conclusive discussion of the novel framework
proposed i the previous chapter was given.

Chapter 9

Conclusions and
Recommendations

The overall aim of this thesis has been to investigate automated synthesis of
coordination and control of multi-robot systems. The thesis introduces two
different approaches to synthesis that are potentially suitable for generation of
engineering systems.

In the following we conclude on the two frameworks presented in chapter 5
and 7, respectively, that is

Framework I Motion planning of a network of multi-modal robots with respect
to formal requirement specifications in Computational Tree Logic (CTL).

Framework II Controller synthesis for linear control systems with respect to
formal requirement specification in Linear-time Temporal Logic (LTL).

Framework I : Multi-robot Motion Planning

• By abstracting a network of multi-modal robots, modeled as hybrid au-
tomata, to the world of timed automata symbolic reasoning about coor-
dinated motion planning solutions was possible with respect to a formal
requirement specification in Computational Tree Logic (CTL). Compo-
sition of multi-modal robots in the network modeled as timed automata
was possible through the introduction of synchronization channels thus

129

130 Conclusions and Recommendations

allowing a multi-modal robot and associated controller to communicate.
Further, global optimal solutions was found thus minimizing the num-
ber of robot movements or accumulated time required for the network of
multi-modal robots to reach their goal positions, in order to satisfy the
requirement specification in CTL.

• The framework presupposes an infra-structure of the multi-modal robots
with feedback controllers that constraint the motion capabilities of the
individual multi-modal robots in the network. This means that the indi-
vidual robots can have more complex dynamics compared to what was
expressed by the hybrid automaton modeling a multi-modal robot.

• The use of Computational Tree Logic (CTL) as a requirement specifica-
tion mechanism for the network of multi-modal robots allow to express
requirements that cannot be specified using classical control theory. Also,
CTL allows to express the desired global behavior for the network of
multi-modal robots.

• The proposed framework is also applicable to multi-modal robots mov-
ing in a three-dimensional (3D) environment. To allow this, the hybrid
automata, modeling a multi-modal robot, must be expanded with two
additional states for moving in thex3 and−x3-direction, respectively.
However, this would result in an increased computational complexity of
subsequently model checking the system.

• A drawback of the proposed framework is the computational complexity
of model checking the system in UPPAAL. It is a known fact that the
computational complexity is exponential in the number of robots, con-
trollers, and size of the occupancy table representing the environment.

• The framework is applicable to other application domains than robotics
that is systems where planning and motion coordination is necessary, i.e.
as in formation flying of satellites and aerial vehicles.

Framework II : Robot Controller Synthesis

• The framework originally developed by Tabuada and Pappas [Tabuada
and Pappas, 2006] was extended to fit with the problem of synthesizing
a controller for a mobile robot, given a requirement specification in LTL.

9.1 Recommendations 131

This required some modifications which were primarily concerned with
the input to the framework and with the software implementation of the
linear hybrid system obtained by refinement.

• A software implementation of the hybrid linear system was not provided
in [Tabuada and Pappas, 2006] for the purpose of simulating the synthe-
sized controller and the linear control system. Therefore, to demonstrate
the correctness of the synthesized controller a software implementation
of the linear hybrid system was provided in SIMULINK and STATEFLOW,
showing that the synthesized controller equivalently would work on the
nonlinear system.

• The framework is applicable to a large class of nonholonomic mobile ro-
bots, including the unicycle, that can be transformed into linear control
systems using e.g. dynamic feedback linearization and dynamic exten-
sion.

9.1 Recommendations

However, two frameworks have been outlined in this thesis but the following
open issues are recommendable for further investigation. The issues arepriori-
tized as follows, with decreasing priority

Framework I : Multi-robot Motion Planning

1. The computational complexity of model checking the system in UP-
PAAL can be overcome by guiding the search such that an extensive
search is avoided. UPPAAL CORA1 [Uppsala University and Aal-
borg University, 1995b] uses an extension of timed automata called Lin-
early Priced Timed Automata (LPTA) which allows to annotate the timed
automaton model with the notion of cost. The idea is then be to have
a low cost for moving in a direction that would bring each multi-modal
robot closer to its goal position, opposed to a high cost if moving in a
direction that brings the robot away from the goal position. Subsequently,

1A branch of UPPAAL for cost optimal reachability analysis.

132 Conclusions and Recommendations

UPPAAL CORA could be used to find the most optimal location trajec-
tory, i.e. a location trajectory with the lowest accumulated cost for each
robot.

