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Abstract

This thesis focuses on control and coordination of mobilé&imobot sys-
tems (MRS). In recent years there has been an increasingshiarsys-
tems comprised of several autonomous mobile robots. MRS ftan o
deal with tasks that are difficult, if not impossible, to be@mplished by
a single robot. In the context of MRS, one of the challengekesieed
to control, coordinate and synchronize the operation oéisdvobots to
perform some specified task. This calls for new strategiesnaethods
which allow the desired system behavior to be specified inrmdband
succinct way. Temporal logics provide a formal requirensgacification
mechanism with the capability to define desired behavioenttatively
due to its similarity to natural languages.

Two different frameworks for the coordination and contr6IMRS
have been investigated.

Framework | - A network of robots is modeled as a network oftmul
modal hybrid automata. A finite bisimilar quotient for eadhihe robots
in the network is computed by forming a partition of the eadiment.
Constructing a timed automaton, one for each robot in thear&tvifrom
the finite bisimilar quotient allows coordination among tiedots and
timing constraints to be considered. The model checker UKPA used
for formal symbolic model checking against a requiremeetcgation
formulated in Computational Tree Logic (CTL) for a network ofilti+
modal robots. The result is a set of motion plans for the ®diich
satisfy the requirement specification.

Framework Il - A framework for controller synthesis for aglie ro-
bot, modeled as a nonlinear system with respect to requivespecifi-
cation in Linear-time Temporal Logic (LTL) is presented.ri2ynic feed-
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back linearization is employed to obtain a linear contrsteyn for which

a finite bisimilar quotient, in the form of a finite transitisgstem can be
computed. The bisimilar quotient is subsequently useddatroller syn-

thesis together with the formal specification. Since thetignband the
original linear control system are bisimilar the discretatcoller synthe-
sized for the quotient will equivalently work for the lineawntrol system.
However, a refinement of the discrete controller is necgssasulting in

a hybrid closed loop.



Resume - Danish Summary

Denne afhandling har fokus pa kontrol og koordinering af iteofter-
robot systemer (MRS). | de seneste ar har der vaeret en stigetede i
esse for systemer, der er sammensat af adskillige autonarbéenmo-
botter. MRS kan ofte handtere opgaver, som kan veere vanskblige
ikke umulige, at lgse for en enkelt robot. Indenfor MRS er endfbr-
dringerne behovet for at kunne kontrollere, koordinere yigksonisere
operationen af adskillige robotter, for at kunne udfgrepacgiceret op-
gave. Dette kraever nye strategier og metoder, som tilladgpeatificere
systemets gnskede opfarsel pa en formel og praecis made.

To forskellige konceptuelle strukturer til koordinering &ontrol af
MRS er blevet undersggt.

Konceptuel struktur | - Et netveerk af robotter er modelleah st
netveerk af hybrid automater. En endelig aekvivalent kvotieeeegnet
for hver enkelt robot i netveerket ved at opdele robotternegivetser.
Ved at konstruere en tidsautomat for hver enkelt robot i aeeket ud
fra den endelige aekvivalent kvotient, gagres det muligt a¢ tagjde for
koordinering mellem robotterne samt tidslige krav. Vesdfiknsvaerktg-
jet UPPAAL er brugt til formel symbolsk modelverifikation apod en
kravspecifikation formuleret i Computational Tree Logic (JTResul-
tatet er et saet bevaegelsesplaner for robotterne i netveerkegylder
kravspecifikationen.

Konceptuel struktur Il - Preesenterer en konceptuel struktsyntese
af en regulering for en enkelt robot, der er modelleret sorlieeaert
system ud fra en kravspecifikation i Linear-time TemporadjicqLTL).
Dynamisk tilbagekoblinglinearisering er anvendt til ahdget linezert sys-
tem, for hvilket der kan beregnes en endelig sekvivalent kmbiiform af

Vii



viii

et endeligt transitionsystem. Den akvivalente kvotientferf@lgende
anvendt til kontrolsyntese sammen med den formelle kraigkation.
Da kvotienten og det oprindelige linesere system er sekvivalé&an den
diskrete kontroller, der er resultatet af syntesen, ligeseanvendes pa det
lineaere kontrol system. En forfining af den diskrete kongroér nad-
vendig, hvilket resulterer i en hybrid lukket slgjfe.
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Chapter 1

Introduction

The focus of this thesis is on the development of novel frameworks fonaietd
deployment of mobile multi-robot systems. In particular, we want to figae
new methodologies for automated deployment of mobile multi-robot sy&iems
a specific application domain.

1.1 Background and Motivation

In recent years there has been an increasing interest in systems @ahyris
several autonomous mobile robots. In the following we will refer to suctesys

as a multi-robot system (MRS). An autonomous mobile robot is a physically in-
dependent system, equipped with sophisticated sensors and actuatessary
and sufficient to accomplish a given task. MRS operate in a shared emeérd
performing some specific task.

In the last decades MRS have traditionally been used in many transportation
(warehouses and transshipment in harbors), industrial (assembly hgeisul-
tural, and military (surveillance and scouting) related tasks. What chaeacte
these tasks are that they typically involve several subtasks that canfoamex
in parallel and only little amount of coordination among the robots are required

New application areas are currently emerging such as underwater arel sp
exploration, search and rescue, hazardous environments, anckeservotics.

In these challenging application areas, MRS can often deal with tasksréhat a
difficult, if not impossible, to be accomplished by a single robot. MRS are typ-
ically well suited for various application domains which require complex tasks

1



2 Introduction

to be performed effectively and in a coordinated manner. Moreoven ahen

a single robot can achieve the given task, the possibility of deploying a MRS
can improve the performance of the overall system. Also, MRS are typically
employed in domains where they give rise to benefits that a single robobtan n
provide. Compared to a single robot there are several reasonsgayasy a
MRS [Arai et al., 2002].

e atask may be inherently too complex for a single robot to perform due to
the fact that a single robot is spatially limited,

e a MRS can provide redundancy and contribute cooperatively to solve the
assigned tasks,

e a MRS can improve the effectiveness either from the viewpoint of the
performance in accomplishing certain tasks, or in the robustness and reli-
ability of the system,

¢ a MRS can perform the assigned task in a more reliable, faster, or cheape
way beyond what is possible with a single robot,

e improve performance of the overall system.

Tasks, which definitely require a MRS, are tasks that typically involve djyatia
separate tasks and which require some sort of synchronization amoimglithe
vidual robots [Dudek et al., 1996]. However, there exists tasks thabvtiequire

a MRS, but can benefit significant from using a MRS. On the other hhedg
may exist tasks which do not benefit from using a MRS. Tasks that aeg-inh
ently not suitable for a MRS are often those which involve a single operation a
a single location.

Multi-robot path planning is one of the fundamental problems of MRS and
refers to finding collision free motions for each robot so that a certainisask
performed. It is obvious that finding collision free motion for all robots in a
MRS requires some sort of coordination. One of the most limiting characteris-
tics of much of the existing path planning work for MRS is the computational
complexity of the approaches.

From an engineering point of view MRS are inherently complex systems.
The control of such complex systems poses new challenges that falidédy®
traditional approaches in control theory, e.g. stabilization and set-penota-
tion. One of these challenges is given by the need to control, coordindte an
synchronize the operation of several robots that have to perform speodied
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task. This calls for new strategies and methods which allow to specify thedesir
system behavior in a formal and succinct way.

Temporal logic is chosen for describing the behavior of the system. Specifi
cations containing both logical and temporal operators translate naturaliyito te
poral logic. Temporal logic provides a formal requirement specificatiochme
anism with the capability to define desired behaviors quantitatively and due to
its similarity to natural languages it provides an intuitive and succinct way to
express complex behaviors of a MRS.

1.2 Scope of Study

The scope of this study is I.) The motion coordination and planning of mobile
multi-modal robots modeled as a network of hybrid automata and I1.) Controller
synthesis for single mobile robot systems modeled as a nonlinear system. Tem-
poral logics such as Computational Tree Logic (CTL) and Linear-time Teahpo
Logic (LTL) are used as requirement specification mechanisms for €dpge
the desired behavior of the system. Both I.) and Il.) make extensive in&
ulations to obtain finite bisimilar quotients of the original system.

The following two frameworks comprise the study.

Framework | - Multi-robot Motion Planning It is a novel framework for the
motion coordination and planning of a multi-modal robots modeled as a
network of hybrid automata with respect to a requirement specification
in Computational Tree Logic (CTL). CTL provides a formal requirement
specification mechanism allowing to quantitatively define the desired be-
havior of the network of multi-modal robots. This framework presupposes
an infra-structure of the multi-modal robots with feedback controllers that
constraint the motion capabilities of the individual robots. This constrains
the individual robot in the network to move in a planar grid where static
obstacles may be present. Motion planning is performed using the model
checking tool UPPAAL, given a requirement specification in CTL for
the network of multi-modal robots. Path tracking the planned paths is not
within the scope of this study.

Framework Il - Robot Controller Synthesis A framework for controller syn-
thesis for linear control systems with respect to a requirement specifica-
tion in Linear-time Temporal Logic (LTL). Linear control systems satis-
fying simple controllability assumptions allow finite abstractions in the
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form of finite bisimilar quotients to be computed. The possibility to com-
pute finite bisimulations of linear control systems permits a discrete con-
troller to be synthesized. A refinement of the discrete controller results in
a hybrid closed-loop combining the continuous dynamics of linear con-
trol system with the synthesized logic required to enforce the requirement
specification. The framework is demonstrated for the controller synthesis
for a unicycle.

1.3 Multi-Robot Systems

The study of MRS naturally extends research on single robot systemaySu

on existing work in the field of MRS can be found in [Dudek et al., 1996, Cao
et al., 1997, Parker, 2000, Arai et al., 2002, Farinelli et al., 2004][Diudek

et al., 1996] the authors present a taxonomy which classifies MRS based o
communication and computational capabilities. Cao et al. [Cao et al., 1997]
describe the theoretical issues that arise in the study of cooperation inadgIRS
well as identifying the primary research topics in MRS with respect to aclgevin
the "mechanism of cooperation™: Group architecture, resource dpofligin of
cooperation, learning, and geometric problems. Recently, Parkere?2000]

and Arai et al. [Arai et al., 2002] have identified the primary researpit$o
within MRS as follows.

e Biological inspirations

e Communication

Architecture, task planning, and control

Localization, mapping, and exploration

Object transportation and manipulation

Motion coordination

— path planning
— traffic control
— formation generation/keeping

— target tracking/search
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— docking behavior

e Reconfigurable robots
e Learning

As shown above motion coordination covers several sub-researids.tophe
work presented in this thesis is within motion coordination and path planning
and control of robots.

In [locchi et al., 2001] and [Farinelli et al., 2004] a new taxonomy fassi-
fication of the approaches to coordination in MRS is proposed. The taxpito
characterized by two groups of dimensions, that is the coordination arsgshe
tem dimension. The term dimension refers to specific features that aneegrou
together in the taxonomy. The classification dimensions of the taxonomy are
shown in Table 1.1.

Coordination Dimensions | System Dimension
Cooperation Communication
Knowledge Team composition
Coordination System architecture
Organization Team size

Table 1.1:Classification dimensions.

The coordination dimensions of the taxonomy are shown in Figure 1.1.

Figure 1.1 shows a hierarchical structure for the coordination dimenesfons
the taxonomy. The different levels of the structure are: A cooperatia,lav
knowledge level, a coordination level, and an organization level.

The first level of the taxonomy (cooperation level) is concerned with the ab
ity of the system to cooperate in order to accomplish a specific task. Thedseco
level (knowledge level) is concerned with how much knowledge eacht iabo
the system has about the presence of other robots. The third levediftatmon
level) is concerned with the mechanism that is used in order to achievereoope
ation in the system. The fourth level (organization level) is concerned with the
way the decision system is realized within the MRS.
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Figure 1.1:Coordination dimensions in multi-robot systems.

1.3.1 Coordination and Cooperation in Multi-Robot
Systems

Coordination and cooperation are of fundamental importance for any &S

is composed of several interacting mobile robots. In the following we explicitly
define cooperation and coordination in a MRS. The terms cooperation (or to
cooperate) and coordination (or to coordinate) are defined as follows.

"Coordination or to coordinate: The act of making all the ac-
tors/agents involved in a plan or activity work together in an or-
ganized way: There’s absolutely no coordination between the dif-
ferent groups - nobody knows what anyone else is doing. To make
various different things work effectively as a whole [Cambridge
University Press, 2006]."
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"Cooperation or to cooperate: The action of cooperating, i.e. of

working together towards the same end, purpose, or effect; joint
operation. To work together, act in conjunction (with another ac-

tors/agents, to an end or purpose, or in a work) [Oxford University

Press, 2005]."

From the above definitions it is clear that cooperation imply that a group-of ac
tors/agents are working together to accomplish some task that is common to all
actors/agents. On the other hand, coordination is related to how the action of
cooperation is achieved among the actors/agents in the group. Furtbeti-co
nation clearly requires that each actor/agent has some knowledge pbbihka
actors/agents are doing. Explicit definitions of cooperation and codialiniz

the robotics literature are sparse. However, locchi et al. [locchil.eR001]
defines cooperation and coordination in a MRS as follows.

DEFINITION 1.1 (COOPERATION) Situation in which several robots operate
together to perform some global task that either cannot be achieved ibgla s
robot, or whose execution can be improved by using more than ong, thios
obtaining higher performances.

DEFINITION 1.2 (COORDINATION ) Cooperation in which the actions per-
formed by each robot take into account the actions executed by the othwsr

in such a way that the whole ends up being a coherent and high perfeeman
operation.

Cao etal. [Cao etal., 1997] have a similar definition of what they call catipe
behavior in a MRS.

DeFINITION 1.3 (COOPERATIVE BEHAVIOR ) Given some task specified by
a designer, a MRS displays cooperative behavior if, due to some umigerly
mechanism (i.e. the "mechanism of cooperation"), there is an increagein
total utility of the system.

The mechanism by which coordination is achieved determines such prepertie
as how efficient the MRS is in performing a given task and what typesarf co
dinated tasks can be achieved.
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1.4 Previous and Related Work

Several researchers have addressed the problem of coordinadi®dRS. In the
following we restrict previous and related work to motion coordination in MRS
and to some extent to control. In particular, we focus on path planning in.MRS
However, in the following we consider control of the robots as a natuwlqd
motion coordination, and we review some of the more traditional approaches to
motion coordination in MRS. Then, we review some of the approaches to motion
coordination and control that employ formal methods.

In [Alami et al., 1998] multi-robot coordination is achieved by employing a
plan-merging paradigm (at trajectory level) that guarantees cohezbatior of
all the robots in all situations. The plan-merging paradigm enables eacttmb
produce a coordinated plan that is compatible with all plans executed by other
robots. Ogren et al. [Ogren et al., 2002] have addressed the cldéRSffor
which control Lyapunov functions can be found. Their results yieldlzsiract
and theoretically sound coordination strategy for formation control andtexain
nance in MRS.

1.4.1 Formal Methods in Motion Coordination

Inthe last decade several researchers have investigated the osaalfhethods

for the motion coordination and control of MRS. The methodology advocated
by formal methods requires the construction of a high-level model origésa

of the system, typically in the form of a hybrid system. The model can then
be subjected to a variety of mathematical analyses such as simulation, verifi-
cation/model checking, performance evaluation, or controller synthasim-
rithmic analysis of hybrid systems is a challenging problem since the presence
of continuous variables results in an infinite state-space, and even the ftimple
analysis problems turn out to be undecidable. However, useful anabsibe
performed for a limited class of hybrid systems such as timed automata [Alur
and Dill, 1994].

Traditionally, verification tools such asd6MV, KRoNO§ UPPAAL and
HYTECH, etc. have been used for checking whether a high-level model satis-
fies a requirement specification in some suitable temporal logic. Temporal logic
is the natural framework for specifying the correctness of computeyranos.
Temporal logic was originally used to specify the behavior of reactivecand
current systems [Manna and Pnueli, 1991].
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An approach to formal modeling and design of communication and control
strategies for a MRS was taken in [Alur et al., 1999]. The model of linelritly
automata was used to model the high-level behavior of a robot. The vioifica
tool HY TECH was used to algorithmically analyze parameter constraints in the
model.

A formalism for sequential composition of concurrent robot behavimsed
on threaded Petri nets, has been developed in [Klavins and Kodits2b@g].
The formalism is used for the construction of automated factories such aemob
robot bucket brigades. A distributed negotiation mechanism for codirdimen
MRS was considered in [Gerkey and Mataric, 2002]. A hybrid confppkaach
to action coordination and collision avoidance was taken in [Egerstedt eand H
2002]. In [Koo, 2001, Koo and Sastry, 2002] a hybrid automaton kas lised
to model the multi-modal behaviors of a robot. A computational framework for
automatic generation of provably correct control laws for a fully actuptaaar
robot in a triangulated polygonal environment has been proposed lita [&eal.,
2005].

The use of temporal logic as a mechanism for requirement specification and
controller synthesis in mobile robotic systems has been advocated as kar bac
as [Antoniotti and Mishra, 1995]. Recently, temporal logics have beed as
a specification mechanism for path planning [Fainekos et al., 2005a,ht- Kloe
zer and Belta, 2006a,b] and synthesis of multi-robot motion tasks [Loizdu an
Kyriakopoulos, 2004].

A methodology for automatically synthesizing multi-robot motion tasks
based on requirement specifications in linear temporal logic (LTL) waepted
by Loizou and Kyriakopoulos [Loizou and Kyriakopoulos, 2004]. Tasulting
closed-loop system was shown to satisfy the specifications by construbiien
ensuring correct design.

Recently, several researchers have considered the idea of dagelp
framework for automated deployment of single and multi-robot systems. Typ-
ically, these approaches employ temporal logic as a specification mechanism.
Further, simple dynamics are assumed for the robots such that a finitecabstra
tion (finite bisimilar quotient) can be achieved. Finally, a path or set of paths fo
the robot or robots are automatically generated using model checkingifor ve
cation techniques.

Fainekos et al. [Fainekos et al., 2005b] have considered the prolblem-o
tion planning for a single, fully actuated robot in an polygonal environnrent
order to satisfy formulas expressible in LTL. First, discrete abstractibtiseo
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robots motion based on some environmental decomposition is constructed. Sub
sequently, discrete plans are generated that satisfy a temporal logiddassiu

ing the verification tool NSMYV. Finally, the discrete plans are translated into
continuous trajectories using hybrid control.

The problem of synthesizing a controller from LTL specifications for
discrete-time linear control systems with semi-linear partitions are considgred b
Tabuada and Pappas [Tabuada and Pappas, 2006], where it is gfaiviinite
bisimulations exist for controllable linear control systems with properly ainose
observations. The framework provided in [Tabuada and Pappa8] @0@fined
in [Fainekos et al., 2005a], where the authors study the problem ofotiamdgra
planar robot in a polygon so that its trajectory satisfies a LTL formula. Isis a
sumed that a triangulation of the polygon is given, and vector fields aignasss
in each triangle so that the produced trajectories satisfy a given LTL farmu
over the triangles.

A fully automated framework for control of continuous-time linear control
systems from specifications given in terms of LTL formulas was provided by
Kloetzer and Belta [Kloetzer and Belta, 2006a]. A single robot was usetha
illustrative example. Recently, Kloetzer and Belta [Kloetzer and Belta, 2006b
have proposed a fully automated framework for motion planning of a MRS in
a partitioned environment. The task requirement specification for the ratmts
given in terms of a LTL formula over regions of interest in the environment.
In this framework, a robot is modeled as a transition system and verification
methods are used to generate motion plans for the robots that satisfy the task
requirement specification. Collision avoidance among the robots is actigved
allowing the robots to synchronize upon movement.