2. As a result of model checking the system UPPAAL generates a strat-
egy in the form of a sequence of input synchronization actions, one for
each multi-modal robot in the network, in order to satisfy a requirement
specification in CTL. The sequence of input synchronization actions cor-
responds to a set of way-points connecting the initial and goal position.
A natural next step would be the development of a controller, possibly of
hybrid nature to track the set of way-points.

Framework II : Robot Controller Synthesis

1. The novel framework proposed is a step towards automated controller
synthesis for mobile robots, given a nonlinear model of the system and
a requirement specification in Linear-time Temporal Logic (LTL). A nat-
ural next step is the development of a tool that automatically synthesize a
controller for a mobile robot, given a nonlinear model and a requirement
specification in Linear-time Temporal Logic (LTL).

2. Expressing the desired behavior of the system in Linear Temporal Logic
(LTL) can be complex and possibly render the framework less applica-
ble. To make the framework more applicable to engineers unfamiliar with
requirement specification in Linear-time Temporal Logic (LTL) a more
"natural language" for requirement specification than LTL should be in-
vestigated. Alternatively, the possibility to translate a more "natural lan-
guage" to a requirement specification in LTL should be investigated.

3. It would be desirable to expand the framework to networks of robots. If
possible, this could eventually require some major modifications of the
framework. The composition of robots could be performed at the level of
modeling the system. Thus, a linear control system can be formed that is
composed ofn linear control system, i.e.

Σ =






Σ1

. ..
Σn






9.1 Recommendations 133

such that system matrices are given by

A =






A1

. . .
An




 , B =






B1

. . .
Bn




 .

Unifying Framework I+II

The two frameworks could potentially be combined to an unifying framework
for motion planning and control of networks of robots. Framework I would
then be used for motion planning for the network of robots, where a feasible
motion plan for the robots is generated, taking into account coordination among
the robots. Subsequently, framework II would then be used for synthesizing a
hybrid controller for each of the robots in the network, satisfying the motion plan
generate using framework I.

Bibliography

R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot cooper-
ation in the MARTHA project. IEEE Robotics & Automation Magazine, 5:
36–47, March 1998.

R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer
Science, 94:183–235, 1994.

R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X.Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems.Theoretical Computer Science, pages 3–34, 1995.

R. Alur, J. Esposito, M. Kim, V. Kumar, and I. Lee. Formal modeling and analy-
sis of hybrid systems: A case study in multi-robot coordination. In J. Wing,
J. Woodcock, and J. Davies, editors,FM’99, LNCS 1708, volume I, pages
212–232. Springer-Verlag, Berlin Heidelberg, 1999.

R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions
of hybrid systems.Procedings of the IEEE, 88(7):971–984, July 2000.

M. S. Andersen and R. S. Jensen. Motion planning in multi-robot systems -
with application to a harvesting system.Master’s Thesis. Aalborg University,
Department of Control Engineering, July 2004.

M. S. Andersen, R. S. Jensen, T. Bak, and M. M. Quottrup. Motion planning in
multi-robot systems using timed automata.Proceedings of 5th IFAC/EURON
Symposium on Intelligent Autonomous Vehicles (IAV 2004), Lissabon, July
2004.

135

136 BIBLIOGRAPHY

M. Antoniotti and B. Mishra. Discrete event models + temporal logic = su-
pervisory controller: Automatic synthesis of locomotion controllers.IEEE
Conference on Robotics & Automation, pages 1441–1446, 1995.

P. J. Antsaklis and A. N. Michel.Linear systems. The McGraw-Hill Companies,
Inc., New York, 2 edition, 1997.

T. Arai and J. Ota. Motion planning of multiple robots.IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1761–1768, 1992.

T. Arai, E. Pagello, and L. E. Parker. Guest editorial advances in multirobot sys-
tems.IEEE Transactions on Robotics & Automation, 18(5):655–661, October
2002.

J. R. Büchi. On a decision method in restricted second order arithmetic.Proced-
ings International Congres Logic, Method and Philoophical Science, Stan-
ford, CA, pages 1–12, 1962.

C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot motion plan-
ning and control in polygonal environments.IEEE Transactions on Robotics,
21(5):864–874, October 2005.

A. Bouajjani, J. C. Fernandez, and N. Halbwachs. Minimal model generation. In
R. C. Arkin and G. A. Bekey, editors,CAV90 : Computer Aided Verification,
volume 531, pages 197–203. Springer Verlag, 1990.

P. Brunovsky. A classification of linear controllable systems.Kybernetika, 6(3):
173–188, 1970.

Cambridge University Press. Cambridge Dictionaries Online - Cambridge Ad-
vanced Learner’s Dictionary. http://dictionary.cambridge.org, 2006.

Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative mobile robotics: An-
tecedents and directions. In R. C. Arkin and G. A. Bekey, editors,Autonomous
Robotics, volume 4, pages 1–23. Kluwer Academic Publishers, Boston, 1997.

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-agent
robotics.Autonomous Robotics, 3:375–397, July 1996.

M. Egerstedt and X. Hu. A hybrid control approach to action coordination for
mobile robots.Automatica, 38:125–130, January 2002.

BIBLIOGRAPHY 137

G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Hybrid controllersfor path
planning : A temporal logic approach.IEEE Conference on Decision & Con-
trol, Seville, Spain, December 2005a.

G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic motionplan-
ning for mobile robots.Proceedings of the 2005 IEEE International Confer-
ence on Robotics & Automation, Barcelona, Spain, pages 2032–2037, April
2005b.

A. Farinelli, L. Iocchi, and D. Nardi. Multi-robot systems: A classification fo-
cused on coordination.IEEE Transactions on Systems, Man, & Cybernetics,
Part B, 34(5):2015–2028, 2004.

K. Fujimura. Motion planning in dynamic environments. Computer Science
Workbench, Springer-Verlag, 1991.

B. P. Gerkey and M. J. Mataric. Sold: Auction methods for multirobot coordina-
tion. IEEE Transaction on Robotics & Automation, 18(5):758–768, October
2002.

P. Ögren, M. Egerstedt, and X. Hu. A control lyapunov function approach to
multiagent coordination.IEEE Transactions on Robotics & Automation, 18
(5):847–851, October 2002.

Y. K. Hwang and N. Ahuja. Gross motion planning - a survey.AMC Computing
Surveys, 24(3):221–291, September 1992.

L. Iocchi, D. Nardi, and M. Salerno. Reactivity and deliberation: A survey on
multi-robot systems. In M. Hannebauer, J. Wendler, and E. Pagello, editors,
Balancing Reactivity and Social Deliberation in Multi-Agent Systems (LNAI
2103). Springer-Verlag, 2001.

E. Klavins and D. E. Koditschek. A formalism for the composition of concurrent
robot behaviors.Procedings of the 2000 IEEE International Conference on
Robotics & Automation (ICRA’00), San Franscisco, CA, 4:3395–3402, April
2000.

M. Kloetzer and C. Belta. A fully automated framework for control of linear
systems from LTL specifications.9th International Workshop on Hybrid Sys-
tems: Computation & Control, Santa Barbara, CA (To Appear), 2006a.

138 BIBLIOGRAPHY

M. Kloetzer and C. Belta. LTL planning for groups of robots.IEEE Interna-
tional Conference on Networking, Sensing, and Control, Ft. Lauderdale, FL
(To Appear), 2006b.

T. J. Koo. Hierarchical system architecture for multi-agent multi-modal systems.
Procedings of the 40th IEEE Conference on Decision & Control, pages 1509–
1514, December 2001.

T. J. Koo and S. Sastry. Bisimulation based hierarchical system architecture
for single-agent multi-modal system. In C. J. Tomlin and M. R. Greenstreet,
editors,HSCC 2002, LNCS 2289, pages 281–293. Springer-Verlag, Berlin
Heidelberg, 2002.

T. J. Koo, M. M. Quottrup, and C. A. Clifton. Hybrid system design of multi-
modal aerial robots.Hybrid Systems: Computation & Control (HSCC), Santa
Barbara, CA (Submitted), March 2006.

K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems.
Procedings of the 10th International Conference on Fundamentals of Compu-
tation Theory, pages 62–88, August 1995.

J.-C. Latombe.Robot motion planning. Kluwer Academic Publishers, Massa-
chusetts, 1991.

J.-P. Laumond.Robot motion planning and control. Springer-Verlag, London,
1991.

S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of multi-agent mo-
tion tasks based on LTL specifications.43rd IEEE Conference on Decision
and Control, December 2004.