1.5 Contributions of This Work

¢ A novel framework for the motion planning of a network of multi-modal
robots, modeled as a network of hybrid automata, with respect to formal
requirement specifications in Computational Tree Logic (CTL) has been
proposed. The framework presupposed an infrastructure of the multi-
modal robots with feedback controllers that constraint the motion capa-
bilities of the individual robots. This constrains the individual robot in the
network to move in a planar grid where static obstacles may be present.
Motion planning for the multi-modal robots in the network is feasible by
abstracting each robot in the network to a timed automaton. Motion plan-
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ning for the network of multi-modal robots is performed using the model
checker UPPAAL.

e The motion planning part of the above framework is presented in [Quot-
trup et al., 2004, Andersen et al., 2004] where a network of multi-modal
robots was modeled as a network of interacting timed automata. For-
mal composition was achieved through synchronization channels and UP-
PAAL was used for symbolic model checking, i.e. motion planning
against a requirement specification in computational tree logic (CTL). All
feasible trajectories that satisfy the specification were algorithmically ana-
lyzed. Also, the framework proposed for multi-robot motion planning de-
veloped in [Quottrup et al., 2004, Andersen et al., 2004] has been dpplie
to a harvesting system in [Andersen and Jensen, 2004] and to multi-modal
aerial robots in [Koo et al., 2006].

e The framework originally developed by Tabuada and Pappas [Tabuada
and Pappas, 2006] has been extended to fit with the problem of synthe-
sizing a controller for a mobile robot, given a requirement specification in
LTL. This required some modifications which were primarily concerned
with the input to the framework and with the software implementation of
the linear hybrid system obtained by refinement.

1.6 Thesis Outline

The remaining chapters are outlined as follows.

Chapter 2 - Motion planning This chapter gives an introduction to various ap-
proaches for both single and multi-robot motion planning

Chapter 3 - Transition Systems and Bisimulations This chapter gives an in-
troduction to the notions of bisimulations for two classes of transition
systems with observations; transition systems and labeled transition sys-
tems.

Chapter 4 - Model Checking Networks of Timed Automata This  chapter
gives an introduction to the notions of model checking networks of timed
automata in the model checker UPPAAL.
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Chapter 5 - Multi-robot Motion Planning This chapter presents a novel
framework for the motion planning of a network of multi-modal robots
given a formal requirement specification in Computational Tree Logic
(CTL).

Chapter 6 - Case Study |: Multi-robot Motion Planning The framework
presented in chapter 5 is applied to a multi-robot system comprised of
two multi-modal robots.

Chapter 7 - Robot Controller Synthesis This chapter presents a framework
for synthesizing a controller for a linear control system given a formal
requirement specification in Linear-time Temporal Logic (LTL).

Chapter 8 - Case Study Il: Robot Controller Synthesis The framework pre-
sented in chapter 7 is applied to synthesize a controller for a mobile robot
(unicycle).

Chapter 9 - Conclusions and Recommendationdresents the conclusions
and recommendations for further work for the two frameworks presented
in chapter 5 and 7, respectively.



Chapter 2

Motion Planning

This chapter deals with motion planning of single-robot and multi-robotilmob
systems. First, a classification of motion planning algorithms is presented.
Motion planning approaches for both single- and multi-robot systems are
reviewed.

The research in robot motion planning can be traced back to the late
1960’s [Latombe, 1991, Laumond, 1991]. In the broadest sense, MmaAn-
ning refers to a robot’s ability to plan its own motion. According to Hwang
and Ahuja [Hwang and Ahuja, 1992] motion planning covers both path frignn
and trajectory planning. Path planning refers to the design of a geometric (k
matic) path of the robot only. Hence, in path planning the dynamics of a robot
is not taken into account. Trajectory planning includes the design of limehr a
angular velocities of the robot. Further, motion planning involves suchrshive
aspects as finding collision-free paths among possibly moving obstaclespmotio
coordination of several robots, etc. Motion planning can be either statlg-or
namic. In static motion planning, complete information about the obstacles in
the environment is known a priori. On the other hand, dynamic motion planning
concerns the case where partial or no information about the obstagelksawn
a priori [Hwang and Ahuja, 1992].

Laumond [Laumond, 1991] classify motion planning as either holonomic
or non-holonomic motion planning. Within the 1980’s, motion planning was
mainly considered in the context of holonomic systems. For holonomic sys-
tems all degrees of freedom (DOF) can be changed independentlyis lcatie
the existence of a collision-free path is characterized by the existenceanf-a

13



14 Motion Planning

nected component in the configuration space. Thus, motion planning tsoofsis
building the free configuration space and searching for a path in its ctathe
components. Latombe’s book [Latombe, 1991] constitutes the referetida w
the domain of holonomic motion planning.

In the 1990’s, researchers began to investigate motion planning in the pres
ence of kinematic constraints, also referred to as non-holonomic motion plan-
ning. For non-holonomic systems, the degrees of freedom (DOF) aiade
pendent. In fact, most mobile robots are subject to non-holonomic coristrain
A classical example of a non-holonomic constraint is the pure-rolling without
slipping constraint [Oriolo et al., 2002].

2.1 Motion Planning Algorithms

For the classification of motion planning algorithms two aspects are mainly taken
into account, that is the completeness and the scope of the algorithm [Hwang a
Ahuja, 1992]. The classification of motion planning algorithms is shown below.

e Completeness

— exact

* resolution complete
x probabilistically complete

— heuristic
e Scope

— global
— local

Exact algorithms guarantee to find a solution when one exists. Howewast, ex
algorithms are usually computational expensive. Two types of exactithligna:
exist: Resolution complete and probabilistic complete. A resolution complete
algorithm is guaranteed to find a collision-free path (if one exists) at angive
resolution; otherwise return failure. For a probability complete algorithm the
probability of finding a collision-free path (if one exists) converges to thas
running time goes to infinity. A long running time may be required to make the
probability converge to 1. Heuristic algorithms are geared at finding a selutio
fast but may fail to find one for complex problems.
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Further, algorithms can either have global or local scope. Algorithms with
a global scope take into account all the information in the environment to plan
a path from the initial to the goal configuration. Algorithms with a local scope
only use information in the vicinity of the robot.

2.2 Motion Planning Problems

Any motion planning problem typically involves the following steps.
e Determine the configuration paramefess$ the robot,

e Choose a suitable representation of the robot and possible obstacles in the
environment,

e Select and apply a suitable motion planning approach to the problem at
hand,

e Select and apply a search method to find a solution path to the problem.

In the basic motion planning problem [Laumond, 1991] there is one robot
present in a static and known environment. The task is to compute a collision-
free path that will bring the robot from its initial configuration to its desired
configuration. In this context the robot is the only moving object in the enviro
ment and the dynamical properties of the robot are ignored, thus iegdke
motion planning problem purely geometrical where the motions of the robot is
only constrained by the static obstacles.

Various extensions of the basic motion planning problem exists and include
among others the presence of dynamic obstacles in the environment, multiple-
robots, unknown environment, or the presence of non-holonomic kineotatic
straints, etc. Indeed, any of these extensions renders the motion plamabig
lem more complex.

2.3 Motion Planning Approaches

In the following single-robot and multi-robot motion planning approaches will
be reviewed. Typically, a motion planning approach employ some graptisear

1For example position and orientation
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method. The graph search methods applied in the context of motion planning
are depth-first, breath-first, best-first;,A*, bidirectional search, and Dijkstra’s
algorithm.

2.3.1 Single-Robot

The general approaches to single-robot motion planning is outlined in khe fo
lowing as well as the scope that typically apply for each approach.

¢ Roadmap (global scope)

— visibility graph
— Voronoi diagram
— freeway nets

— silhoutte

e Cell decomposition (global scope)

— approximate

— exact
¢ Potential field (local scope)
e Sample-based (local scope)

— rapidly-exploring random trees (RRT)
— randomized path planner (RPP)
— probabilistic path planner (PPP)

The roadmap and cell decomposition methods aim at capturing the global con-
nectivity of the robot’s free space into a condensed graph that is guésty
searched for a path. The roadmap method captures the connectivity rafthe
bot’s free space in a network of 1-D curves called roadmaps. Pathipiarsn
reduced to connecting the initial and goal configurations and then $egufcin
at path. The constructed path is a concatenation of sub-paths conrteeting
tial configuration to the roadmap, a sub-path contained in the roadmap, and a
sub-path connecting the roadmap to the goal configuration.

The cell decomposition approach typically involves three steps.
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e Decomposing the robot’s free space into regions (squares, trapgzoida
triangular, polygon), called cells,

e Construct the connectivity graph that represents the adjacency relation
between the cells in the free space. Nodes in the graph represent a cell
and two nodes are connected by an edge if the corresponding cells are
adjacent. Two cells are adjacent if they have a common edge. A graph
search method (see graph search methods) is applied to find a path in the
connectivity graph, connecting the initial and goal nodes. A path in the
connectivity graph thus corresponds to a path of cells in the free space,

e A free path is computed by connecting the initial configuration to the
goal configuration through the midpoints of the intersections of every two
adjacent cells, etc. The cell decomposition can either be classified as
approximate or exact. In the exact case the free space is decomposed into
cells whose union is exactly the free space.

The potential field approach considers the robot as a particle moving unde
the action of forces generated by an artificial potential field attracting that ro
towards the goal configuration and at the same time pushing it away from ob-
stacles. Khatib pioneered the potential field. Early potential field methods had
a problem with getting stuck at a local minima of the potential function other
than at the goal configuration. Koditschek introduced the notion of a atiweiy
function, a local-minimum-free potential function.

2.3.2 Multi-Robot

Several authors have tried to classify approaches to multi-robot path plan
ning [Fujimura, 1991, Latombe, 1991, Arai and Ota, 1992, Cao et al.7]199
Fujimura [Fujimura, 1991] classify path planning as either centralized oildistr
uted. In centralized planning there is a global planner the makes the dscision
On the other hand, in distributed planning the individual robots plan andgtadju
their paths. Latombe [Latombe, 1991] classify path planning as either Eentra
ized (complete) or decoupled (not complete). The centralized approlke$ ta
into account all robots and consists of planning the co-ordinated pathe of-

bots as a path in their composite configuration space. In the decouplezhappr
the motion of one robot is planned independently of the other robots. Subse
qguently, in the case of resource conflicts the interactions among the péth’s o
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the robots are taken into account. Two decoupled planning approachds-a
scribed, e.g. prioritized planning [Erdmann and Lozano-Pérez, 1&&bpath
coordination [O’Donnell and Lozano-Pérez, 1989]. Prioritized piageonsid-
ers the path of one robot at the time according to a global priority that tleésrob
have been assigned. The path coordination method is based on schéeithing
niques for dealing with and avoiding collisions among robots.



Chapter 3

Transition Systems and
Bisimulations

In this chapter we review the notions of bisimulations for two classes of transi-
tion systems: Transition systems introduced in [Tabuada and Papp@§] 26d
labeled transition systems introduced in [Pappas, 2003]. The notiongsiohb
ulation is one of the main complexity reduction methods for the analysis and
synthesis of transition systems. Bisimulations are important since they allow
transition systems to be related.

3.1 Finite Quotients of Transition Systems

3.1.1 Partitions and Equivalence Relations

A partition P of a setA is a division ofA into non-overlapping blocks or cells
that cover all ofA.

DEFINITION 3.1 (PARTITION ) A partitionP of a setA is a collection of non-
empty set§P;},.; = P, satisfyingA = U;c; P;, whereP; N P; = (), fori # j.

For any two element®;, P; € A for i # j the intersection’, N P; = (). The

partitionP is finite if I is finite and infinite otherwise. The partitida induces
a projection maprp : A — P which maps each elememtc A to an unique set
mp(a) = P.

19
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Equivalence relations are important because they can be used to group to
gether objects that are similar in some sense. Thedsean be transformed
into another set by considering each equivalence class as a single very E
equivalence relation can be identified with a partition and vice versa.

DEFINITION 3.2 (EQUIVALENCE RELATION ) An equivalence relatior- on
a setA is a binary relation o, that is

o (Reflexivity)a ~ aforalla € A,
e (Symmetry) whenever ~ b thenb ~ a,
e (Transitivity) if a ~ b andb ~ c thena ~ c.

An equivalence relationC A x A on the se# induces a partitio® = {P; }icr,
defined bya,b € P; if (a,b) €~. The elements; of the partition? are the
equivalence classed ~. This means, that given a partitigh of A an equiva-
lence relation~C A x A having the elements @? can be defined. A refinement
of a partition is defined as follows.

DEeFINITION 3.3 (REFINEMENT OF PARTITION ) LetP be a partition. Par-
tition P’ is a refinement of partitiorP when for everyP’ € P’ there exists a
P € P such thatP’ C P.

Given a refinemenP’ of partition P the projection maprp.p : P/ — P is
defined which maps every elemdpt e P’ to an unique elementpp(P') = P
such thatP’ C P.

3.1.2 Transition Systems and Bisimulations

The rationale for introducing transition systems is that linear control systams c

be embedded in the class of transition systems. Transition systems will be used
as an abstract model for capturing the dynamics of linear control systéms.
transition system is defined as follows.

DEFINITION 3.4 (TRANSITION SYSTEM) A transition system with observa-
tions is defined as

T=(Q,Q°—,0,7), (3.1)

where
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Q is a (possibly infinite) set of states,

Q" C Q is a (possibly infinite) set of initial states,

—C @ x @ is a transition relation,

O is a (possibly infinite) set of observations,

T : Q@ — O is an observation map assigning to each state ) an
observationY (¢q) € O.

Transition systems should be thought of as graphs with a possibly infinite num-
ber of nodes representing states and edges between nodes repgesansi-
tions. The choice of observation mapis natural since observations are asso-
ciated with states rather than transitions. Transition systesfinite when@
andO are finite and infinite otherwise. Denote by— ¢’ a pair(q,q’) €e—.

A stateq is predecessor of a stat§ andq’ is a successor af. Further,T is
deadlock free if for every € Q, there exists a staig¢ € (Q such thay — ¢'.
Given a statey € @ it is useful to compute the set of states that can regich

one step, that is in one transition. Denotely(q) the set of states iy that

can reachy in one step

Pre(q) = {¢' € Q|d — q}. (3.2)
ThePre-operatoris extended to sets of stat€@ C () as follows
Pre(Q) = | Pre(¢). (3.3)
qeQ’

In generaI,Pre"(Q’) for i > 0 denotes the set of states that can re@ctin i
steps.Pre’(Q') is recursively defined as follows

Pre’(Q) = Q, (3.4)
Pre!(Q') = Pre(Q'), (3.5)
Pre!(Q') = Pre(Pret=1(Q")), i>2. (3.6)

The set of states i) that can reacly € @ in one step and the set of states
that can reach sets of stat®s C ( in one step are graphically illustrated in
Figure 3.1.
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(a) Set of states that can reaghe @Q in (b) Set of states that can rea€)l C Q
one step. in one step.

Figure 3.1:lllustration of thePre-operator.

The notion ofbisimulationis one of the main complexity reduction meth-
ods for the analysis and synthesis of transition systems. A bisimulation [Milner,
1989] is an equivalence relation between transition systems, associategsy
which behave in the same way in the sense that one system simulates the other
and vice-versa, i.e. they match each others moves while preserving trwabs
tions. Bisimulation relations can be described as symmetric simulation relations.
Bisimulation relations are important since they allow transition systems to be re-
lated. Further, bisimulations preserve properties expressible in sésanabral
logics [Alur et al., 2000], e.g. Linear Temporal Logic (LTL) and Computagio
Tree Logic (CTL). Lets introduce the notion of a bisimulation relation.

DEFINITION 3.5 (BISIMULATION RELATION) Let T =
(Q1,Q%,—1,0,71) and T» = (Q2,Q%, —2,0,Y3) be transition
systems over a common set of observationd.et~C Q1 x ()2 be a relation
betweern); and ). The relation~ defines a bisimulation relation betweéi
andT if the following holds for any paifqi, ¢2) €~

e ¢1 —1 ¢} implies the existence a@f, € @, satisfyingg, —2 ¢ and
(91, 43) €~,
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e g2 —2 ¢, implies the existence @f € Q; satisfyingg; —1 ¢} and
(91, 43) €~

e ¢ € Q) implies thatg, € Q9 andge € QY implies thatg; € QY,
e Ti(q1) = Talg2) if g1 ~ qo.

The bisimulation relation respects both observations and transitions. The exis
tence of a bisimulation relation betwe&h and 7> will be denoted byl = T5
andT} andT5; are said to be bisimilar.

The introduction of equivalence and bisimulation relations now allow to in-
troduce a finite bisimilar quotient that is bisimilar to transition sysfiem

DEFINITION 3.6 (QUOTIENT TRANSITION SYSTEM) The quotient transi-
tion system of transition systeit = (Q,Q°, —, 0, Y) with respect to an
equivalence relation-C @Q x @ is given by

T/N - (Q/~7Q9N7—>/~707T/~)7 (37)
where
e Q. ={S C Q] Sisanequivalence class of} is a set of states,
e QY =7.(Q") isaset of initial states,

e —,.C Q). x Q. is atransition relation defined by —,_ 5" if
there existg € S andq’ € S’ such thaty — ¢/ in T,

e (O is a set of observations,

e T, : @Q,.— Oisanobservation map assigning to eaghe Q,. an
observationl',.(S) = T(q) for someg € S.

The set of observatior@ is inherited fronil". The observation maj ., is well
defined sincdqi, ¢2) €~ implies thatY(¢1) = Y(g2). If the relation~ is a
bisimulation relation betwe€h andT it follows that the graph of the projection
. Q — Q/., defined by

{(.9)€eQx Q)| 5S=7(q)}, (3.8)

is a bisimulation relation betwe€h and7)... The quotient transition system
T is called a finite bisimilar quotient of transition systéfnwith respect to
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Quotient Transition
SystemT/N

Bisimulation

[ Transition SystemJ
T

Figure 3.2:Quotient transition systeffi,.. of transition systerf'.

equivalence relatior-. The quotient transition systeff}... of transition system
T is graphically represented as in Figure 3.2.

Given two transition systenig andT5 the parallel composition of transition
systemsl; andT5, with observation synchronization is natural and defined as
follows.

DEFINITION 3.7 (PARALLEL COMPOSITION) Let T} = (Q1, Q?, —
,O,71) andTy = (Q2,QY, —2, O, T2) be two transition systems over a com-
mon observation spaae. The parallel composition df; and7» with observa-
tion synchronization is given by

T [lo Ta = (Q”,Qﬁ, —>||707TH) ; (3.9)
where
o Q) ={(q1,92) € Q1 x Q2 [ T1(q1) = T2(g2)} is the set of states,

Q) = {(a1,¢) € Q) x Q3| Ti(a1) = T2(g2)} is the set of initial
states,

— 1€ Q) x Q) isthe transition relatiqn defined ky , ¢2) —| (44, %)
for (q1,42), (41, 45) € Q) if ¢t —1 ¢} InT1 andga —1 g5 in T,

O is the set of observations,

§||(: )Q” — O is the observation map defined W(ql, ) ="Yi(q1) =
2\q2)-
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The observation spa&e of 7} || T3 is inherited from transition systernig and
Ts.

3.1.3 Languages of Transition Systems

Given a sefS, denote byS* the set of all finite strings obtained by concatenating
elements inS. An element ofS* is given bysyss...s, with s; € S fori =
1,2,...,n. The length of a string € S* is denoted bys|. Denote byS“ the
set of all infinite strings obtained by concatenating elemenis. ihn element
of S¥ is an infinite strings;s2s3 ... with s; € S for ¢ € N. Given a strings
belonging toS* or S“, denote bys(i) thei-th element ofS. A subset ofS* is
called a language while a subset%f is called anv-language.

Astrings € S*US¥isarunoflif (s(i),s(i + 1)) e—,i=1,2,...,|s|—
1fors € Q¥ ori € Nfors € Q* Arunof T is initialized if s(1) € Q°. We
now define the languages generated by a transition syStem

DEFINITION 3.8 (GENERATED LANGUAGE) LetT = (Q,Q° —,0,T)
be a transition system. The language generated ligydefined as

L(T) = {r € O" | r = Y(s) for some initialized rurs of T'} .
Thew-language generated 13 is defined as
L,(T)={r e O0%|r="1(s)forsome initialized rurs of T'} .

Bisimulations preserve language equivalence. Two transition syStearsdTs
are language equivalent if they generate the same language.