Z. Manna and A. Pnueli.The temporal logic of reactive and concurrent systems.
Springer-Verlag, New York, 1991.

R. Milner. Communication and concurrency. Prentice Hall, 1989.

G. Oriolo, A. De Luca, and M. Vendittelli. WMR control via dynamic feed-
back linearization: Design, implementation, and experimental validation.
IEEE Transactions on Control Systems Technology, 10(6):835–852, Novem-
ber 2002.

BIBLIOGRAPHY 139

Oxford University Press. Oxford English Dictionary - OED online.
http://oed.com, 2005.

G. J. Pappas. Bisimilar linear systems.Automatica, 39(12):2035–2047, Decem-
ber 2003.

L. E. Parker. Current state of the art in distributed autonomous mobile robot-
ics. In G. Bekey L. E. Parker and J. Barhen, editors,Distributed Autonomous
Robotic System 4, pages 3–12. Springer-Verlag, Tokyo, 2000.

M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. Multi-robot planning:A
timed automata approach.Procedings of the 2004 IEEE on Robotics & Au-
tomation, New Orleans, LA, pages 4417–4422, April 2004.

E. D. Sontag.Mathematical control theory : Deterministic finite dimensional
systems. Springer, New York, 2 edition, 1998.

P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time linear
systems.IEEE Transactions on Automatic Control, 51(12):1862–1877, De-
cember 2006.

Sweden Uppsala University and Denmark Aalborg University. UPPAAL.
http://www.uppaal.com/, 1995a.

Sweden Uppsala University and Denmark Aalborg University. UPPAAL
CORA. http://www.cs.aau.dk/ behrmann/cora/index.html, 1995b.

P. Wolper. Constructing automata from temporal logic formulas: A tutorial. In
E. Brinksma, H. Hermanns, and J. P. Katoen, editors,Lectures on Formal
Methods and Performance Analysis, LNCS, volume 2090. Springer-Verlag,
2000.

Appendix A

System Parameters

Global Declarations for System

// Declarations of global clocks, variables, constants and channels.

// global clocks
clock time; // measures global time for system

// global constants
const int Z_1 = 7; // horizontal size of Z
const int Z_2 = 7; // vertical size of Z
const int N = 3; // number of robots + 1
const int M = 33; // number of obstacles + 1

// global variables
int[0,1] Z[Z_1][Z_2]; // two-dimensional integer array Z
int[0,1] i,j; // index variables
int[1,N] robotNo;
int[1,M] obsNo;

// global channels
chan sigma_21,sigma_31,sigma_41,sigma_51; // synchronization channels
chan sigma_22,sigma_32,sigma_42,sigma_52;

141

142 System Parameters

Local Declarations for Robot

// Declarations of local clocks, variables and constants.

// local clocks
clock c; // measures local time for robot

// local variables
int[0,Z_1] z_1; // discrete horizontal position of robot in grid
int[0,Z_2] z_2; // discrete vertical position of robot in grid

Local Declaration for Obstacles

// Declarations of local clocks, variables and constants.

// local variables
int[0,Z_1] z_1; // discrete static horizontal position of obstacle in

grid
int[0,Z_2] z_2; // discrete static vertical position of obstacle in

grid

System Declarations

// Declarations of process assignments and system definition.

// Process assignments

// robots
R_1 = Robot(1,5,3,1,sigma_21,sigma_31,sigma_41,
sigma_51);

R_2 = Robot(2,5,4,1,sigma_22,sigma_32,sigma_42,
sigma_52);

// controls
C_1 = Control(sigma_21,sigma_31,sigma_41,sigma_51);
C_2 = Control(sigma_22,sigma_32,sigma_42,sigma_52);

// obstacles

143

O_1 = Obstacle(1,0,0);
O_2 = Obstacle(2,1,0);
O_3 = Obstacle(3,2,0);
O_4 = Obstacle(4,3,0);
O_5 = Obstacle(5,4,0);
O_6 = Obstacle(6,5,0);
O_7 = Obstacle(7,6,0);
O_8 = Obstacle(8,6,1);
O_9 = Obstacle(9,6,2);
O_10 = Obstacle(10,6,3);
O_11 = Obstacle(11,6,4);
O_12 = Obstacle(12,6,5);
O_13 = Obstacle(13,6,6);
O_14 = Obstacle(14,5,6);
O_15 = Obstacle(15,4,6);
O_16 = Obstacle(16,3,6);
O_17 = Obstacle(17,2,6);
O_18 = Obstacle(18,1,6);
O_19 = Obstacle(19,0,6);
O_20 = Obstacle(20,0,5);
O_21 = Obstacle(21,0,4);
O_22 = Obstacle(22,0,3);
O_23 = Obstacle(23,0,2);
O_24 = Obstacle(24,0,1);
O_25 = Obstacle(25,2,1);
O_26 = Obstacle(26,3,2);
O_27 = Obstacle(27,4,2);
O_28 = Obstacle(28,4,3);
O_29 = Obstacle(29,3,3);
O_30 = Obstacle(30,2,4);
O_31 = Obstacle(31,4,5);
O_32 = Obstacle(32,5,5);

// System definition
system R_1, R_2, C_1, C_2, O_1, O_2, O_3, O_4, O_5,
O_6, O_7, O_8, O_9, O_10, O_11, O_12, O_13, O_14,
O_15, O_16, O_17, O_18, O_19, O_20, O_21, O_22,
O_23, O_24, O_25, O_26, O_27, O_28, O_29, O_30,
O_31, O_32;

Appendix B

Special Forms of Linear Control
Systems

In this appendix we review the Controller form and Brunovsky normal form
which are two special forms of both continuous-time and discrete-time linear
control systems. However, the two special forms will be described for discrete-
time linear control systems.

Consider a discrete-time linear control system

Σ : x(t + 1) = Ax(t) + Bu(t), (B.1)

where matricesA ∈ Rn×n andB ∈ Rn×m are generally constant and state
variablex ∈ Rn and control variableu ∈ Rm are discrete. In the followingx is
referred to as the state of the system andu as the input to the system. Further,
Rn is referred to as the state space or set of states of the system andRm as the
observation space or set of observations.

The computation of the Brunovsky normal form for the system (7.12) com-
prises two steps

• First, the linear systemΣ is transformed into the controller form, denoted
Σc with a linear change of coordinates,

• Second, the controller formΣc is further reduced into the Brunovsky nor-
mal form, denotedΣ′ with a linear state feedback.

In the following ... The controllability matrixC ∈ Rn×mn for the system (B.1)

145

146 Special Forms of Linear Control Systems

is given by

C =
[
B AB . . . An−1B

]
(B.2)

=
[
b1 . . . bm Ab1 . . . Abm A2b1 . . . A2bm . . .

An−1b1 . . . An−1bm

]
. (B.3)

Let Σ be a linear control system as defined in Eq. B.1. The sequence of
positive integersκ = (κ1, κ2, . . . , κm), whererankB = m are called the con-
trollability indices of the system satisfying

κ1 ≥ κ2 ≥ . . . ≥ κm such thatκ1 + κ2 + . . . + κm = n. (B.4)

B.1 Controller Form

The decomposition of state spaceRn for linear control systemΣ according to
controllability indicesκ = (κ1, κ2, . . . , κm) results in a new controllability ma-
trix C̄ ∈ Rn×n given as

C̄ =
[

b1 Ab1 A2b1 . . . Aκ1−1b1 b2 Ab2 A2b2 . . . Aκ2−1b2 . . .

bm Abm A2bm . . . Aκm−1bm

]

, (B.5)

where the vectors are arranged as follows. Select, starting from the leftand
moving to the right, the firstn independent columns of Eq. (B.3). Recorder these
columns by taking firstb1, Ab1, A

2b1, etc., until all columns involvingb1 have
been taken; then takeb2, Ab2, A

2b2, etc., and lastly, takebm, Abm, A2bm, etc.,
to obtain Eq. (7.17). The integerκi denotes the number of columns involvingbi

in the set of the firstn linearly independent columns found in the controllability
matrixC, when moving from left to right.

The m integersκi for i = 1, . . . , m is called the controllability indices of
the system.

Now define

σi =
m∑

i=1

κi, (B.6)

B.1 Controller Form 147

such that

σ1 = κ1, (B.7)

σ2 = κ1 + κ2, (B.8)
...

σm = κ1 + . . . + κm. (B.9)

ConsiderC̄−1 ∈ Rn×n and letdi, wheredT
i ∈ Rn for i = 1, . . . , m de-

note theσi-th row of C̄−1. The invertible linear transformationH ∈ Rn×n is a
similarity transformationdefined as

H =




















d1

d1A
...

d1A
κ1−1

...
dm

dmA
...

dmAκm−1




















. (B.10)

The controller form (single input case) of a linear control systemΣ is given by

Σc : x(t + 1) = Acx(t) + Bcu(t), (B.11)

whereAc andBc are the new system matrices, defined by

Ac = HAH−1, (B.12)

Bc = HB. (B.13)

The system matrices are of the following form

Ac =








0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α1 −α2 · · · −αn−1








, Bc =








Bi

B2
...