PrRoPOSITION 3.1 (LANGUAGE EQUIVALENCE ) LetT; andT5 be two tran-
sition systems and a bisimulation relation betweeh; andT5. The following
equalities hold
L(Th) = L(T3),
L,(Ty) = L,(T5).
Further, the languages generated by the parallel compositidf, gtnd 75, de-
noted byT} ||o T> can be expressed in terms of the languages generat&d by
andTy
L(Th loTz) = L(Th) N L(T>),
L, (Tl ||O TQ) =Ly, (Tl) N Ly, (TQ) )
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whereL (11) N L (1») denotes language intersection.

3.1.4 Labeled Transition Systems and Bisimulations

Here, we define a labeled transition system with observations. In ordelate r
properties of different labeled transition systems, the definitions of simulation
and bisimulation will be introduced.

DEFINITION 3.9 (TRANSITION SYSTEM (LABELED)) A labeled transition
system with observations is defined as

T = (Q727—>)O7T)7 (310)
where

e () is a (possibly infinite) set of states,

Y} is a (possibly infinite) set of labels,

e —C () x X x Qis atransition relation,

O is a (possibly infinite) set of observations,

T : @ — Ois an observation map assigning to each ) an observa-
tion Y(q) € O.

The labeled transition systeinis finite when@), 32, andO are finite and infinite
otherwise. Denote by -~ p a triple (¢, 0, p) €—. A region is a subseP C
@ of the set of states. Thesuccessor of a regiaR is denoted byost, (P) and
is defined as the set of states that can be reached frovith oneo-transition,
see Figure 3.3.

ThePost,-operatoris defined as follows

Post,(P) = {q €Q|3Ip e Pwithp % q} ) (3.11)
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Post (P)

Figure 3.3:lllustration of thePost-operator for a regionP C Q.

In general,Post’ (P) denotes the set of statesdhthat are reachable from?
usingi o-transitions.Post’ (P) for i > 0 is recursively defined as

Post? (P) = P, (3.12)
Post! (P) = Post, (P), (3.13)
Post? (P) = Posty (Post,(P)), (3.14)
Post? (P) = Post, (Postf,_l(P)) . (3.15)

A relation R between); and(- is a subseR C ()1 x Q2 and we define

R ={(p,q) € Q2 x Q1| (¢,p) € R}, (3.16)

as the inverse relation.

DEFINITION 3.10 (SMULATION RELATION (LABELED) Consider two la-
beled transition systems;, = (Q1,%,—1,0,T1) and Ty = (Q2, %, —
,O,T9) over a common set of labels and observationg). A relation R C
Q1 x Q4 is called a simulation relation frorff; to T if it respects both obser-
vations and transitions, that is

e if (¢,p) € RthenY (q) = T2(p),
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e if (g,p) € Randq -~ ¢, thenp -7 ¢/, for some(¢’, p’) € R.

DEFINITION 3.11 (BSIMULATION RELATION (LABELED)) Let

T = (Ql,E, —>1,0,T1) and Ty, = (QQ,E,—>2,0,T2) be two la-
beled transition systems over a common set of labBed®id observation®). A
relation R C Q1 x Q2 is called a bisimulation relation betwedn andT5 if R
is a simulation relation fron¥} to 7, and R~! is a simulation relation froni’,
toT7.

The property of bisimulations states that equivalent states must be aldenperf

a transition using the same label to states that are also equivalent. Given a
labeled transition syste = (Q, %, —, 0, T) and an equivalence relation

~C @ x @ the quotient transition system is defined on the quotient sRace

Let¥ : @ — Q. be the quotient map. The definition of a quotient transition
systems follows as.

DEFINITION 3.12 (QUOTIENT TRANSITION SYSTEM (LABELED)) The
quotient transition system of a labeled transition system (Q, %, —,0,T)
with respect to an equivalence relatienC ) x Q@ is given by

Tjw = (@)X, —/n, 0,1 0), (3.17)
where
o Q. ={Q, €29|Q,, is an equivalence class of} is a set of states,
e Y is a set of labels,

e —,.C Q. x ¥ x Q. is atransition relation defined b, .
Qs, if there exists; € Q,, andp € Q,, such thaty - pin T,

e (O is a set of observations,
e ). : Q. — Oisan observation map defined tfy..(¥(q)) = T(q).

The set of label& and the set of observatioids of 7', are inherited froni".
The transition relatior— . of 7). is induced from the transition relatior—
of T'. The observation maj ., is well defined since the partitioninduced by
~ is observation preservinfPappas, 2003], i.e. ib ~ g thenY(p) = T(q).
Thus, equivalent states have the same observation. We now defiaetehaa-
tion [Pappas, 2003].
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PROPOSITION 3.2 (CHARACTERIZATION ) Consider the labeled transition
system?” and observation-preserving partitienwith quotient map? : @ —
Q/~- Then,~ is a bisimulation ofI" if for all statesq € @) and for all labels
ceX

U(Post, (U H(T(q)))) = ¥(Post,(q)), (3.18)

where¥~1(¥(q)) is the set of all states i) that are equivalent to staie

3.2 Summary

The notions of transitions systems and bisimulations introduced in this chapter
will be used in chapters 5-8.

The class of labeled transition systems is used as an abstract model for a ne
work of multi-modal robots where each robot is modeled as a hybrid automaton
The abstract models for the network of multi-modal robots are used for motion
planning, given a requirement specification in Computational Tree Logi (s
chapters 5- 6).

The class of transition systems is used as an abstract model for capt@ring th
dynamics of a robot, modeled as a nonlinear system. The abstract model of th
robot is used as a baseline for controller synthesis with respect to eaugrit
specification in Linear-time Temporal Logic (see chapters 7-8)






Chapter 4

Model Checking Networks of
Timed Automata

This chapter gives an introduction to the concept of model checking rietwb
timed automata using the model checkd? PAAL, given a formal requirement
specification in Computational Tree Logic (CTL).

4.1 Networks of Timed Automata inUPPAAL

UPPAAL [Uppsala University and Aalborg University, 1995a] is an inatgd

tool environment for modeling, simulation and model checking real-time sys-
tems that can be modeled as a network of interacting timed automata extended
with data types (bounded integers, arrays, etc.). The tool is developmal-in
laboration between the Department of Information Technology at Uppsala U
versity, Sweden and the Department of Computer Science at Aalborgdityy
Denmark. The tool is appropriate for systems that can be modeled as a collec
tion of non-deterministic processes with finite control structure and réaéda
clocks, communicating through channels.

Given a system modeled as a network of timed automata and a requirement
specification in computational Tree Logic (CTL), UPPAAL is used for model
checking (verifying) the system against the specification. The resultoafel
checking or verifying the system is'property satisfied/not satisfie@hd when
relevant asymbolic traceof the system. The symbolic trace shows the trace
for each automaton in the network satisfying or violating the specification. The

31
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setup is illustrated in Figure 4.1.

Requirement Specification in CTL

"Property Satisfied"/

"not satisfied"
Network of
+
Timed Automata
Symbolic

Trace

Figure 4.1:Setup for model checking a network of timed automata us-
ing the model checkdd PPAAL, given a formal requirement specifi-
cation in Computational Tree Logic (CTL).

Since clocks range over the non-negative reals, a timed automata can have
infinitely many states and infinitely many traces. Therefore, it is not possible to
visualize all these concrete traces. Instead, an infinite set of traceisaaézed;

a so called symbolic trace. Each symbolic state of a symbolic trace is a set of
states and their delay successors described by a number of constrathis o
clocks. In a given symbolic state, the active locations and the values oétlisc
variables are the same for all states.

4.2 Declaration of Processes

UPPAAL allows the construction of templates for the system being modeled.
Subsequently, the templates are used to declare new processes.

4.3 Synchronization of Processes

In UPPAAL synchronization channels are used to synchronize pgesed his

is done by annotating edges in the model with synchronization labels. Synchr
nization labels are of the forel ande?, wheree! ande? are in the sending and
receiving process, respectively, anavaluating to a channel. Two processes
can synchronize on enabled edges annotated with complementary syimahro
tion labels, i.e. two edges in different processes can synchronize ifudrelg
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of both edges are satisfied, and they have synchronization lafdedsd ey ?,

respectively, where; ande; evaluate to the same channel. When two processes

synchronize, both edges are fired at the same time, i.e. the current loghtion

both processes is changed. The update expression on an edgemajzioh on

e1! is executed before the update expression on an edge synchronizgg on
Three different types of synchronization channels can be used iMAEP

to synchronize processes.

Regular Channel Described above.

Urgent Channel Urgent channels are similar to regular channels, except that
it is not possible to delay in the source state if it is possible to trigger a
synchronization over an urgent channel. Clock guards are not allowe
edges synchronizing over urgent channels.

Broadcast Channel Broadcast channels allow 1-to-many synchronizations.
The intuition is that an edge with synchronization lableémits a broad-
cast on the channeland that any enabled edge with synchronization label
e? will synchronize with the emitting process. l.e. an edge with an send-
synchronisation on a broadcast channel can always fire, prothdethe
guard is satisfied, no matter if any receiving edges are enabled. Bet thos
receiving edges, which are enabled will synchronize. Notice that clock
guards are not allowed on edges receiving on a broadcast charimel.
update on the receiving edges are executed left-to-right in the order the
processes are given in the system definition.

4.4 Timed Automata

A timed automaton is a finite-state automaton or finite-state machine extended
with a finite collection of real-valued clock variables [Alur and Dill, 1994]. All
clocks are assumed to proceed at the same rate, i.e. they progresesypnsly,

and measure the amount of time that have elapsed since they were reset. The
value of a clock may be compared with natural numbers and reset to zeto. L

C be a set of real-valued variables, called clocks. Denot&ty) the set of
conjunctions over simple constraints of the fofmx ¢ andx — y > ¢, where

z,y € C,c € N,andxe {<, <,=,>,>}. Elements ofB(C) are called guards
overC'. A timed automaton is defined as [Larsen et al., 1995].



34 Model Checking Networks of Timed Automata

DEFINITION 4.1 (TIMED AUTOMATON ) A timed automaton is a tuplé, =
(L,1°C, A, E, I), where

e [ is the set of locations,

19 € L is the initial location,

C'is the set of clocks,

A is the set of actions, co-actions and the interaalction,

E CLxAx B(C) x 2¢ x Lis the set of edges between locations with
an action, a guard and a set of clocks to be reset,

e [: L — B(C) assigns invariants to locations.

4.4.1 Urgent and Committed Locations

When a process is in an urgent location, time is not allowed to pass, i.e. time
"freezes". Semantically, urgent locations are equivalent to: Addingxama
clock z, that is reset on every incoming edge, and adding an invatiaht) to

the location.

Like urgent locations, committed locations "freeze" time. Furthermore, if
any process is in a committed location, the next transition must involve an edge
from one of the committed locations. Committed locations are useful for creat-
ing atomic sequences and for encoding synchronization between morevihan
components. Notice that if several processes are in a committed location at the
same time, then they will interleave.

4.5 Semantics of Timed Automata

A timed automaton is a finite directed graph annotated with conditions over and
resets of non-negative real valued cloaks C, which satisfy the differential
equationi = 1. A clock valuation is a function, : C' — R>( from the set

of clocksC' to the non-negative realg>o. Denote byR® the set of all clock
valuations. A state of a timed automatdn- is a pair(/,u), wherel € Lis a
location of A+ andwu holds the current values for the clock variables. The initial
state of A7 is (1°,ug), whereuq assigns zero to all clocks € C. In a timed
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automaton all clocks are initialized to zero by definition, thaijsz) = 0, for

all clocksz € C'. An invariant express constraints on the clock values in order
to remain in a particular state. Furtherc I(l) means that satisfy(l). The
semantics of a timed automaton is defined as follows.

DEFINITION 4.2 (SEMANTICS OF TIMED AUTOMATON ) Let Arp =
(L,1° C, A, E,I) be a timed automaton. The semanticsdef is defined as a
transition system

(Sv S0, —>)7 (41)
where

e S C L x R is the set of states,
e 50 = (I°, up) is the initial state,

e —C S x{R>oUA} x Sisthe transition relation defined by

)L Lutd)ifvd:0<d <d = u+deI(),

- (l,u
— (lu) =% (I',«) ifthere3e = (I,a,g,7,1') € E such thatu € g,
v = [r— OJu, andu’ € I(1),

where ford € R>¢, u + d maps each clock € C to the valueu(z) + d
and[r — OJu denotes the clock valuation which maps each clocktm
0 and agrees with overC'\ .

Let Ay, = (L;,19,C, A, E;, 1), for 1 < i < n be a network of timed automata
over a common set of clock§ and actionsA. A location vector is given as
l=1[l,..., ln]T. The invariant functions are composed into a common function
over location vectorg(l) = A;I;(l;). Denote byi[l;/1;] the vector where théth
element; of [ is replaced by!. The semantics of a network of timed automata
is defined as follows.

DEFINITION 4.3 (SEMANTICS OF A NETWORK OF TIMED AUTOMATA )
LetAr, = (L;,19,C, A, E;, I), fori = 1,...,n be a network of timed automata
over a common set of clocks and actionsA. The semantics is defined as a
transition system

(Sv S0, %)7 (42)

where
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e S=(L; x...x Ly,) x R is the set of states,
e 50 = (lp, up) is the initial state,
e —C S x Sis the transition relation defined by

- (Lu) — (Lu+d)i 0<d <d = u+del(),
l l d)ifvd : 0<d <d de I(l

— (Lu) — (I[/1;],u"), if there 31; =5 1/ such thatu € g, v/ =
[r+— 0]u, andu’ € I(1).

= (L) — (/1,10 ), if there 3l 4% 17 and1; “2% 1t

such thatw € (g; A gj), v’ = [r; Ur;j — Olu, andu’ € I(1).

4.6 Requirement Specification in Computa-
tion Tree Logic (CTL)

For timed automata, problems such as reachability and model checking require
ment specifications in CTL are decidab[@lur et al., 1995, 2000]. UPPAAL
use a subset of Computation Tree Logic (CTL), i.e. a simplified version &f CT
Like in CTL, the query language consists of path formulas and state formulas
State formulae describe individual states, whereas path formulas quaveify
paths or traces of the model. Path formulas can be classified into reachability,
safety and liveness. Figures 4.2-4.4 illustrates the different path fosnsula:
ported by UPPAAL. In contrast to CTL, UPPAAL does not allow nesting of
path formulas. Hence, liveness and safety properties can not bkechatthe
same time. A summary of the path formulas supported in UPPAAL is found in
Table 4.1.

State formulae describe individual states, whereas path formulas quantify
over paths or traces of the model.

4.6.1 State and Path Formulas

A state formula is an expression that can be evaluated for a state withoitdook
at the behavior of the model. The syntax of state formulae is a supersettof th
of guards, i.e., a state formula is a side-effect free expression, baonhirast to

!Computational feasible.
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Property | Equivalentto | Description
E()o N/A Possibly: There exists a path where state property
¢ eventually hold.
El]o N/A Potentially always: There exists a path where state
property¢ always hold.
Ao —E[]-¢ Eventually: For all paths state property eventu-
ally hold.
Alle —E()—¢ Invariantly (always): For all paths state property
¢ always hold.
o—>¢ | A[l(¢ = A()p) | Leads to: Whenever state propertyholds state

propertye eventually hold.

Table 4.1:Path formulas supported idPPAAL.

(a) Possibly:E()¢. (b) Potentially alwaysE] |¢.

Figure 4.2:Path formulas using th&'-operator.

(a) Eventually:A()¢. (b) Invariantly: A[ ]¢.

Figure 4.3:Path formulas using thd-operator.
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Figure 4.4:Leads to:¢p — > .

guards, the use of disjunctions is not restricted. It is also possible toesher

a particular process is in a given location using an expression on theHdrm
where P is a process and | is a location. Path formulae can be classified into
reachability, safety and liveness.

4.7 Summary

The concept of model checking networks of timed automata in UPPAAL intro-
duced in this chapter will be used in chapters 5-6. Given a network aftsob
modeled as a network of timed automata and a requirement specification in CTL
for the network UPPAAL is used to generate a set of collision-free patttbé
network of robots which satisfy the formal requirement specification.



Chapter 5

Multi-robot Motion Planning

In this chapter a framework for the motion planning of a network of multi-
modal robots with respect to formal requirement specifications in Cteipnal
Tree Logic (CTL) is proposed. CTL provides a formal requiremeatsigation
mechanism allowing to quantitatively define the desired behavior of the retwor
of multi-modal robots. The framework presented here presuppasésfra-
structure of the multi-modal robots with feedback controllers that condttaa
motion capabilities of the individual robots. This constrains the individuabtob

in the network to move in a planar grid where static obstacles may be present.

5.1 Framework

The baseline for the framework is a network of multi-modal robots

Hy, ..., Hy and a finite partitionr of the environment that conforms with the
motion capabilities of the robots in the network. Each of the robots in the net-
work is modeled as a hybrid automaton. The framework is depicted in Figure 5.1

The intermediate steps involved in the proposed framework are briefly de-
scribed below.

(1) Hybrid Automaton Model of Multi-Modal Robot A hybrid automatord
is used as a generic model for each of the multi-modal robots in the net-
work Hy, ..., Hy.

(2) Partitioning the Environment A finite partition = of the environment is

39
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Requirement Specification

2
CTL Formula 2
-

ol
Robot Controllers Timed Automata [ = g
Acyy ooy Acy Network of Robots Model Checker g %
and Static Obstacles Arysoe Ary UPPAAL % .§
Aoyses Aoy and Environment < g
'_
Construction
Sequences of
Discrete Transition Input Synchro-
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£
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2
Quotient Transition 2}
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Abstraction
Infinite Transition
SystemT},
Environment Embedding |4
- . 5
Finite Partition Hybrid Automata Network of Robot&, ..., Hy ﬁ;
™
T
J

Figure 5.1:Proposed framework for motion planning of a network of
multi-modal robots with respect to formal requirement specification in
Computational Tree Logic (CTL).
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formed. The partition conforms with the motion capabilities of the multi-
modal robots in the network.

(3) Continuous Transitions Timed and time-abstract transitions are defined for
describing robot movement and stopping a robot, respectively. Further
the introduction of timed and time-abstract transitions allows cyclic tran-
sitions to be defined. Cyclic transitions allow the hybrid automaiocto
operate continuously by taking cyclic transitions. Cyclic transitions are
essential in the process of embedding the hybrid automAtonto the
class of labeled transition systems.

(4) Embedding the Hybrid Automaton The hybrid automato# is embedded
in the class of labeled transition systems. The result is a labeled transition
systemI}, that captures the hybrid behavior of hybrid automatbnThe
labeled transition systeffy, is equivalent to the hybrid automatéhwith
respect to desired reachability properties.

(5) Obtaining the Abstraction A finite quotient transition systeffy, ;. is ob-
tained from the labeled transition systémby considering a finite parti-
tion 7 of the environment. By construction, the quotiéht.. is bisimilar
to transition systernd}, associated with hybrid automatdh and thus the
reachability properties off are preserved in the abstraction. Further, the
quotientT}, /., is abstracted into a finite and discrete transition sysiem
Again,T; is bisimilar toTj, ,~. by construction.

(6) Constructing the Timed Automata A timed automatom,. is constructed
from transition systeni; such that the reachability properties are pre-
served. The construction of, allow timing and coordination of robots
in the network to be considered. Timed automathnis used as a tem-
plate for instantiating each of the multi-modal robdis, .. ., 4, inthe
network. To allow the network of multi-modal robots to move concur-
rently a simple automaton controller template is also constructed. In this
way a controller can be instantiated for each of the robots in the network.
Finally, a obstacle template is constructed.

(7) Creating Process InstancesRobot, controller, and obstacle process in-
stances are instantiated from the constructed templates. Each process is
instantiated with a set of specific process parameters.
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(8) Requirement Specification A requirement specification is formulated in
Computational Tree Logic (CTL) that express the desired behavior of the
network of multi-modal robots.

(9) Motion Planning The model checker UPPAAL is used to generate a set
of collision-free paths for the network of multi-modal robots in the form
of sequences of synchronization inputs such that the requiremerit spec
fication in CTL is satisfied. The sequences of synchronization inputs are
subsequently executed by the network of multi-modal roléhts . . , Hy
modeled by hybrid automata.

The steps (1)-(7) are described in this chapter while steps (7)-(atepic
of chapter 6.

The timed automata formalism merely presents an abstraction (a high-level
model) of environment, robots and associate controller, but allows composi-
tion and formal symbolic reasoning about coordinated motion planning solu-
tions. The model checker UPPAAL is used for formal symbolic model check
ing against a requirement specification formulated in Computational Tree Log
(CTL) for a network of multi-modal robots. The result of the verification is a
"Property satisfied"or "Property not satisfied"meaning that the requirement
specification is satisfied or not satisfied, respectively. In case théreatpnt
specification is satisfied a symbolic trace is generated, containing the sequen
of synchronization inputs required for moving the network of multi-modabteb
to their final positions.

Finally, the generated sequences of input synchronization actionxere e
cuted by the network of multi-modal robofd,, ..., Hy. Therefore, the se-
quences of input synchronization actions generated by the modeleshaak
used as high-level motion plans for the network of multi-modal robots.

5.2 Modeling a Network of Multi-Modal Ro-
bots

In the following we consider a network d¥ robots denoted byd; for i =
1,...,N.
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5.2.1 Assumptions

The following assumptions are made regarding the modeling of the network of
multi-modal robots

e The robots move concurrently in a planar environmentXi.€ R?,
e Each robot is assumed to be a single poinkin
e Each of the robots is assumed to have identical motion capabilities,

e Each of the robots is assumed to move with a fixed, but possible different
velocity,

e A set of static obstacleS., . .., Oy may be present in the environment.
The position of robof; is given by
T; = [xil xiQ]T € X, (5.2)
fori =1,..., N. Thus the velocity of robokt; is given by
T; = v; = [vil viQ]T. (5.2)

Thus, for a robot to move from an initial to goal position requires an gojate
sequence of inputs, where each input corresponds to a motion capability.

To simplify the notation the position of a robot in the network is denoted by
x and the velocity is denoted hy

5.3 Hybrid Automaton as Generic Model

A hybrid automaton [Koo and Sastry, 2002] is used as a generic modehébr

of the multi-modal robots in the netwoil{,, ..., Hy. The hybrid automaton is
defined as

H=(QxX,%Y, Init, {,T,I,G,R), (5.3)
where

e Q={q1,9,4qs3,q4,q5} is the set of discrete states,

e X C RZ?isthe continuous state-space,
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2

)

1

(a) Two robotsH; and H, with identical motion capabilities and their correspondin
paths.

/
7,

o ~

s
S

(b) Appropriate execution of the motion capabilities of theatsh¥/; and H; results in
paths that are similar to the original paths.

1

Figure 5.2:Network of two multi-modal robotd; and Hs.
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e ¥ = {01,09,03,04,05} is the set of events with input € 3,
e Y C R?is the continuous output-space with output Y,
e Initis the initial set defined bynit = {¢:} x X,

e fisthe vector field defined by

- 1T

0 0 if ¢ =q1,

- :T

v 0 |fq:(J2>

4 T
i=f(g;x) =4 |~v (ﬂ if ¢ = gs,

0 v if ¢ = qu,

- T

0 —v} if ¢ = gs.

wherev = v; = vy > 0,

e T : Qx X x¥ — X isthe observation map defined (g, z,0) =
y=xforqeqQ,

e [ isthe invariant defined bj(¢;) = X x {o;} fori =1,...,5,

e (G isthe guard relation defined by

G, q;) = oj if ¢ =g andg; € Q\{a},
v o1 ifg €@\ {q}andg; = q.

e R is the reset relation defined bi(g;,q;,z) = {z}, for (i,j5) €
{(1,2),(2,1),(1,3),(3,1),(1,4), (4,1), (1,5), (5, 1)}.
The hybrid automatott is graphically represented in Figure 5.3.

The hybrid state of hybrid automafd is (¢,z) € Q x X. The hybrid
automatord starts in the hybrid stattnit = {q1} x X. Hence, the robot starts
in the discrete statg, at an arbitrary position:. In stateq; the vector field is
flqr,z) = [0 O]T and hence the continuous stateemains the same. In state
¢1 the hybrid automatorl/ accepts any input from the set of eveiis, {0}
as defined by the guard relati@n. If the input isoy the guardG(qi, g2) is
enabled and the hybrid automatéhtakes the transition to discrete state In
g2 only z; will increase since the vector field g2, z) = [v O]T. In the state
gi € Q\ {¢1} the hybrid automato/ accepts only the input; and takes the
transition back to the discrete state
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Figure 5.3:A hybrid automatorf{ is used as a generic model for each
of the multi-modal robots in the network,, ..., Hy.
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5.4 Partitioning the Environment

In the following we provide the partitioning of the continuous state-spéde
which the robots move. Now, consider that the continuous state-spaceR?

is decomposed into a finite number of cells by a partittos: {X;}},, where

M is the number of cells in the partition. We assume that the location of each
robot or static obstacle in the continuous state space belongs to exactlglbne c
The partitiont of X satisfies the following two properties

x=Jx; 7={,.... M}, (5.4)
JET
XiNX; =0, Vi#j, (5.5)

whereM is the number of cells in the partition. Hence, the cells of the partition
7 cover the continuous state spaXeand do not overlap.

The partition induces an equivalence relation. In this context, the induced
equivalence relatior: is calledcell equivalencend is defined over the contin-
uous state spack. The cell equivalence relation is finite since it has a finite
number of equivalence classes, i.e. a finite number of cells. For any tgie po
tionsa’, 2" € X, 2/ ~ 2" («' is equivalent tar”) if there existsj € Z such that
2, 2" e X;.

The continuous state-spadeis decomposed in such a way that it conforms
with the motion capabilities of the robots. The partitions constructed by
putting a two-dimensional grid over the continuous state-spac@he bound-
aries of each celK; € 7 is parallel with exactly one possible motion direction
of a robot, i.e. a motion in the; or zs-direction. The obtained partition is
composed of identical cells with length> 0 where each cell is defined as the
Cartesian product of two half open intervals. The partitiois shown in Fig-
ure5.4

The motion of a multi-modal robot is restricted to be from one cell in the
partition to an adjacent cell. The rationale behind this restriction is twofold.
First, it reduces the state-space of the system and hence it reducesihlexity
of model checking the system. Second, it reduces the number of cellsttg n
to be occupied when the multi-modal robots are moving.

Given a cellX; € = we now define

T; = {i e T\ {j}|10X; N 0X,| > 1}, (5.6)

whered X; ando.X; denote the boundary of cells; and.X;, respectively. Thus,
everyX; is adjacent toX; for i € Z;.
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2

1

Figure 5.4:Partition = of the continuous spac¥ into a finite number
of cells and motion capabilities of a robot.

5.5 Cyclic Transitions

Here, we are interested in the reachability of the robots in the environment.
In [Koo and Sastry, 2002] the time-abstract transitions for describingahgn-

uous transitions of a hybrid automaton have been introduced. In this mutti-rob
motion planning scenario, there are multiple robots operating concurrertly an
there is a need to coordinate their motions in order to meet the requirement spec
ification. However, we are only concerned about the periods of time wigem-

bots are in motion and we are not interested in those robots that are not rabving
all. This is because coordination is needed only when the robots aremarfp
continuous transitions from one cell to another one, which takes a finiteramou
of time. Therefore, we now introduce two types of continuous transitions as
sociated with hybrid automatoH, that istimed andtime-abstracttransitions.
Timed transitions are associated with robot movement and time-abstract transi-
tions are associated with stopping the robot. Timed and time-abstract transitions
are essential in the process of embedding the hybrid autontatoro the class

of labeled transition systems and subsequently for obtaining a finite quotient
transition system.

Now, lets definep(t, ¢, xo) as the solution of the differential equatién=
f(g, x) with z(0) = =z for ¢ > 0.
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DEFINITION 5.1 (o;-LABELED (TIMED) TRANSITION) Considerz’,z” €
X, p € Rsgando; € ¥\ {01}, theo;-labeled (timed) transitioris defined
as

2 a i = 0lp, a1

This transition is defined for a fixed period of tippeand it describes the contin-
uous transition in discrete staje € () with inputo; € ¥\ {01 }.

DEFINITION 5.2 (01-LABELED (TIME -ABSTRACT) TRANSITION)
Considerz’,z” € X, 6 € R>p ando; € X, theo;-labeled (time-abstract)
transitionis defined as

' T 2 if 2 = (8, q1, 2).

This transition is defined for a fixed period of tifi@nd it describes the contin-
uous transition in discrete stagec Q \ {¢1} with inputo; € X.

The introduction of timed and time-abstract transitions allows to define
cyclic transitions.

DEFINITION 5.3 (0;-LABELED CYCLIC TRANSITION ) Considerr’, 2" € X
ando; € ¥\ {01}, theo;-labeled cyclic transitioris defined as

o = 2 if o I " IS g
Following the definition of the initial set @it = {q; } x X, the cyclic transition
enables a transition fromy to ¢; € @ \ {¢1} and then back tg@;. Hence, the
hybrid automator{ can operate continuously by taking the cyclic transitions.
The definition of cyclic transition allows to introduce the local motion capability
of a robot.

PROPOSITION 5.1 (LOoCAL MOTION CAPABILITY ) Consider a finite parti-
tion of the continuous state spade C R? defined byr = {X;}M,. Given a
cell X; € = and an adjacent cel; € = with i € Z; there existsr; € X \ {01}
such that for all’ € X there exists” € X; such that’ =% ="

Given the partitionr, due to the definition of adjacent cells, there are at most four
possible adjacent cells for each cell. However, for the cells at the laoyrod

the partitions there are at most two or three adjacent cells. For an adjacent cell,
since there exists exactly one motion direction that is parallel to each bgundar
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one can simply pick a motion direction that will make the robot move towards
the adjacent cell. Due to the simple reachability property of the multi-modal
system modeled by the hybrid automdia one can easily show that a robot
could start from anywhere within the cell and could reach somewhereeittsid
adjacent cell in finite time. An example of a local motion capability of a robot is
graphically illustrated in Figure 5.5.

2! 023 2 X;
X; o

Z -

Figure 5.5:Example of a local motion capability of a robot caused by
a oo-labeled cyclic transition.

Starting in cellX; a o2-labeled cyclic transition will move the robot in the
x1-direction and eventually the robot will reach the adjacent &ell

5.6 Embedding the Hybrid Automaton

We now introduce a labeled transition system that preserves the reachability
properties of the hybrid automatdié. The hybrid automatof is embedded
in the class of labeled transition systems with observations. We shall coasider
finite set of observation® associated with the finite set of cells defined by the
partitionm = {Xj}jf‘i1 of the continuous state-spage

Define a labeled transition system associated with hybrid autonfatas

Th = (Qh72h7:>thaTh)7 (57)
where
e (), = X is the set of states,

e ¥ =X\ {01} is the set of labels,
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e —;,C X x ¥;, x X is the transition relation defined by ==, 2’ if
r, 7 € X,

e O = BM js the set of observations,
e T, : Qn — O isthe observation map defined as
T
Th(x) = [Thl(x) Thz(x> ThM(x)] )
whereY,, : X - B={0,1},forj=1,..., M is defined as

T ( ) 1 ifze Xj,
A\X) = .
i 0 otherwise.

Transition systenT}, is infinite since the set of statéy, is defined as the con-
tinuous state spac&. However, the set of observatios is finite since the
partition 7 is finite. By constructing the observation ma} according to the
partitionr the cell equivalence relation is observation-preserving

5.7 Obtaining the Abstraction

The set of all equivalence class&s in X, given the cell equivalence relation
~, is called the quotient space,, of X by the cell equivalence relatica. The
quotient spaceX /. is defined as

Xipw=m (5.8)
= {Xj}j]\ih

that is the set consisting of all equivalence classesf cell equivalence relation
~. Given the cell equivalence relaties, there is a canonical projection map
Uy X — X/ defined as

which sends each € X to its equivalence clasX;. The quotient transition
system obtained from the labeled transition sysigens defined as

Ty~ = (Qnjms hy =172 0, Vi) (5.10)

where

Also called quotient map. The quotient map is always suivect
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* (/~ = X/~ Is the set of states,

o =, /~C Qna X Xp X @y~ Is the transition relation defined by
X; ==/~ X; in Ty~ if there existsz € X; andz’ € X; such that
X :J>h Z'in Th,

® T4/~ : Qu~ — O isthe observation map defined By, /. (¥, (7)) =
T ().

The labeled quotient transition systéfj), . is finite sinceQ), /~, ¥, andO are
finite. Note, thatt; andO are inherited fronil},. We can show that the cell
equivalence relatior: is a bisimulation of transition systeif}, associated with
hybrid automatonf. Given the transition systerfy, and the cell equivalence
relation~, we can show that is a bisimulation off},.

THEOREM 5.1 (BISIMULATION RELATION ) Consider the transition system
Ty, associated with hybrid automatdl and the cell equivalence relatioss.
Then,~ is a bisimulation off},.

PROOF 1 (THEOREM 5.1) Since¥, (¥, ()) is the set of all states i that
are equivalent tar, it is a cell. According to Proposition 5.1Post,(z) €
Post, (¥, }(Vy,(x))) for all + € X and for all 0 € %,. Furthermore,
Post, (¥, ' (V),(x))) is an adjacent cell which is also an equivalence class.
Therefore W), (Post, (¥, ' (¥(z)))) = Wp,(Post,(z)). Hence the result.

THEOREM 5.2 Consider the transition systeff}, associated with hybrid au-
tomata H, the quotient transition systeff}, .~ of T;, and the cell equivalence
relation~. Then,T}, andT}, ~ are bisimilar.

PROOF 2 (THEOREM 5.2) As the states of the quotient transition systBm.

are given by the equivalence classes of cell equivalence relatj@nfinite quo-
tient transition system is obtained since the cell equivalence relatidras a
finite number of equivalence classes. Since the cell equivalence refai®a
bisimulation of transition systeff}, associated with hybrid automatdi, it can
be shown thaf}, is bisimilar to7}, /-, by the relation

Ry ={(z,X;) € X x 7 | Up(z) = X;}, (5.12)

betweerl}, andTj, /..



5.7 Obtaining the Abstraction 53

SinceT}, andT},~ are bisimilar, model checking propertiesff can equiva-
lently be performed by model checking the propertie¥;pf., which is discrete
and finite. Therefore, the reachability problem for the multi-modal robogis d
cidable.

The last step in the process of obtaining a finite quotient transition system
of hybrid automator, is to associate each cell of the partition with a discrete
position. Thus, a finite transition system is introduced which has a finit& set
of discrete positions as the set of states. The midpoint of a cell in the partition
coincides with a discrete position of a robot. Thus, we associate with efich ce
X; € 7 a discrete position; € Z? of the robot. Lets define an isomorphi$m
v, : 7w — Z such that

U (X;) =z if z; € X; Vi € T, (5.12)
whereZ = {1,..., M}. Thus,Z is defined as
Z = {z}L,. (5.13)
Now, define a labeled transition system
T, = (Qr, Xp, =, 0, 1y), (5.14)
where
e (); = Z is the set of discrete states,

o =—,C Q; x Xj, x @, is the transition relation defined by == z; in T;
if there exists¥ (X;) = z and¥;(X;) = z; such thatX; ==, /. X; in
Thms

e T, : @, — O isthe observation map defined ty(z;) = Th/z(Xi).

Transition systen?; is finite since@;, ¥;, andO are finite. Note thak;, and
O are inherited front}, ... Similarly, one can show that the quotient transition
system(T}, ~, is bisimilar to the finite transition systeify by the relation

Ry ={(Xi,zi) € mx Qi | Vi(X;) = 2}, (5.15)

betweenl}, .. and7;. The relationship between the state-space of the different
transition systems},, T}, /~., and7; is shown in Figure 5.7.

2Informally, an isomorphism is a map that preserves sets @lations among ele-
ments, i.e a structure-preserving mapping.
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Discrete Transition P
SystemT;

Abstraction 0,
Quotient Transition X
Systentr}, /~ /=
Abstraction vy,
Infinite Transition x
SystemT},
Embedding

( Hybrid Automaton J X
H

(a) Relationship between transitiotb) Corresponding
systems associated with linear contate-spaces.
trol system>..

Figure 5.6:Intermediate steps in the abstraction of hybrid automaton
H to obtain a finite bisimilar quotieri;.
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5.8 Constructing the Timed Automaton

In this section, we will show how to construct a timed automafigrsuch that

the reachability properties of the finite and discrete transition sygiesme pre-

served. Sincé}; andT}, /., are bisimilar and’}, . andT}, are bisimilar the reach-
ability properties are preserved. Therefore, any sequence of a¢tiahcan be
accepted by timed automatah. can also be accepted by hybrid automatbn

5.8.1 Modeling the Environment

In UPPAAL the set of discrete statésis represented in an occupancy table.
The occupancy table is represented as a two-dimensional boolean array

int[0,1] Z[Z 1][Z 2], (5.16)

whereZ_1, Z_2 € 7 define the size of the array in thg and z,-direction,
respectively. Thus, elements of the array represent discrete positibere each
discrete position can be assigned the value 0 (free) or 1 (occupiedrtiar
element(1, 2) of the arrayZ is marked occupied by the assignmé&ftl] [ 2]
= 1. By default all elements of the arr&@yare initialized to zero.

Static obstacles may be present in the environment where the robots are
moveing. A static obstacle is modeled as an automaton

Ay, = (L)1, E), (5.17)
where
e L ={ly, 11} is the set of locations,
e o € L is the initial location,

e £ C L x Lis the set of edges, where an edge contains a location and a
target location. The edges are defined as

eoo = (lo, o),
eo1 = (lo, ).

AutomatonA, modeling one static obstacle is graphically shown in Figure 5.7.
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obsNo ==obsIDandj<1
0@ | ziz 1statz 2stat] = 1,
j=i+1

obsNo ==obsID and j==1
i=0,
obsNo = obsNo+1,

z_1=1z 1Stat,
z_2 =1z 2Stat

-0

Figure 5.7:Process template for one static obstacle.

AutomatonA, starts in the locatioty, which is declared committéd By
declaring this location committed, an element in the aZagan be marked
as occupied by an obstacle, without allowing any time delay in locdton
When the guardbsNo == obsld and j < 1isenabled, the assignment
Z[z_1Stat][z_2Stat] = 1 is performed and the index varialjleis in-
cremented. The edge froljmto /; will then become fired since the guastis No
== obsI D and j = 1 is satisfied, resulting in an update of index variable
j to zero, an increment afbsNo and the obstacle witbbsNo == obsl d is
given a static discrete position by the assignments = z_1St at andz_2
=z 2Stat.

This automaton is used as a template for declaring static obstacles processes.
Processes declared using the static obstacle template can be declared with the
template parameters specified in Table 5.1.

Parameter | Type Description

obs| D constint| Unique identifier for static obstacle
z_1Stat | constint| Static position of obstacle in; -direction
z_2Stat | constint| Static position of obstacle in,-direction

Table 5.1:Template parameters for one static obstacle.

3Committed locations are represented®y
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5.8.2 Timed Automaton Model of Robot

Recall, that the goal is to generate a set of collision-free paths for therebi
multi-modal robots which satisfy a formal requirement specification in CTL and
which enable the network of multi-modal robots to eventually reach their goal
positions. In CTL, thé'eventually reach goal positionproperty is specified
as a liveness property whereas tloellision-avoidance"property is specified
as a safety property. However, since CTL does not allow nesting aida®
and safety properties the liveness and safety properties can notbkechto-
gether. This problem is solved in two steps: I.) The collision-avoidangegpty
is guaranteed by using a correct-by-construction principle where tlisi@o-
avoidance property is embedded in the timed automaton modeling a multi-modal
robot. I.) The eventually reach goal position property is ensureddcon enulti-
modal robot in the network by using the model checker UPPAAL.

A timed automaton template is now constructed from the finite transition
systemT;. Since the multi-modal robots in the network have fixed speed
v1 = v9 and the length of every side of the cellsis- 1, we can choosg = %
so that for any initial condition:(0) in a cell a robot can move to an adjacent cell
by taking a proper cyclic transition. The timed automaton associatediith
defined as

AT:(L7l0707A7E7I)7 (518)
where

o L ={lp,l1,lo,13,14,l5} is the set of locations,

lp € L is the initial location,

C = {c} is the set of real-valued clock variables,

A = {sigma_27?,si gma_37?,si gma_47?,si gma_57?} is the set of
input synchronization actions,

ECLxB(C)xAx 2¢ x L is the set of edges, where an edge contains
a source location, a guard to be satisfied, an synchronization action to be
received, a clock variable to be reset, and a target location. The“%dges

4e;; denote the edge from locatidnto /;.
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are defined as

eoo = (lo, lo),

(
(lo, 1),
(
(

li,c == c_mc = 0,l), fori=2,...,5,
li,sigma_j ?,1;), forj =2,...,5,

e [ : L — B(C) assigns to each locatidne L an invariant/(l). The
invariant is defined as

I(l;) : ¢ <= c_m fori=2,...,5.

The timed automatonrl,, modeling one multi-modal robot is graphically illus-
trated in Figure 5.8.

The state of the timed automaton(isu) € LxC, wherel € L is a location and
u : C — Rxg is a clock valuation function from the set of clocks= {c} to
the nonnegative real®>(. Thus,u holds the current value of the clock variable
¢ in location!.
Timed automatom,. is equipped with a real-valued clock variallén order
to take the timing constraint related to the transitipe=-, z; forsomeo € ¥,
into consideration. Thus, a real-valued clock variabls used to represent the
amount of time a robot spends on moving frem= ¥, (X;) to z; = ¥, (Xj).
Assume that the robot can move with a fixed velocity that is givers by
€ Z. In the timed automaton this is modeled using an invariant on the location.
The timed automatomr, starts in locatiorly. In this location the robot is
placed on its initial discrete position as specifiedzbyll nit andz_2Ini t.
In locationi; the robot can move from the initial cell to an adjacent cell in the
partition given that one of the edges are fired and the associate consmmilés
the corresponding output synchronization action. In locatjothe timed au-
tomaton is ready to receive an input synchronization actiogna_i ! for i
= 2,...,5 from the associated controller. If the edgg is fired and the syn-
chronization actiorsi gnma_2! is received the timed automaton fires the edge
e1o to locationl,. Note that the edge,- is only fired if the adjacent cell is free
Z[z_1+1]1[z_2] == 0 and within the defined partition, iez_1 < Z 1.
The adjacent cell is marked occupigflz_1] [ z_2] =1 when the edges is
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10 robotNo == robotID and i < 1
©) | z[z_1nit[z_2Init] = 1,
=i+l

robotNo == robotID and i == 1
i=0

robotNo = robotNo + 1,
z_1 =2z 1lnit,
z_2=2z 2Init
c==c_m c==c_m
_ c=0 c=0, _
C<=C_M 7z 1]z 2]=0 Z[z 1][z 2]=0, C=<=¢cm
| 3 z 1=z 11 z 1=z 1+1 | 2

sigma_37? sigma_27?
z_1>0andZ[z_1-1][z_ 2] == 0
Z[z_1-1][z. 2] =1

z_ 2<Z 2andZ[z_1][z_2+1]==0
Z[z_1][z_2+1] =1

z 1<Z landZ[z_1+1][z_2]==0
Z[z_1+1][z_2] =1

z_2>0and Z[z_1][z_2-1]==0
Z[z_1][z_ 2-1]=1

sigma_47? sigma_57?
| 4 c= )
- c=0, c=0 -
C<=c_m 7z 1][z_2]=0, Z[z_1][z_2]=0, C=<=¢m
z 2=7_2+1 z2=272-1

Figure 5.8:Template for one multi-modal robot.

fired. In locationl; the movement towards the adjacent cell is performed for a
fixed period of time, i.e. as long as the invariant<= c_mis satisfied. Then,
the edgees; is fired when the guard == c¢_mis enables and a transition is
taken back to locatioh . When the edge-; is fired the clock variable is reset

to zero, the previous cell is marked frépZ_1][ Z_2] = 0 and the discrete
position of the robotisupdated 1 = z_1 + 1.

Processes declared using the robot template can be declared with the tem-
plate parameters specified in Table 5.2.
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Parameter | Type Description
robot | D | constint| Unique identifier for robot
z_1lnit | constint| Initial position of robot inz;-direction
z_2lnit | constint| Initial position of robot inz,-direction
c.m constint| Constraint on clock c
sigm_2 chan | Synchronization channel to move robotip-direction
sigma_3 chan | Synchronization channel to move robot inrz;-
direction
sigma_4 chan | Synchronization channel to move robotig-direction
sigma_5 chan | Synchronization channel to move robot rxs-

direction

Table 5.2:Template parameters for one robot.

5.8.3 Automaton Model of Robot Controller

A controller is associated with each timed automaton modeling a multi-modal

robot. A controller for each robot is needed as the system consistsativank

of concurrent robots moving in the environment. The robot controller isahead

as an automaton

where

A. = (L,ly, A E), (5.19)

e L ={lp} isthe set of locations,

e [y € Lis the initial location,

e A = {sigma_2!, sigma_3!, sigma_4!, sigma_5!} is the set of
output synchronization actions,

e I/ C L x A x L is the finite set of edges, where an edge contains a
source location, an output synchronization action to be send, and & targe

location. The edges are defined as

€; =

(lo,sigma_i !, ly), fori =2,...,5.

The robot controller automaton is shown in Figure 5.9.

The automatom,. start in the locatior. In this location the automaton can
send an output synchronization act®ingma_i ! € A can be sent to the timed
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Figure 5.9:Template for one robot controller.

automatond,. modeling a multi-modal robot. The set of output synchronization
actionsA represent all possible movements of a robot.

Complementary synchronization channels are of the fosing(a_i !,
si gnme_i ?), wheresi gna_i ! is the sender andi grma_i ? is the receiver.
Thus, a robot and its associate control can synchronize on complesneytar
chronization channels if their respective invariants and guards arieshtiBhus,
if the automatom.. takes the edge

es = (lp,si gma_2! 1), (5.20)
the timed automaton,. will take the corresponding edge
€1p = (ll,Si gma_Z’),lJ) (5.21)

The automatom.. is used as a template for declaring control process instances.
Processes declared using the controller template can be declared with the tem-
plate parameters specified in Table 5.3.

Parameter | Type | Description

sigma_2 | chan | Synchronization channel to move robotindirection
sigma_3 | chan | Synchronization channel to move robot inrz;-
direction

sigma_4 | chan | Synchronization channel to move robotistdirection
signma_5 | chan | Synchronization channel to move robot ixs-
direction

Table 5.3:Template parameters for robot controller.
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5.9 Summary

A novel framework for the motion planning of a network of multi-modal ro-
bots with respect to formal requirement specification in Compuatonal Trgie L
(CTL) was presented in this chapter. CTL enables to express the dixgdreess
and safety properties that the robots in the network should satisfy.

The robots were assumed to move concurrently in the environment and to
have identical motion capabilities. A hybrid automaton was introduced as a
generic model for each of the multi-modal robots in the network. The embgddin
of the hybrid automata into the class of labeled transition systems was possible
by introducing cyclic transitions and by considering a finite partition of the en-
vironment that conforms with the motion capabilities of the robots.

Subsequently, the finite bisimilar quotient obtained from the hybrid automa-
ton was used to construct a timed automaton for the robot. The quotient of the
hybrid automata was obtained in such a way that the reachability properties of
hybrid automata were preserved by the timed automata. The constructed timed
automaton serves as a template for instantiating new robot processes.aAlso,
controller and obstacle template is constructed.

The timed automata formalism merely presents an abstraction of a robot but
allows composition and formal symbolic reasoning about coordinated motion
planning solutions. The model checker UPPAAL is used for formal symbolic
model checking against a requirement specification formulated in CTLHet-a
work of multi-modal robots.



Chapter 6

Case Study | : Multi-robot
Motion Planning

In this chapter the novel framework proposed for the motion planning @ta n
work of multi-modal robots, presented in the previous chapter will beotlem
strated for a network of two multi-modal robots in a simple test scenario. The
requirement specification expressing the desired liveness and safgigriies

for the network of multi-modal robots is formulated in Computational Treed_og
(CTL) and subsequently checked using the model ch&RAAL. The results

of model checking the system are presented. Finally, a conclusivesdisnlof

the novel framework proposed is given.

6.1 Test Scenario

In the following a network of two multi-modal robot&; and R, is considered.
The network of robots is shown in Figure 6.1.

The two robotsR; and R, are initially located in cell (5,3) and (5,4), re-
spectively (See Figure 6.1.(a)). The goal positions of the two robotsarked
as(G1 andGa, respectively (See Figure 6.1.(b)). The two robots have to move
from their initial to goal positions while avoiding collision with each other and
the static obstacles. The system to be model checked consists of the following
processes: Two robot&; and R, two controllers,C;, andCs and static obsta-
clesOq, ..., 032, marked as grey. In UPPAAL the system is definedyast em
R1, R2, C1, C2, 01, ..., 0.32;. The global declarations for

63
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(a) Initial positions of robotsR; and R,, respectively.

(b) Goal positiong7; and G of robotsR; and R, respectively.

Figure 6.1:Network with two multi-modal robotB; and Rs.
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the system just defined can be found in Appendix A. The network is aaistt
in UPPAAL, where process assignments are used to declare instanttes of
robot, control, and obstacle processes, respectively.

6.2 Requirement Specification in Computa-
tional Tree Logic

The requirement specification expressing the desired liveness aaty gadper-
ties for the network of multi-modal robots is formulated in Computational Tree
Logic (CTL) and checked using the model checker UPPAAL.

6.2.1 Liveness Properties

The liveness properties are used for the generation of a feasible mtamgritpat
will move the robots from their initial to goal positions, while avoiding collision
among robots and obstacles.

Property 1 (Reachability) There exist a location trajectory, where the robots,
Ry and Rs eventually reach their goal positions; andG,?
E<> (R_1.z_1==2 and R 1.z _2==3 and R 2.z _1==
and R 2.z _2==5)

Property 2 (Reachability with time requirement) There exist a location
trajectory, where the robotsk; and R, eventually reach their goal
positions,G; andG4, within 15 time units?

E<> (R.1.z_1==2 and R 1.z _2==3 and R 2.z _1==
and R 2.z _2==5 and tinme<15)

Property 1 express the behavior that the robots eventually will reachgbair
positions, where Property 2 express the behavior that the robots alhentill
reach their goal positions within 15 time units.

6.2.2 Safety Properties

The safety properties are used to check if collision avoidance is achaevedg
the robots when moving and static obstacles and also that the robots will move
within then boundaries of the environment.
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Property 3 (Collision avoidance) For all location trajectories the robot#,
and R, will never collide after they start to move, i.e. for time > 0?
Al] not (R1.z_ 1==R 2.z 2 and R1.z 1==R 2.z 2
and time > 0)

Property 4 (Bounded movement) For all location trajectories the robot&;
and R, will always move within the boundaries of the partition?
All] (R1.z 1>=0 and R 1.z 1<=Z 1 and R 1.z _2>=0
and R 1.z 2<=Z 2 and R 2.z 1>=0 and R2.z 1<=Z 1
and R 2.z 2>=0 and R 2.z _2<=Z 2)

Property 3 express the requirement that collision avoidance is achieveaga
the robots once they start to move. Further, the requirement that the edbots
ways move within the boundaries of the partition is expressed in Property 4.

In UPPAAL the properties Property 1-4 are verified by typuay i f yt a
-n0 -00 -f trace -t2 -u nodel.xm query. q,where- n0 select
automatic extrapolation,00 select breadth first search ordef, tr ace write
symbolic trace to file trace-n.¥ir- t 2 generate fastest tracey show sum-
mary* after verification,nodel . xm is the model to be verified against the
CTL formulas as specified in the query fdeer y. q. The setup is graphically
illustrated in Figure 6.2.

6.3 Model Checking Results

In the following the results from the model checking of the liveness aretysaf
properties for the system are presented.

Property 1 (Reachability) was checked and satisfied, hence there &xists
location trajectory, where the robot®; and R, eventually reach their goal po-
sitions,G; andG, (See Figure 6.6). The symbolic trace for the network of two
multi-modal robots,R; and R, and their associate controller§; and C5 is
shown in Figures 6.3-6.5.

The symbolic trace in Figures 6.3-6.5 shows the fastest-time location tra-
jectory, i.e. a trajectory with the shortest accumulated time delay. The location
trajectory for the obstacles is omitted since the obstacles will not move once they
are placed in the environment. The robots start in the initial locdtioim this

'n denotes the symbolic trace of property n.
2States stored/explored.
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Requirement Specification

2
[ CTL Formula J 2
-

Robot Controllers Timed Automata I
C 1andC 2 Network of Robots Model Checker J

and Static Obstacles R 1andR 2 UPPAAL

Automata /
Timed Automata

01,...,032 and Environment

Figure 6.2:Setup for model checking liveness and safety proterties for
the network of two multi-modal robofg; and Rs.

location the robots are placed in their initial position in the partition as specified
in the System Declarations (See Appendix A). Once the robots are platiea in
environment they enter the locatibn where they are ready to move upon a syn-
chronization signal from their respective controller. The dashed lirdisdte a
synchronization with an event between a robot and its associate controller

Property 2 (Reachability with time requirement) was checked and satisfied,
hence there exists a location trajectory, where the roityt®nd R, eventually
reach their goal positiongy; andG» within 15 time units. The location trajec-
tory is identical to the location trajectory generated for Property 1. R&hot
reaches its goal position after 9 time units, whereas réloteaches its goal
position after 11 time units.

Property 3 (Collision avoidance) was checked and satisfied. Thuspthe ¢
lision avoidance among the robots and the obstacles is guaranteed. The colli-
sion avoidance property is guaranteed by using a correct-by-cotistryprin-
ciple by embedding the collision-avoidance property in the timed automaton
template for a multi-modal robaof,.. This property is satisfied using a guard
Z[z_1+1][z_2] == 0 (is adjacent cell in:;-direction free?) and an update
Z[ z_1+1][ z_2] (occupy adjacent cell) before moving in the-direction.

Property 4 (Bounded movement) was checked and satisfied, hencédht® ro
will always move within the boundaries of the partition. This property is satisfie
usingtheguardg 1 < Z 1,z 1 > 0,z 2 < Z 2,andz_2 > 0Ointhe
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R 1 R 2 c1 c2
Comment
: : Initial location
Initial position
. Initial position
sigma_32

sigma_41

sigma_32

. Robot movement
sigma_31

sigma_42

sigma_31

Figure 6.3: Symbolic trace (part I) for the network of two robofs;
and Ry and their associate controllers;; and Cs.
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sigma_41

sigma_31

sigma_31

sigma_51

sigma_32

sigma_52

sigma_52

Comment

Robot movement

Figure 6.4:Symbolic trace (part 1) for the network of two robots;

and Ry and their associate controllers;; and Cs.
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l Comment

Robot movement

Goal position

sigma_42

Goal position

Figure 6.5:Symbolic trace (part Ill) for the network of two robotg;
and Ry and their associate controllers;; and Cs.



6.3 Model Checking Results 71

(a) Path of robotR; from initial to goal position markedr; .

(b) Path of robotR, from initial to goal position markedrs.

Figure 6.6:Network with two multi-modal robotB; and Rs.
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timed automaton for the robeat, (See Figure 5.8).
A summary of the results of model checking the liveness and safety proper
ties for the system is shown in Table 6.1.

Property | Description Property | States stored/| Time
satisfied explored [s]
1 Reachability 2654/2813 <1
2 Reachability with time 2654/2813 <1
requirement
3 Collision avoidance 5059/5218 <1
4 Bounded movement 5059/5218 <1

Table 6.1:Results from model checking liveness properties 1 and 2 and
safety properties 3 and 4.

6.4 Concluding Discussion

The novel framework presented here presupposes an infra-s&radtine multi-
modal robots with feedback controllers that constraint the motion capabilfties o
the individual robots. A natural next step would be to apply the propfraete-
work to networks of physical robot with more complex dynamics. Howetes,
would require the development of a (hybrid) controller for tracking thamdal
paths.

Further, the novel framework presented for the motion planning of a mketwo
of multi-modal robots is also applicable to robots moving in a three-dimensional
(3D) environment. This requires the hybrid automata modeling a multi-modal
robot to have two additional states for moving in thgand —x3-direction, re-
spectively. However, this would result in an increased computational lesityp
of subsequently model checking the system.

Simulations have shown that the computational complexity of model check-
ing the system increases exponential as the number of multi-modal robots in
the network and the size of the occupancy table increases. Basicall A AIPP
makes an extensive search of the state-space when model checkiygtdma s
with respect to a requirement specification in CTL. In order to make the pro-
posed framework applicable for large networks of multi-modal robots (@n3)
extensive search of the state-space should be avoided or substaetiaibed.
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To avoid an extensive search of state-space and thereby reduciogntipaita-
tional complexity of model checking the system the following approach seems
feasible.

UPPAAL CORA?® [Uppsala University and Aalborg University, 1995b]
uses an extension of timed automata called Linearly Priced Timed Automata
which allows to annotate the timed automaton model with the notion of cost.
The idea is then be to have a low cost for moving in a direction that would bring
the robot closer to its goal position, opposed to a high cost if moving in a-direc
tion that brings the robot away from the goal position. Subsequently AARP
CORA could be used to find the most optimal location trajectory, i.e. a location
trajectory with the lowest accumulated cost for each robot.

6.5 Summary

In this chapter the novel framework proposed for the motion planning et-a n
work of multi-modal robots, presented in the previous chapter was deratetstr
for a network of two multi-modal robots in a simple test scenario. Computational
Tree Logic (CTL) was used to express the desired liveness and paigtgrties
for the network of multi-modal robots. The model checker UPPAAL wasluse
for checking the desired properties which all showed to be satisfied kgythe
tem. The result of model checking the system was a set of collision-fthe fm
the network of multi-modal robots in the form of sequences of synchrtioiza
inputs such that the requirement specification was satisfied. Subseqteatly
sequences of synchronization inputs could be executed by the netivorktc
modal robotsH;, ..., Hy modeled by hybrid automata. Finally, a conclusive
discussion of the novel framework proposed was given.

3A branch of UPPAAL for cost optimal reachability analysis.






Chapter 7

Robot Controller Synthesis

In this chapter a framework for controller synthesis for linear control syste
with respect to formal requirement specification in Linear Temporalid.og
(LTL) is presented. Linear control systems satisfying simple controllability
assumptions allow finite abstractions in the form of finite bisimilar quotients to
be computed. The possibility to compute finite bisimulations of linear control
systems allows a discrete controller to be synthesized. A refinement of the
discrete controller results in a hybrid closed-loop combining the continuous
dynamics of linear control system with the synthesized switching logic esbuir

to implement the desired requirement specification.

The framework presented in this chapter was developed by Tabua&apnd
pas [Tabuada and Pappas, 2006] and illustrated in Figure 7.1. Intorfilewith
the problem of synthesizing a controller for a mobile robot, given a reonging
specification in LTL, it needs some modifications. These modifications are pri-
mary concerned with the input to the framework and with the implementation of
the linear hybrid system obtained by refinement.

The framework in Figure 7.1 assumes a discrete-time (time-invariant) con-
trollable linear control systerh together with a requirement specification in the
form of a LTL formula¢. The idea behind the framework is to synthesize a con-
troller for the linear control system enforcing the requirement specificalibis
is done in a number of steps to be described later. The controller synthasiisr
in a closed-loop hybrid systeffi; enforcing the requirement specification, i.e.
Ty = ¢.

To make the framework proposed by Tabuada and Pappas [TabuaBan

75
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LTL Formula
¢

Hybrid Closed-
loop Ty = ¢

Linear Control
System>

Figure 7.1:Proposed framework for controller synthesis for linear con-
trol systemX: with respect to requirement specification in Linear-time
Temporal Logic (LTL).

pas, 2006] applicable for synthesizing a controller for a mobile robottie-
ing modifications are necessary.

Modeling In the context of a nonholonomic mobile robot the kinematic model
is appropriately represented by a nonlinear system compared to a discrete
time linear control system.

Implementation The linear hybrid system obtained from the refinement should
equivalently work for the nonlinear system.

The extended framework for controller synthesis with respect to foreuglire-
ment specification is depicted in Figure 7.2.

The extended framework involves the following steps that will be described
below.

(1) Modeling Itis assumed that the system under consideration can be modeled
as a nonlinear systei,.

(2) Dynamic Feedback Linearization Using dynamic feedback linearization a
dynamic compensator is obtained. This results in a continuous-time linear
control systenm:,. Subsequently, a discrete-time equival&nof linear
control systenkt, is obtained as baseline for the abstraction.

(3) Requirement SpecificationLTL is used as a requirement specification
mechanism for describing the desired behavior of transition sy§tem
associated with linear control system
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Requirement Specification

(8]
LTL Formula g
¢ S
Language Equivalent
i [2]
Controller Synthesis QE>
Bichi A ) D C I ( F B | E%
tichi Automaton iscrete Controller inite Bisimilar ©

Ay T. lo TP = ¢ < QuotientT?’ §_§
/~ [~ 5=
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Abstraction

Linear Control
System>:
3
Dynamic )
Feedback £
Linearization &
(@)
Nonlinear System
E*
Modeling
\.(

Hybrid Closed- 2
e}
loop Ty |= ¢ 2

Figure 7.2: Extended framework for controller synthesis for linear
control system® with respect to formal requirement specification in
Linear-time Temporal Logic (LTL).
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(4) Buchi Automaton The requirement specification is given in the form of a
LTL formula ¢. The LTL formula¢ is translated into a Blichi automaton
Ay that is used for controller synthesis.

(5) Abstraction The linear control systerit is embedded in the class of tran-
sition systems with observations. This results in a transition system
Ty, associated with linear control systeth A finite bisimilar quotient
T7’~' of transition systenTy; is obtained by forming a finite partition of
observation-spadR™ of the linear control systerh.

(6) Controller Synthesis Given a finite bisimilar quotieriTPN' of the linear con-
trol systemX and a requirement specification in the form of a Blichi au-
tomaton A, a finite controllerZ, for T}Z is synthesized such that the

parallel compositiorl, ||o Tﬁf with observation synchronization en-
forces the requirement specification, iE. || o T/PN' = ¢, meaning that
T. |lo T}, satisfies.

(7) Refinement The discrete moddl,. |0 77 is refined with continuous inputs
such that a closed-loop hybrid systéfy will satisfy the requirement
specification by construction i.&y E ¢.

(8) Implementation Linear Hybrid System The linear hybrid systerf{ is im-
plemented as a simulation model for verifying the correctness of the syn-
thesized controller (Note that this step is not shown in Figure 7.2).

7.1 Modeling

It is assumed that the system under consideration can be modeled asia gene
nonlinear system without drift of the form

with stateg € R™ and inputw € R™. G(g) € R"*™.

7.2 Dynamic Feedback Linearization

Dynamic feedback linearization of a non-linear system representing thé pla
is employed to obtain a linear control system. Given a nonlinear system as in
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Eq. (7.1) the purpose is to find a feedback compensator of the form

£ =a1(q,€) + as(q, v (7.2)
w = ﬂl(q7§) +62(Q7§)V7 (73)

with state¢ € R¢ and inputv € R™ such that the closed-loop system in Eq. (7.1)
and Eq. (7.2) is equivalent, under a state transformatienT'(¢, £) to a linear
systemX, = (A,, B,). We now review the steps involved in dynamic feed-
back linearization [Oriolo et al., 2002]. The first step is to choose a dksire
m-dimensional outputy = h(q). The outputy is successively differentiated
until the inputry € R™ appears in a nonsingular way. To avoid subsequent dif-
ferentiation of the original inputa&y € R™ the concept of dynamic extension
is employed, where additional integrators with stgtec R are added to some
of the input channels of the system in Eq. (7.1). The system in Eq. (7.1) with
extended state-spa ¢ is then full input-state-output linearizable if the sum
of the differentation orders of the outpte R equals the dimension + (.

The resulting closed-loop system in Eq. (7.1) and Eq. (7.2) is then dguniva

a set ofm decoupled input-output chains of integrators from inpute R to
outputn; € R fori € 1,...,m. Defining the state as € R™ the following
continuous-time linear control system is obtained

¥, 2(t) = ALz(t) + Bor(t), (7.4)

with system matricesl, € R™*" and B, € R"*™ and state variable € R"
and control variable € R™.

7.3 Requirement Specification

Temporal logic is usually used as a specification mechanism in verification of
formal models. Properties about the behavior of a system over time aralhatu
expressible in temporal logics, such as linear-time temporal logic (LTL).

In this context, LTL is used as a specification mechanism for expressing the
desired behavior of transition systéﬁf. Each predicatp € P corresponds to
an element of a finite partitio® of observation-spac®™ of transition system
Tx.

In this section LTL syntax and semantics are defined.
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7.3.1 LTL Syntax and Semantics

The construction of LTL formulas is based on a finite Betf state predicates.
More complex LTL formulas can then be constructed from thefsetn this
context the seP is identified with a finite partition of observation-spak# of
transition systenT§ . Thus, each predicajec P corresponds to an element of
P.

LTL Syntax

LTL formulas are constructed through simple formulas together with the logical
connectives

e A (conjunction),
e V (disjunction),
e — (negation),
e = (implication),
and the temporal operators
e o (next),
e U (until).
LTL formulas are then recursively defined as follows.
e true, false, angh are LTL formulas for alp € P,
e if 1 andg, are LTL formulas, the; A ¢o and—¢; are LTL formulas,
e if ¢1 andg, are LTL formulas, ther¢; andpiU ¢, are LTL formulas.
From the until operata two commonly used operators can be defined
e O (eventually),

e [ (always).
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Formula | Read as Description
o nexto Specify that has to be true at the next time step.

¢

- —_—— .

- —_—

d1UPy ¢y until o | Specify thaty; must be true untib, will be true.
b1 ) ®1 b2

f—_— = .

f —_—— =

O eventuallyp | Specify thatp has to be true at some point in time in
the future.
¢
0o always¢ Specify that) has to be true for all future time.

¢ ¢ ¢ ¢

f—— - — = s — —

Table 7.1:Basic LTL formulas.

These two operators are defined as

Od = truel o, (7.5)
Lo = =0¢. (7.6)

The LTL formulas defined above are summarized in Table 7.1.

The until operatod/ is used to describe temporal ordering. The formula
¢1U @2 would requirep, to be true untilp, will be true. The always operator
O defines an invariance property by requiriggo hold for allt € N. Complex
LTL formulas are constructed by nesting the temporal operators. Examiles
complex LTL formulas are shown in Table 7.2.

The formulag,U ¢, can be used to model convergence towards the oper-
ating conditions described hj, through a particular subset of the observation-
space described hy; .

LTL Semantics

An unique interpretation of LTL formulas is obtained by defining LTL semantics
In this context LTL formulas are interpreted over sequences of predicdues
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Formula Read as Description

d1UOpo ¢1 until alwaysg, Specify thatp, must be true for all time,
or that ¢, must be true until at some later
time ¢ must be true for all future time.
O0¢ Always eventually | Specify that always should eventually be
satisfied.

O(p1Ueps) | Always @ until ¢o) | Specify thatp,U¢s must be true for all
time, which implies that for all time either
¢ must hold org; must hold untikps will
be true at some future time.

Table 7.2:Example of complex LTL formulas.

s € P¥, whereP“ denote the set of all infinite strings obtained by concatenating
elements irP. An element ofP“ is an infinite string

s=pipap3 ... Withp, € Pfori =N. (7.7)

Thus, for each € N only one predicate is satisfied. Lett P“ be a string and
denote bys(t) = ¢ that strings satisfies formula at timet, if formula ¢ holds
at timet along trajectory. For anyp € P, LTL formulasé¢;, ¢2 andt € N the
satisfaction relatiof= is defined as follows.

e s(t) = pif p=s(t),
o s(t) = pif p # s(t),

o 5(t) = é1 A G2 if s(t) = 61 ands(t) = ¢,

o 5(t) = ogy if s(t+1) |= ¢1,

. sEt) E ¢1Uo, if there existst’ > t such that for allk, t < &k < ¢/,

s(k) |= 61 ands(t') = ¢2,

Finally, a sequence satisfies formula if s(0) |= ¢.

When a LTL formulag is interpreted over an observed sequencB4(iTY)
and each predicate € P corresponds to a subset of observation-sgate
the LTL formula¢ defines how trajectories of linear control syst&hinteract
with these sets. This is a convenient and formal way of expressing toetro
quirements for discrete-time linear control systems. If every string (%)
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satisfies formula then the transition systeiﬂg’ satisfiesp, denoted by
¥ ¢. (7.8)

A similar notation is used for transition systéﬁf/ even though predicates in
LTL formula ¢ do not correspond to sets in the finite partitiBhof state-space
R™. When for every- € L, (TZ'), whererpip (1) = ¢ we say that

7 = ¢. (7.9)

7.4 Buchi Automata

To fit with the framework proposed in [Tabuada and Pappas, 2006 ghglation

of LTL formula ¢ into a Buichi automator 4 is required. Given any requirement
specification formulated as a LTL formudait is possible to construct a Bichi
automatond, accepting every string satisfying[Blichi, 1962]. The rationale
for choosing alanguage equivalenc#anslation is that language equivalence
preserves properties expressible in LTL.

DEFINITION 7.1 (BUCHI AUTOMATON ) A Bichi automaton is defined as
A= (TA7F) = ((Q>Q0> —>70aT)7F)7

whereTy = (Q, Qo, —, 0, T) is a finite transition system (See Definition 3.4)
and F' C () is a set of accepting states.

A Buchi automaton can be seen as a transition system extended with a mech-
anism for describing the behavior of strings at infinity. Thus, everyhBlc
automatonA necessarily carries an underlying transition system strudtyre
Thus, Buchi automata defines generated languages-damaguages (See Defin-
ition 3.8).

Let Q¥ denote the set of all infinite strings obtained by concatenating ele-
ments inQ. A strings € Q“ is a run ofA if s(1) € Q°, s(i) — s(i + 1) for
i € N and there exists infinitely manye N such thats(i) € F. The language
accepted by Biichi automatohis defined as follows.

DEFINITION 7.2 (ACCEPTED LANGUAGE) Let A = (Q,Qo,—,0, T, F)
be a Blichi automaton. The language acceptediliy defined as

L, ={r e Q¥ |r = 7Y(s)for some initialized rurs of A} . (7.10)
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ChoosingF' = Q we have
Lw(A) = Ly, (TA) = Ly (T) (7'11)

Tools to automatically translate a LTL formueinto a Blchi automaton exists.
For further details on the translation from LTL formuganto Blichi automaton
the reader is referred to [Wolper, 2000].

7.5 Abstraction

In this section it is shown that finite abstractions of a discrete-time controllable
linear control system& can be obtained if the linear control systems satisfy
certain simple controllability assumptions and by forming a finite partition of
observation-spadR™ of linear control systerx.. The finite abstraction of linear
control systenk is required for controller synthesis.

7.5.1 Linear Control Systems

Lets assume that a discrete-time (time-invariant) controllable linear control sys
tem is obtained from nonlinear systein as

Y z(t+1) = Ax(t) + Bu(t), (7.12)

where the system matrices € R™"*™ and B € R™*™ are generally constant
and state variable € R™ and control variable. € R™ are discrete. In the
following z is referred to as the state of the system anals the input to the
system. FurtherR"™ is referred to as the state-space (or set of states) of the
system andR™ as the observation-space (or set of observations) of the system.
n denotes the dimension of the system whereadenotes the dimension of the
input-space.

Brunovsky Normal Form

The Brunovsky normal form is a special form of a linear control systemhere
the pair of matrice$A, B) € R™*™ x R™*™ have a special structure.

DEFINITION 7.3 (CONTROLLABILITY INDICES) LetX be a linear control
system as defined in Eq. (7.12). The sequence of positive integets
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(K1, K2,...,km), Whererank B = m are called the controllability indices of
the system satisfying

such that

K1+Ko+ ...+ Ky =n.

DEFINITION 7.4 (BRUNOVSKY NORMAL FORM [SONTAG, 1998]) Let X
be a linear control system as defined in Eq. (7.12).A.et (k1, k2, ..., kn) be
a sequence of controllability indices. The system is in Brunovsky normmalifo
A and B are of the following form

A, O 0 be, O 0 0 0
Y 0 A, 0 B 9 b, 0 0 0 |
0 0 Ay, 0 0 be, 0 0
where each block,;, € R**" andb,, € R fori=1,...,m are of the form
[0 1 0 0] 0]
0 0 1 0 0
Ap; = b =
0 00 1
0 0 0 | 1]
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The Brunovsky normal fornx,, of a controllable linear control systelm with

controllability indicesk = (K1, . .., k) IS given by
(le(t—‘rl) ng(t)
$2(t+1) = Zﬁg(t)
Ty (t+ 1) = uy(t)
Ty 41(t+ 1) = Tpy42(t)
Ty 42(t +1) = Tp,4+3(t)

Y o : (7.13)
Tr (£ 1) — us(t)
$N1+...+Nm—1+1(t + 1) = Trqi+.octrm—1+2 (t)
x51+---+f€m—1+2(t + 1) = xf€1+---+f€m—1+3(t)
Ty tootrim (E+ 1) = um(1)

Any controllable linear control systei can be effectively transformed to
Brunovsky normal form®,, by feedback and a change of state and input co-
ordinates as asserted in the following result.

PROPOSITION 7.1 [Brunovsky, 1970] For every controllable linear control
systemX. there exists a sequence of controllability indiees (x1, k2, ..., km),
invertible linear transformationd € R™*™ andV € R™*™, and linear trans-
formationF” € R™*™ such that the paifA., B.) = (H(A+ BF)H ', HBV)

is in Brunovsky normal fornt,..

The system in Brunovsky normal fors,, with statex, € R™ and input
u, € R™ is related to linear control systemby an invertible state/input trans-
formation matrix {somorphish U : R" x R™ — R™ x R™, that is

Tr| _ | _ H Opxm| |
ool ol e
The computation of the state/input transformation mdifils outlined in Algo-
rithm 1 and described in detail in Appendix B.
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Algorithm 1 State/input transformation
Input: Linear control systerx with matricesA € R**™ andB € R"*™
H On><7n:| c R(?L+77L)><(7l+7")

Output: State/input transformatioti = r v

1: Choose: = (K1, K2, .., Km) SUChthate; > ko > ... > Ky, anNdky + ko + ... +
Km = 1, Whererank B = m
C=1[by ... by Aby ... Ab,, A%by ... A%, ... A"l ... A"71b,]
C = [bl Abq A2b1 Ce Anl_lbl by Abs A2b2 Ce AKQ_le
by Aby, A%b,, ... AR
sfori=1:mdo

g; = E;T;llﬁ)i

4
5:
6: d; :Cil(O'i,I)
7
8
9

. end for
CH=[d diA ... A" dy dpA . dgpARel]]
A, =HAH™!

10: B, = HB

11: A, = [AC(O'l, Do Adom, :)]T

12: By, = [Be(01,:) .. Belom,?)]"

13: F = B' A H

14: V = B

m

In order for Algorithm 1 to be defined we require thahkC = n and
rank B = m. The matrixH is called asimilarity transformatiorfSontag, 1998].

7.5.2 Control Abstract Embedding

Discrete-time linear control systems are naturally embedded in the class-of tran
sition systems with observations. The dynamics of discrete-time linear control
systems are close to transition systems due to the existence of an atomic time
step. Different embeddings of both continuous and discrete-time linet@nsys

can be found in [Pappas, 2003]. In the context of controller synthes@ntrol
abstract embeddings desirable. The transition system associated with linear
control systent in Eq. (7.12) is defined as (See Definition 3.4)

TE = (Rnaan — 07 T) ;
where

e R" is the set of states,
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e R" is the set of initial states,

e —C R"™ x R" is the transition relation defined by — 2/, if there
exists an input, € R™ such thatt’ = Az + Bu,

e O isthe set of observations,
e T :R"™ — O is the observation map defined tiy{z) € O.

Note that the set of observatio@sand observation m&p are unspecified. They
will be defined when a finite bisimilar quotient of transition systémis con-
structed. The embedding &fin T%; is control abstracin the sense that the input
value required to perform a transitian— 2’ is not explicitly captured by the
transition system. However, the value of the input can be recoveredffi@pair
(x,2') by solvingz’ = Az + Bu for the inputu € R™.

The following two assumptions must be satisfied to obtain a finite bisimilar
quotient of linear control systeim.

Assumption | (Controllability) The linear control systeri is controllable if
the columns of the controllability matrix € R™*™"

C=1[b1 ... by Aby ... Aby A%b ... A%, ...
A"y o A, (7.15)

are linearly independent (matrikhas full row rank), i.erankC = n. If
the system is controllable then any state is reachable from any initial state,
giving the system proper inputs through the varial(le.

Assumption Il (Independent Inputs) A linear control systent: hasm inde-
pendent inputs if the columns of matrix are linearly independent (ma-
trix B has full column rank), i.etank B = m.

If Assumption | is satisfied it allows a decomposition of the state-si&oeaf 3.
If the m columns of matrixB are not linearly independentaink B = s < m),
then the same input action to the system can be accomplished with imyts,
instead ofm inputs, and hence there is a redundancy of inputs to the system.
However, without loss of generality linearly dependent columns of magrix
can always be removed without destroying essential propertigs ioforder to
satisfy Assumption II.

The decomposition of state-spdke results in a new controllability matrix
for the system.
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PROPOSITION 7.2 [Antsaklis and Michel, 1997]et X be a linear control
system satisfying Assumptions | and Il. Then, there exists a sequeara®rof-
lability indicesk = (k1, ko, . . ., ki) Satisfying

span{bl, b, Aby, . by, A%y, A%
A”_lbl,...,A”_lbm} - (7.16)
span{bl, Abl, A2b1, con ,A’ﬂ_lbl, bg, AbQ’AQbQ, v ,ANQ_le, ey

bm,Abm,AQbm,...,A“m‘lbm}, (7.17)

where colummd®ib; is linearly dependent on the previous ones, i.e. the vectors
to the left ofA%ib;.

The decomposition of state-spaRé for linear control systent according to
controllability indicess = (k1, ko, . . ., ki) results in a new controllability ma-
trix C € R™*"

C=|by Aby A%by ... A0y by Aby A%by ... A™71py ...

by Abm A ... A*””m_lbm], (7.18)

for the system. To obtaii see Appendix B. Using the sequence of controllabil-
ity indicesk = (k1, ko, ..., kmn) We can introduce the subspage= R"~"™ of
state-spac®” defined by

Y span{bl, AR by A 2 b ,A*@m*%m}.
(7.19)

Subspacé®’ induces the observation map
T :R"—-R"/VZR™, (7.20)

which is defined as the natural projection from state-sgiiteo the quotient
spaceR™/V = R™. Thus, observation majf maps a vector € R” into its
equivalence class iR™/V which is identified with an observatigne R™. The
introduction of observation mal motivates the definition of transition system
Ty with observation-spadk™.
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DEFINITION 7.5 LetX be alinear control system satisfying Assumptions | and
Il. Transition systenTy; associated wittt is defined by

Ty, = (R",R", —,R™, ). (7.21)

The next step is to obtain a transition system, denote@/bwhich has a finite
observation-space, denoted By Since linear control systems are considered, a
natural choice of? for transition system is a finite partition of observation-
spaceR™ of transition systenTx,. The change of the observation-sp#é is
necessarily accompanied with a change of observationfndpansition system
TE with finite observation-spac® is defined as

TF = (R",R",—,P,mp oY), (7.22)
where
o P = {P},c; is a finite partition of observation-spad&™ satisfying
UierP; = R™ whereP; N P; = () for i # 7,
e TpoY : R" — P isthe observations map defined by (Y(x)) = P.
The partition of observation-spa&&” is represented by semi-linear sets.
DEFINITION 7.6 (SEMI-LINEAR SET) The class of semi-linear subset$ot

consists of finite unions, intersections and complements of the followingreleme
tary sets

{zeR™|flz+c~0},
wheref € Q™, c € Q, and~e€ {<,<,=,>,>}.
The next step is to obtain a transition systﬁﬁ{ where the observation-space is
identified with a finite refinement of state-spa&’&ethrough the finite partitio®

of observation-spacR™. Let P = {P;},.; be a finite partition of observation-
spaceR™ for transition systerffg , then we have that

P =1"1P)
=1 1{P} (7.23)
is a finite refinement of state-spa®® sinceY~! : R™ — R”. Transition

systemT}" with P = T~'(P) being a finite refinement of state-spake is
now defined as

i€l

TE/ = (RnaRn7 —>7P/77T’P’) ) (724)

where
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e P' = Y~Y(P)is afinite refinement of state-spaRé&,
e mp : R™ — P’is the observation map defined by (z) = P’.

Transition system&}, and7" both admit finite abstractions in the form of finite
transition systems [Tabuada and Pappas, 2006]. The finite bisimilar quatient
transition systerﬁg’ " with respect to equivalence relatierC R™xR" is defined

as

TP = (Qus Qs /s 0.1 ) (7.25)
where
e Q. ={S CR"|Sisanequivalence class ot} is the set of states,
o Q‘/)N = Q.. is the set of initial states,

e —,.C Q. x Q. is the transition relation defined &y — . 5" if
there exists: € S anda’ € S’ such thatr — 2’ in T,

e O = P'isthe set of observations, whel is a finite refinement of state-
space partitioir —*(P),

e T),. : Q. — Oisthe observation map such tHag. (S) = T(z) for
somez € S.

The finite bisimilar quotient of transition systefi’ is defined in a similar way.
The intermediate steps in the abstraction of linear control sy&temobtain a
finite bisimilar quotientf/ﬁ' are shown in Figure 7.5.2.

Let X, be the discrete-time linear control system in Brunovsky normal
form obtained from> through an invertible state/input transformation(See
Eq. (7.14)). For any finite partitio® of observation-spade™ of transition sys-
temTy; there exists a finite refineme@of state-space partitich —*(7) making
the quotientF/QN of Tx, with respect taQ a finite bisimilar quotient if there exists

a finite refinement,; of state-space partitiolf _ ! (H (P)) making the quotient
T/Qj of Ty, with respect toQ,; a finite bisimilar quotient. This is shown in the
commutative diagram in Figure 7.5.2.

In view of Figure 7.5.2 we can assume, without loss of generality, ¥hat
is in Brunovsky normal form since any controllable linear system can Ips-tra
formed into this form by a change of coordinates and an invertible fe&dBae
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Figure 7.3:Intermediate steps to a finite bisimilar quotidi}fv'.
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1Py e
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Figure 7.4:Finite refinement® and Q,. of Y1 (P) and Y} (H(P)).

Eq. (7.14)). For a linear control system in Brunovsky normal form theecova-
tion map is of the form

T=¢om, (7.26)
wherer : R — R™ is a projection map such that

T
'CL‘K1+1

m(x) = ] , (7.27)
Tri4..+6m—1+1

and¢ : R™ — R™ is an arbitrary linear isomorphism.
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7.5.3 Bisimulation Algorithm

In the previous section the existence of finite bisimilar quotient transitions sys-
tems for linear control systems satisfying certain assumptions was established
The following well known bisimulation algorithm can be used to compute the
coarsest possible bisimulation [Bouajjani et al., 1990] provided thaty esedr
operation is effectively computable

Algorithm 2 Bisimulation Algorithm

Input: Initial partition P’ = T ~1(P) of state-spac®” of transition system’s,
Output: Coarsest refinemef®’ of state-spac®”

1: while 3P, P’ € P’ such thaf) # P N Pre(P’) # P do

2: P =PnNPre(P)

3:  P,=PnNPre(P)

4. P =P \{P}Hu{P, P}

5: end while

Computing the coarsest bisimulation results in maximum complexity reduc-
tion. The input to the bisimulation algorithm (Algorithm 2) is transition system
Ty, associated with linear control systérand an initial partitior®’ = T—1(P)
of state-spac®”. The initial partition’?’ is based on the finite partitioR of
observation-spadR™ of transition systenTy,. Algorithm 2 terminates with the
coarsest refinemer®’ such thatT'””’ is a finite bisimilar quotient of transition
systems. The termination of A(gorithm 2 is ensured by the controllability of
linear control systenx. associated with transition systéfi.

7.6 Controller Synthesis

The existence of finite bisimilar quotients (bisimulations) for linear control sys-
tems enables the design of controllers enforcing a given LTL specificatian
discrete level. The concept of parallel composition with observation sgnch
nization of transition systems is used to model the interconnection of the con-
troller and the system to be controlled, i.e. the finite bisimilar quotight of
linear control syster. In the following the steps involved in controller synthe-
sis are described.

1There exists an algorithm that is able to perform the setadjmers
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To satisfy a given LTL specificatios the controllerT,. is required to restrict
the behavior of the linear control system. The notion of parallel composition
with observation synchronization of transition systems is employed. Thus, the
parallel composition with output synchronization of the contrdlleand the fi-
nite bisimilar quotienT/PN/ of the linear control systerh are required to enforce
the specification.

The controllerT, is employed to restrict the behavior of transition system
Ty such that a LTL specification is enforced. The setup in controller synthesis
is shown in Figure 7.5.

Controller Synthesis
l Ay :[ Te |lo T/’PN/ Eo ]: T/PN, l

Figure 7.5:Setup in controller synthesis.

The baseline for controller synthesis is a Buichi automatgobtained from
a given LTL formulap and a finite bisimilar quotieﬂf]’N/ of linear control system
>

The idea is to synthesize a controllErthat can restrict the behavior 6%
such that a given LTL formula is satisfied. Recall that since transition systems
Ts: andT]fV/ are bisimilar, i.e. 75, = T/PN’, then controller], synthesized for

T7’N' will equivalently work forTy, (See Proposition 4.3 in [Tabuada and Pappas,
2006]).

Let P be a finite partition of observation-spaé&* of transition systenTy;
and let?’ be a finite refinement of state-space partitibn! (P). Then, there
exists a finite controllef’, satisfying

Te HO Tglp ': ¢7
if there exists a controller, satisfying
1. ”O Tﬁ ‘: ¢.

Further, 7% = T7” implies thatT.. [lo 7% = T. [lo T]... Thus, the parallel
composition off, andT]’N' makes the controllef, restrict the behavior of tran-
sition systemrg'. Working with Tg’ is preferable since the observation-space
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P’ of Tg' offers more detailed information regarding the dynamics of transition
systemTy; than the observation-spageof transition systeniy. Recall thatP
is a finite partition of observation-spa™ whereasP’ = Y~!(P) is a finite
refinement of state-spad¥®.

Recall that for any LTL formula it is always possible to construct a Biichi
automaton4, recognizing every string satisfying. Given a finite bisimilar
quotientT]’N/ it is possible to construct a Biichi automatéﬁi satisfying

Lo (A}’;) — I, (T/N'> . (7.28)

Now, a Blchi automaton controllet. is constructed that satisfy

mprp | Lo(Ae) N Lo (A70) | € Lu(Ay), (7.29)

(o 47)

whererpp : P’ — P is a projection map which maps every eleméhte P’

to an unique elementp/p(P’) = P such thatP’ C P. In the following we
assume that a Blchi automaton controller exists and can be modeled by a
transition systenT, satisfying

Lo(T)) N Ly, (AP;) — Lu(AJ) N Ly, (AP;) . (7.30)

For any Biichi automaton controllet. enforcing a given LTL formulap there
exists a finite controlle¥,. satisfying

L, (Tc lo Tﬁ’) — Lo(T.) N L., (Tﬂ) — Lo (AJ) N L, (A}’;) . (7.31)

The parallel composition of the controll&. and the finite bisimilar quotient
T/7’N' with observation synchronization is given by (See Definition 3.7)
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T. llo T}Z = (QH,Qﬁ, —>H70,T||> ; (7.32)
where
o Q) ={(¢5) €Qcx Q| Telge) =7T,.(5)} is asetof states,

o Q= {(qc, S) € QI x Q). | Telae) = T/N(S)} is a set of initial states,

e —C Q) x @ is atransition relation defined ky., S) — (g{g,S’)
for (¢, S), (¢.,5") € Q) if ¢c —¢ ¢q.InT.andS —,_ S"in T/7’N,

e O C P'is a set of observations,

e T : Q — Oisan observation map defined By (qc, S) = Te(qc) =
T,.(S).
/

A state ofT.. [|o T} will be denoted by = (¢, S) € Qc x Q.. Note that
O is a subset of the finite refinemeht of state-spac®™ of transition system
T since the controllef. may restrict some transitions in the finite bisimilar
quotientT/PN/.

7.7 Refinement

In the previous section a finite controll& for the finite bisimilar quotierﬂﬁ’,
enforcing a given LTL formula was synthesized. In this section the continuous
inputs will be extracted fronT, that is required to enforce a LTL formuaon

the linear control systemi. The explicit modeling of the control inputs available

to linear control systerx will result in a closed-loop hybrid system. The result-
ing closed-loop hybrid system is guaranteed to enforce the requireipect s
ification in LTL by construction. This motivates the definition of discrete-time
linear hybrid systent{ [Tabuada and Pappas, 2006] and the associated transition
systemly.

DEFINITION 7.7 (DISCRETE-TIME LINEAR HYBRID SYSTEM) A discrete-
time linear hybrid system is defined as

H = (X, X0 {44, By} o ,5,24) : (7.33)

where
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X = I, ,eqR™ is the state-space whe€is a finite set of discrete states
andn, € N for each discrete state € @,

e XV C X is a set of initial states,

o {A,, B,}seq is the continuous dynamics where for each discrete state
q € Q, the pair (4,4, By) € R"*™ x R"*™a defines a discrete-time
linear control system:(t + 1) = A,z(t) + Byu(t) with inputs restricted
to a setd (¢(t), z(t)) C R™s,

e §:QxR™ — 29 s the discrete dynamics which assigns to each discrete
stateq € ) and continuous state € R™ the discrete successor states

5 (q(t),z(t)) < Q.

State-spac« is the disjoint union of the underlaying sék§<, denoted by the
coproductll. Note that the definition of linear hybrid systefhallows to have
different continuous dynamics(t + 1) = A,xz(t) + B,u(t) for each discrete
stateq € Q.

The discrete-time linear hybrid systekhcan also be embedded in the class
of transition systems with observations. The embedding of linear hybridnsyste
H in the class of transition systems with observations will allow the definition
of correct implementation. Assuming the continuous dynamics of linear hybrid
systemH to be controllable the transition system associated with linear hybrid
systemH is

Ty = (X,X° —u,0,7), (7.34)
where

e —yC (Q x R™) x (Q x R™) is a transition relation defined by
(¢,x) —m (¢, o) if 2’ = Ajxz+Bguwith ¢’ € §(q, z) andu € U(q, z),

e O =1,c00, is aset of observations,
e T:Q xR"™ — Osuchthall(q,z) = YT,(z) € O.

State-spaceX and the set of initial stateX? are inherited from linear hybrid

systemH. The pair(¢,z) € @ x R™ is the hybrid state of transition system
Ty associated with linear hybrid systefh. O, and T, are the observation-

space and observation map associated with linear control system 1) =
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A,z(t) + Byu(t) defined by the paifA,, B,) for each discrete statg € @,
respectively.

A linear hybrid systen¥ is said to be a correct hybrid implementation of
the closed-loop behavidr. ||o T if T, ||o T satisfies the transition system
Ty associated with linear hybrid systekh i.e. T, o Tg/ = Ty. The desired
closed loop behavidrf., o Tg’ is the parallel composition of controll&t. and
transition systeni?, .

A correct hybrid implementation in the form of a linear hybrid syst&hof
the desired closed loop behaviby || Tg' (Defined in Eqg. (7.32)) is obtained
from

T o T8 = (@, Qf —1.0.7)). (7.35)
by defining the linear hybrid system as
H = (X,X°{Ag, By}geq, 6. U) , (7.36)
where
e X = Q) isthe set of states,
o X0 = ﬁis the set of initial states,

o A, = A e R B, =B € R"™™ are the matrices of linear control
system¥ : 2/ = A,z + Byu,

o5 : Q x R" — 29 is the discrete dynamics whedq,z) =
{Qﬁ cQla — q|’|}’
o U(q,x) ={ueR™|mp(Az + Bu) € T (6 (q),x))} is the input set.

Linear hybrid systen¥ is a control system in the sense that at every discrete
stateg) € Q) different future evolutions are possible under the action of different
input values.

7.7.1 Determining the Input Sets

Linear hybrid systenf already has all the information except the continuous
inputs to be sent to linear control systéin Thus, all that is left to do to obtain
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linear hybrid systemH is to compute these input sets for each discrete state
2WeL - . y

The semi-linear description of the sets € ()| induces a semi-linear de-
scription of the set of continuous inpui& g, =) enabling transitions in the lin-
ear control systert corresponding to transitions in the finite bisimilar quotient
TF .

[/~ . . - . .

The discrete transitions in linear hybrid systéfmare given bys : Q| x
R™ — 2%I. Now, recall that a transitio — ¢ in 7. [|o 7/, corresponds to
a pair of transitiong. —. ¢ in the controllerT,. and.S —/n S’ in the finite
bisimilar quotientTPN', respectively. Thus, from the transitionsfip || T/PN’ we
can determine which transitions Tﬁﬁv’ are allowed by the controlléf,. Lets
denote byr; : Q) — Q. the projection map recovering € Q. from
q = (g, S) € Qe x Q. such that

7I‘|| (q”) =S. (7.37)

Having determined which transitions iﬁﬁ' are allowed byT, the input set

U(q,r) can be determined for each discrete stgtes Q. From the transi-
tion S — /. S’ and bisimilarity between bisimilar quotient transition system

va' and transition systerfy; it follows that for any continuous statec S the
following is satisfied

r—xna el (7.38)

This is equivalent to the existence of an input R™ such that’ = Az + Bu,
wherez’ € S”. From the definition of” € Q.. and linear control systeix the
input set{(q|, ) in discrete statg, € Q is defined by

U(qH,:E) = {u cR™ ‘ P! (ASU + Bu) S TH (5 (q”,x))} s (7.39)
whererp, : R™ — P’ is an observation map such that
7pr(Az + Bu) = P, (7.40)

wherez’ = Az+Bu. ObservationP’ belongs tor'| (4 (¢, x)), whered : Q) x
R™ — 29I defines the discrete dynamics such that

S(ap ) = {af € Q1 ay — a} } - (7.42)
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7.8 Software Implementation of Linear Hy-
brid System

Linear hybrid systendd = (Q”, ﬁ, (A, B), 4, u) defined in Eq. (7.36) can be
seen as an abstract description of the embedded software requiredirfigple-
mentation.

The continuous elements of linear hybrid systéis a linear control system
¥, defined by the paitA,, B,) which is assumed to be in Brunovsky normal
form and the input se®(q) 1, zx), - ., U(q)i, vx) fOri = 1,...,|Qyl. The
discrete elements of/ are the set of stateQ”, set of initial stateQﬁ, and
§ : Q) x R™ — 29I defining the discrete dynamics.

The software implementation of linear hybrid systémn SIMULINK and
STATEFLOW is shown in Figure 7.6.

Discrete elements dff g

@

>

0 [2)

Q. Q“, g [e—— .5

=

[%2]

c

g

STATEFLOW =

SIMULINK

Input sets

(2]

>

o

]

. £

Continuous elements éf g

o

@)

Linear Control T
System>;

Figure 7.6: Software implementation of linear hybrid systdinin
SIMULINK and STATEFLOW.

Transition system defined Wy, Qﬁ, d) starts in initial discrete staig <
Qﬁ determined by initial continuous state , € R™. Recall, that for discrete
stateq); € Q) fori =1,...,]Q| aninput set{(q ;, z») has been determined.
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This means that if transition syster@(, ﬁ d) is in discrete statg , € Q)
then input set{(q) 2, z) is chosen. Thus, in discrete state, € Q) the input
u, to linear control systenxt,, has to be chosen such that < Z/I(q”,i,:c,ﬁ).
If transition system @, ﬂ d) takes a transition , — ¢; then input
setU(qy,1,zx) is chosen. This will generate a new input € U(q,1,7x) tO
linear control systerx,,; and the continuous state. changes according td, =
Axz + Bru, Which then becomes the new input to transition syst@m Qﬁ,
0).

Recall that linear control systelM, in Brunovsky normal form and linear
control systent is related by the isomorphishi, defined in Eq. (7.14), that is

m =U-! [2:] = [_Vf{;H_l 0{}@} Bj . (7.42)

This allows linear control system in Brunovsky normal foxtp from Figure 7.6
to be replaced witfC as shown in Figure 7.7.

7.9 Summary

In this chapter a framework for controller synthesis for linear contreteaps
with respect to formal requirement specification in Linear-time Temporaid_og
(LTL) was presented. However, in order to fit with the problem of sysiitie
ing a controller for a mobile robot, given a requirement specification in LTL,
some modifications of the framework originally developed by Tabuada gnd Pa
pas [Tabuada and Pappas, 2006] were required (See steps 12jratite be-
ginning of this chapter). Finally, the software implementation of linear hybrid
systemH in SIMULINK and SATEFLOw was presented.
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Figure 7.7: Software implementation of linear hybrid systdinin
SIMULINK and STATEFLOW where linear control systenx,, is re-
placed byX.






Chapter 8

Case Study Il : Robot Controller
Synthesis

In this chapter the framework for controller synthesis presented in thequev
chapter is applied to a simple model model of a nonholonomic wheeled mobile
robot, i.e. an unicycle. The requirement specification expressing thieede
behavior of the unicycle is formulated in Linear-time Temporal Logic (LThg
results of simulating the software implementation of the linear hybrid system are
presented. Finally, a conclusive discussion of the novel framewopopeal is
given.

8.1 Modeling the Unicycle
The simplest model of a nonholonomic wheeled mobile robot is the unicy-
cle [Oriolo et al., 2002], i.e. a single upright wheel rolling on the plane, see

Figure 8.1.
The generalized coordinates for the unicycle is defined as

q=[m p H]T €R? xS, (8.1)

where(p1, p2) € R? is the position (m) of the vehicle in thE*-frame and) €
S! is the orientation (rad) of the vehicle. The kinematic model of the unicycle is

105
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D2

Fw

Figure 8.1:Unicycle.

of the formg = G(q)w, that is

[cosd 0
Yo 1 g= |[sinf| v+ |0 w,

| 0 1
[cos@ 0 ;

— |sing 0 H (8.2)
o1 ¥

where the input$ € R andw € R are the linear velocity (m/s) and angular
velocity (rad/s), respectively. The constraint that the wheel cariptrsthe
lateral direction is expressed as

A(q)g = [Sin9 —0059] [Zj = 0. (8.3)

8.2 Dynamic Feedback Linearization

Define the linearizing output as

n = [gj : (8.4)
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Differentiation ofn with respect to time yields

- [0 )

This shows that only the linear velocityaffect?. Further, the angular velocity

w can not be recovered from Eq. (8.5). Therefore, we need to havintar
acceleratiorn as input to the system. Thus, we need to add an integrator on the
linear velocity inputv as shown in Figure 8.2.

é=a v=¢

o =

Y 1 ¢=GQw p——

Figure 8.2:System with modified inpt,w) € R x R.

The state of the integrator is denoted ¥ R. The maodified input to the
system then becomés, w) € R x R, whereaq is the linear acceleration (nt)s
of the unicycle. The introduction of the stat®f the integrator allows Eq. (8.5)
to be rewritten as

. cos ]
n=¢& [sin 6] (8.6)
Differentiation of Eq. (8.6) once more then yields
. 2 |cosf - [—sinf
=& [sin@] +¢0 | cosd }
__|cosf —&sind| |a
N [sin& fcos@] L] ' (8.7)

The matrix multiplying the modified inpyt:, w) is nonsingular fog # 0. Under
the assumption th&t+# 0, we have from Eq. (8.7) that

al  [cos§ —Esind T
w| |sin@ Ecosh 2

_ [ cos 0 1sin9 ] [ul} , (8.8)

—%Sin& ECOS@ Vo
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where(v1,2) € R x Ris input to the dynamic compensator. Inserting Eq. (8.8)
into Eq. (8.7) yields

vy

i- . (8.9)

showing that the input appears. The resulting dynamic compensator iseabtain
from Eqg. (8.8) and has the form of Eq. (7.2), i.e.

£= [cos@ sin 9] [2] , (8.10)
vl _(§] 1] 0 01w
[w] N [0} +g [— sinf cos 9] Lj . (8.11)

The system with dynamic compensator is shown in Figure 8.3.

v 6 =a 1 v = E n
—_—] P . v = —
£ = cosf sin6 va s Y, -
v o_ € 1 0 0 v1 w i = G(q)w
w 0 + € —sin® cosf vy 4 (q)

Figure 8.3:Nonlinear system, with dynamic compensator.

The dynamic compensator has a singularitg at 0, i.e. when the unicycle
is not rolling. We now apply the state transformation- 7'(q, £) to obtain

21 = P1, (812)
2o = p1 = &cos b, (8.13)
23 = P2, (8.14)

z4 = po = £sin 6. (8.15)
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Further, we have that

2 =91 = écos@ —§ésin0 =acosf — Ewsin b,

=, (8.16)
33 =P = Esinb + EH cosf = asinf + Ew cos b,
= vy. (8.17)

Thus, the closed-loop system is equivalent to a set of decoupled infuito
chains of integrators from; to n; for i = 1, 2 as illustrated in Figure 8.4.

Vi 22 m

Y Y
1 1
) )

v () m (L)
) )
Figure 8.4:Decoupled input-output chains of integrators.

Defining the state as = [z1 22 23 z4]T € R?* the following
continuous-time linear control system is obtained

Y. 1 2(t) = A.z(t) + B.v(t), (8.18)

where matricest, € R4 andB, € R**? are given as

0100 0 0

0000 10
=100 0 1|0 %= 1o o (8.19)

0000 0 1

The system in Eqg. (8.18) is controllable since the controllability matrix has full
rank. The discrete equivalénti.e. discrete-time linear control system is ob-
tained as

Y z(t+1) = Ax(t) + Bu(t), (8.20)

1Using ZOH method with a sample time ®f = 1s.
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where matricest € R***4 andB € R**? are given as

1100 ;0
0100 10
A= , B= 1 (8.21)
0011 0 i
000 1 0 1

Choosing the controllability indicéssx = (2, 2) allows to find invertible linear
transformationsd € R™*™ andV e R"™*™, and linear transformatiof” ¢
R™*" such that the paifA,, B,) € R*** x R**2 given as

A, =H(A-BF)H '=

o O O O
o O o
o o o O
o o = O
— o O O

(8.22)
of linear control system
Yot xg(t+1) = Agxg(t) + Brug(t), (8.23)

are in Brunovsky normal form. The system in Brunovsky normal formeis r
lated to linear control systebi by an invertible state/input transformation matrix
U : R*" x R™ — R" x R™ that is computed using Algorithm 1, that is

(/1 -3 0 0 |
1 2 0 o0
2 O4x2
0 0 1 —1% 8
o 0o 1 1
[ﬂ :Um = 2 m (8.24)
K H U
1 200 10
001 32 0 1
L F |4 J

The controllability indices: = (2, 2) leads to subspace = R? of state-space
R* defined by

V = span{bs 1, bk 2} = span (8.25)

o O = O
_ o O O

2Note that controllability indices = (3, 1) would equivalently work.



8.3 Requirement Specification 111

The observation-space is given by
0

R? = R*/V = R*/span (1) , = span (8.26)

0
0
0
0 1

1 0
0 0
0] |1
0 0

Subspace’ induces the observation mapy, : R* — R*/span{by1,bx 2}
Thus, the observatiop, € R? is given by

Tk

Y1 | 1 0 0 O Tk,2

[y} - [O 01 o] o (8.27)
Tk,4

Transition systenTy;, associated with linear control systeiy is defined by
TEK = (R47R47—>7R27TE,@)7 (828)
where,

e —C R*x R*is atransition relation defined by, — z’. if there exists
an inputu,, € R? such thatt!, = A,z + Byu,

e Ty, :R*— R?is an observation map defined My, (z,) = ys.

8.3 Requirement Specification

In the following a simple requirement specification is formulated in LTL. For
simplicity lets assume that the unicycle starts at some initial position, given by
the observation,. € R?. The requirement is now to eventually bring the unicy-
cle, i.e. the observatiop. € R? to a sefly,.] C R? defined by

1 1 1 1
= R2| — =< < AN —=<ypa <= 2
[yﬁ] {yne ‘ 2_yn,1_2/\ 2_3/,2_2}7 (8 9)
within 3 time units and stay there for all future time. The [ggi representing
the desired goal position is shown in Figure 8.5. This requirement is cdgture

the following LTL formula

¢ = Q3057 (8.30)
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Yr,1

Figure 8.5:Desired goal position represented by a gg{.

whereS; denotes the set defined py A p2 A ps A py Wherep; fori=1,....4
are defined as

P1=Ye1 + % >0, (8.31)
P2 = —Yu1+ % >0, (8.32)
P3 = Yo + % >0, (8.33)
pi= vzt g >0, (8.34)

Thus, the initial partition of the observation-spaeis
P = {54, Sa}, (8.35)

whereS; denotes the compliment ¢f . The setsS; and.S, cover observation-
spaceR? and are defined as

1 1 1 1
_ R2| — = N — 8.36
S1 {yKG | 2<ym,1<2/\ 2<yn,2<2}> (8.36)
1 1 1 1
Sy = {yn € R? ‘ <y,{,1 < —5 V Y1 = 2) A <yn,2 < —5 V Y2 = 2)}

(8.37)

The initial partition of the observation-spaRé is shown in Figure 8.6.
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Sa

Yr,1

Figure 8.6:Initial partition P = {57, S2} of observation-spack?.

8.4 Computing the Abstraction

We now compute the finite bisimilar quotient using the bisimulation algorithm
(Algorithm 2). The initial partition of state-spad¥* is

P =T,
= {T71(81), T (S2)}, (8.38)

where

1 1 1 1
P=""1%)= {xn eRY| - 5 <Tk1 <3 A —5 <3 < 2}, (8.39)

1
T, € R | (:z:n,l <5 Va2 > A

<93H73 < 1 Vg3 > 1) } (8.40)
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ChoosingP = P, andP’ = P, we compute

1 1 1 1
Pre(P’):{xﬁeRﬂ —§<$N72<§ A —2<x,{,4<2}, (8.41)

1 1
PN Pre(P) = {a:,.i eR*| ( <x,§71 < —3 V 1 > > A

2
1 1
xn,3§_§\/xn,32§ A

1 1 1 1
(2 < Tk,2 < 5 AN 5 < Tk,4 < 2) } (842)

SinceP N Pre(P’) # () and P N Pre(P’) # P, the setP; is split into setsPs;
and P, which are computed as follows

Py =PnN Pre(P’)

1 1
:{xﬁeRﬂ ((93&1 §f§\/x,@1 22)/\

< 1\/ >1 A 1< <1 A 1< <1
x ——Vz = —— <=z = —-—-<z =
K23 = 9 K,3 — 2 2 K,2 9 2 K,4 2 )

(8.43)

Py = PﬂPre(P’)

= xeRﬂ a:1<—1\/a: 1>1 V| <—1\/:c >} A
K K1 > 2 K, =9 K3 = 2 5,3_2
1 1 1 1
<<x,@2§—2 \/:r,{’222>/\<x,@4§—2 \/.’L‘,{,422)> } (8.44)

The refined partition is now given by
P’ = ({P1, P} \ {P2}) N {Pa1, Poa} = {P1, Pa1, Pa2}, (8.45)

and shown in Figure 8.7.
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Tk,2

3
2

Pog Psy
1

Tr,1
Py Py Pop =—>
-3 -2 —1 1 2 3

F1

Poy Poy
-2
-3

() zx1 — x,2-plane.

Tr,4

3
2

Poo Py
1

Tk,3
Py Py Pop =
-3 -2 —1 1 2 3

H1

Poo Psy
-2
L3

(b) 3 — 2, 4-plane.

Figure 8.7:Refined partitior®’ = { Py, Ps1, P»y} of state-spac®*.
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Now, choosingP = P; andP’ = P,; we compute

1 1
Pre(P') = {:z,i eRr? ] (x,f,g < —3 Vg0 > 2) A

1 1
<xn,4 < 3 VTya > 2> }, (8.46)
1 1 1 1
PﬁPre(P’) = {x“ € R4 ’ <_2 <ZTga < 5 A —5 < Tg3 < 2) A
1 1 1 1
(2= =g vz g)n(ra s —gvanzg) ) |
(8.47)

SinceP N Pre(P’) # ) andP N Pre(P’") # P, the setP; is split into setsP;;
and P;». The setsP;; and Py, are computed as follows

P = PﬂPre(P')

Po=PnN Pre(P’)

=z, €RY P N A D
- K 2 K,1 2 2 K,3 2
1 1 1 1
= S - =) L 4
( 5 < Ty < 5 VAN 5 < ZTyg < 2)} (8 9)

The refined partition is now given by
P’ = ({P1, Po1, P} \ {P1}) N { P11, Pia} = {Po1, Pa2, P11, P12}, (8.50)

and shown in Figure 8.8.

We further compute the following to show that for alyP’ € P/, PN
Pre(P’) #  andP N Pre(P’) # P are not satisfied, see Table 8.1.

The finite bisimilar quotient is now defined as

77 ={Qr Qs —~, 0,7/}, (8.51)

where
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Tr,2
3
Py
2
Poo Py
1
Tr,1
Py P Py =
-3 -2 —1 1 2 3
H1
Poo Psy
-2
Py
L3
() zx,1 — xx,2-plane.
T ,4
3
P13
2
Poo Poo
1
Tk,3
Py Pya Poy >
-3 -2 —1 1 2 3
1
Pag Psy
-2
Py
L3

(b) 3 — 2, 4-plane.

Figure 8.8:Refined partitior?’ = { P, P2, P11, P12} of state-space
R%.
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N | Pre(Py) | Pre(Ps) | Pre(Ps) | Pre(Py)
P1 @ @ Pl Pl
P P P 0 0
Py Py Ps 0 0
P4 (Z) @ P3 PS

Table 8.1:Forany P, P’ € P’, PNPre(P’) # D andPNPre(P’) # P
are not satisfied.

e Q. = {¢ C R*| ¢isanequivalence class ofC R* x R*} =
{a1,492, 93,94} = { P21, P22, P11, P12} defined by

1 1
Q1={JJRER4| <<$ﬁ,1 S_vaﬁ,122>/\

< 1\/ >1 A\ 1< <1/\ 1< <
x —=Vx = —= < T = — = < g
RS = Tg YRS = g 2 2> 9 2 4=

1 1
QQZ{%@ER“ ((ﬁ%,l S_vaﬁ,122>\/
1 1 1

1 1
q3:{mﬁeR4| <—<1‘,€,1</\—<:U,{73<2 A

1 1 1 1
meS_i\/meZi A IH,4S—§V$H,4Z* )

2
A 1 1 1 1
g =<z, €RY| —§<ac,.i71<§/\—§<:z:ﬁ73<5 A

1 1 1 1
—§<$H’2<§/\—§<$5,4<§ s

o QON = Q/Au
° —>/N§ Q/N X Q/N defined as—>/~: {(Q1aq3)7(C.I17q4)7(Qqul)’
(42,92), (g3, 01), (43, G2), (44, 43), (qa,q4) },

e O={q1,92,q3,q4},
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e T, : Q. — Odefinedasl, (¢;) =¢;fori=1,...,4.

Transition relation—,.C Q,. x Q.. is determined by computing

1 1
Pre(Ql) = {CCK € R4 ‘ (xn,Q < _5 \ Tk,2 > 2) A

1 1
xm,4§_§ \ xn,42§ >

= {q2, g3} (8.52)

1 1
Pre(qq) = {:EK cR? | <:v,€,2 < D) V o Zgo > > A

-2
1 1
Tk,4 < _5 V Zg4 > 5 >

= {2, q3} (8.53)
1 1 1 1
P = K R4 -5 K o -5 kA 250
re(q3) {xe | =5 <Te2< 5 A 2<x74_2}
={q1,q4} (8.54)
1 1 1 1
P = K R4 -5 K o -5 kA Z 50
re(q4) {3’56 ‘ 2<33,2<2/\ 2<£L‘742}
={aq, uu}. (8.55)

The finite bisimilar quotienTﬁf is graphically represented in Figure 8.9.

8.5 Constructing the Blchi Automaton
The Blchi automaton is given as
Ay = (Ty, F) = (@, Q% —,0,T), F), (8.56)
where
° Q={a1,a,0q,q}
e Q'=0Q,

e —C Q x Q defined as—={(q1,42), (42,93), (43, q4), (9, q1),
(94, 92)5 (G4, 43), (q4,94) },



120 Case Study Il : Robot Controller Synthesis

P12 Pll

Figure 8.9:Finite bisimilar quotientT]’N' of transition systenTy;, as-
sociated with linear control systeh,.

e O="P={51,95}
e T : (Q — Odefined as

gy = {5 Fi=Lo3
=g, ifizda '

o FF=0Q.

Since ' = @ the Blchi automatomly can equivalently be represented by its
underlying transition systeffi, as shown in Figure 8.10.

8.6 Controller Synthesis
The controller is defined as
Te = (Qe; Qcy —¢, 0, Tc) | (8.57)
where
o Qc=1{49c1,4c2,9:3} is a set of states,

e QY = Q. is a set of initial states,
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Figure 8.10:Underlaying transition systerii;, corresponding to LTL
formula .

e —.C Q. x Q. is a transition relation defined as—.=
{(qc,lv QC,l)a (QC,la %,2)7 (qc,2> qc,3)7 (qc,3> qc,l)}v

e O ={Pi, P12, P} is a set of observations,

e Y. : Q. — O isanobservation map defined as

Y (gen) = Pr2, Yel(qe2) = Pi1, Ye(ges) = Por.

The controllerT, is graphically illustrated in Figure 8.11.

Py Py Py
QC,3 @ QC,I

Figure 8.11:Controller 7.

8.7 Refinement

We now refine that closed-loop system to obtain a linear hybrid system bive
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H = (Q) @) A, Bi} 6. (8.58)
where
e Q) =1q),1,9)2 93} is asetof states,

. Qﬁ = Q) is a set of initial states,

o A, € R¥™4 B, c R**? are the system matrices ghegjkhdhher in BNF of
Yt xl, = Agxy + Biuy,

® §:Q) X R* — 29I is the discrete dynamics defined by

3 (q1:26) = {3} -
5 (q)2,x) = {ay1}
5 (q)3:2x) = {ay.2:9),3} -

° Z/l(qu«Tn) = {Uf-g S R2 ‘ 71'7)/(1451'5 + Bnun) S T” (5 (q||7{L'K>)} is the
input set defined by

u (Q||,1713/€) = {UH S R? | ™p! (Anl'n + Bﬁun) € {QH,3}}a

_ R2 1 1 A 1 1

=< U, € |—§<’UJ,€71<§ —§<'U%72<§ s
u (Q||,2713/€) = {UH S R? | p! (Anl'n + Bnun) € {QH,I}}a

_ R? 1 1 A 1 1

=< U, € |—§<’UJ,€71<§ —§<UH72<§ s
u (Q||,3713n) = {UH S R? | ™p! (Anl'n + Bnun) € {QH,3aQ||,2}}>

| 11 1
== UH€R|—§<UH’1<§/\—§<UK,2<§ A

1 1 1 1
Uﬁ,lg_i\/un7125 A Un,2§_§\/um,22§ .

Each statey € Q) is equipped with a linear control system of the form
Y. : zl, = Agx, + Biuy with inputu, € U (qH,x,{). Thus, ing 5 € Q) if
the input is chosen such that € U (g3, 2,) this will result in a transition to
q| € (g3, Tx)-
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8.7.1 Computing the Input Sets

In the following we show how to compute the input &&{q) 1, z,) for ¢ ; €
Q- First, we need to determine which transitidﬁﬁ: are allowed ing ; € Q
by the controllerI:.. Thus, we need to recover frog); € Q) the state of the
finite bisimilar quotient), . as

) (g),1) = a1 (8.59)
From the transitio; — . g4 given by
) (a13) = a1 (8.60)

and bisimilarity between bisimilar quotient transition systﬁﬁj and transition
systemTy,, it follows that for any continuous state, € ¢; the following is
satisfied

Ty —y, Th € qa. (8.61)

This is equivalent to the existence of an inpytc R? such that!. = Az, +
Byu,, wherez!. € ¢4. From the definition ofyy € Q/~ and linear control
system¥,; the input sel/ (g 1, =) in discrete statg ; € Q| is defined by

U(q”,l,x,{) = {ufi € R2 ’ P! (Af-cxn + Bnun) € {Q||,3}} ,

1 1 1 1
:{UH€R2|—2<U,§71<2/\—2<’U/,{,2<2}. (862)

The other input sets are computed in a similar way.

8.8 Software Implementation of Linear Hy-
brid System

The software implementation of linear hybrid systémdefined in Eq. (8.58) is
illustrated in Figure 8.12.

For a detailed description of the software implementation of linear hybrid
systemH the reader is referred to section 7.8 in the the previous chapter.

Now, since the system in Brunovsky normal fobiy is related to linear
control systenkt by an invertible state/input transformation matiixdefined in
Eqg. (7.14),X, can be replaced with as shown in Figure 8.13.



124 Case Study Il : Robot Controller Synthesis

q % x klt——

Chart
Transition System

Subsysten
Input Setg

u_

Linear Control System (Sigma_k)

Figure 8.12: Software implementation of linear hybrid systéimin
SIMULINK and STATEFLOW.

Notice, that replacing’,, with X requires the generation of a new input
R? from the original input.,, € R? and stater,, € R* of 2, (See Eq. (7.14)).

Further, ¥ can be replaced with linear control systery which is a
continuous-time linear control system. This is shown in Figure 8.14.

8.9 Simulation Results

The initial position of the unicycle is(0) = [1.625 2.05]T (m) and the initial
orientation of the unicycle i8(0) = = (rad). Thus, the initial coordinates of
the unicycle isy(0) = [1.625 2.05 Tr]T. The initial state of the integrator is
£(0) = 0.001 (m/s).

The result of simulating the system is shown in Figure 8.15.

As shown in Figure 8.15 the vehicle start at position = [1.625 2.05]
and moves towards the set representing the goal position as described in F
ure 8.5.
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Gain

Gain
—inv(V)*F

Figure 8.13:Software implementation of hybrid linear systéhwhere
3« has been replaced with.
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Rate Transition
ZOH
2 2 2 |2 4 4
—»@ 2y O |2y, T :D
u_k . [0 (m . x_k
Gain Gain
inv(v) H

Linear Control System (Sigma_z)

Figure 8.14:Software implementation of hybrid linear systéhwhere
33 has been replaced with.,.
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Figure 8.15:Simulation results.

8.10 Concluding Discussion

The novel framework presented here is applicable to a large class bblwen
nomic mobile robots, including the unicycle, that can be transformed into linear
systems using e.g. dynamic feedback linearization and dynamic extension.
The framework originally developed by Tabuada and Pappas [Talaratia
Pappas, 2006] was extended to fit with the problem of synthesizing aollentr
for a mobile robot, given a requirement specification in LTL. This requiade
modifications which were primarily concerned with the input to the framework
and with the software implementation of the linear hybrid system obtained by
refinement.
A software implementation of the hybrid linear system was not provided
in [Tabuada and Pappas, 2006] for the purpose of simulating the siagties
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controller and the linear control system. Therefore, to demonstrate thector
ness of the synthesized controller a software implementation of the linead hybr
system was provided inIBULINK and SATEFLOW, showing that the synthe-
sized controller equivalently would work on the nonlinear system.

8.11 