Bm








, (B.14)

148 Special Forms of Linear Control Systems

where each blockBi ∈ Rκi×m are of the form

Bi =






0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 1 × · · · ×




 , (B.15)

where1 in the last row ofBi occurs at thei-th column location fori = 1, . . . , m
and× denotes non-fixed entries. In (B.14) theαi for i = 0, . . . , n − 1 are the
coefficients of the characteristic polynomialα(s) of matrixA, i.e.

α(s) = det(sI − A) = sn + αn−1s
n−1 + · · · + α1s + α0. (B.16)

B.2 Brunovsky Normal Form

At this point we will assume that the matricesAc andBc are in controller form.
It is possible to writeAc andBc in a systematic way

Ac = A′ + B′Am, Bc = B′Bm, (B.17)

where(A′, B′) ∈ Rn×n × Rn×m are the Brunovsky normal form of(A, B) in
(B.1). The matricesAm ∈ Rm×n andB ∈ Rm×m consists of theσ1-th, σ2-th,
. . ., σm-th rows ofAc andBc, respectively. The matricesAm andBm is that
part of controllable linear control system (B.1) that can be altered by linear state
feedback

u′ = Fx + V u. (B.18)

Notice that

AcF = Ac + BcFc, (B.19)

is also in controller form with identical block structure asAc for anyFc. Thus,
the pair(AcF , Bc) has the same controllability indicesκ = (κ1, . . . , κm) as the
pair (Ac, Bc).

Selecting

Ad = A′ + B′Adm , (B.20)

and requiring thatAcF = Ad, implies

B′(Am + BmFc) = B′Adm . (B.21)

B.2 Brunovsky Normal Form 149

Thus, we have that

Fc = B−1
m (Adm − Am), (B.22)

whereBm, Adm , andAm are them σi-th rows ofBc, Ad, andAc, respectively
andσi are defined in (B.6). ForAdm = 0 which is the case forA in Brunovsky
normal form, (B.25) reduces to

Fc = B−1
m Am. (B.23)

The matrixFc is related toF by

F = FcH, (B.24)

which leads to

F = B−1
m AmH. (B.25)

The invertible linear transformationV ∈ Rm×m is given by

V = B−1
m . (B.26)

The Brunovsky normal form of linear control system is given by

Σ′ : x′(t + 1) = A′x′(t) + B′u′(t), (B.27)

whereA′ andB′ are the new system matrices andx′ andu′ are the new state and
control variables, defined as

A′ = H(A + BF)H−1, (B.28)

B′ = HBV, (B.29)

x′ = Hx, (B.30)

u′ = Fx + V u. (B.31)

The system matricesA′ andB′ are of the following form

A′ =








A′
κ1

0 . . . 0
0 A′

κ2
. . . 0

...
...

. ..
...

0 0 . . . A′
κm








, B′ =








b′κ1
0 . . . 0 0 . . . 0

0 b′κ2
. . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...
0 0 . . . 0 0 . . . b′κm








,

(B.32)

150 Special Forms of Linear Control Systems

where each blockA′
κi

∈ Rκi×κi andb′κi
∈ Rκi for i = 1, . . . , m are of the form

A′
κi

=










0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0










, B′
κi

=










0
0
...
0
1










. (B.33)

The system in Brunovsky normal formΣ′ with statex′ ∈ Rn and inputu′ ∈ Rm

is related to the linear control systemΣ by an invertible state/input transforma-
tion matrix (isomorphism) U : Rn × Rm → Rn × Rm defined as

[
x′

u′

]

= U

[
x
u

]

=

[
H On×m

F V

] [
x
u

]

. (B.34)

Index

Postσ-operator, 26
Pre-operator, 21
σ-successor, 26

bisimulation, 22
bisimulation relation, 22
bisimulation relation (labeled), 28

characterization, 29
control abstract embedding, 85

equivalence class, 20
equivalence relation, 20

generated language, 25

labeled transition system, 26
language equivalence, 25, 81

parallel composition, 24
partition, 19

quotient transition system, 23
quotient transition system (labeled), 28

refinement, 20

semi-linear set, 88
similarity transformation, 85, 135
simulation relation, 27
symbolic trace, 31

transition system, 20

151

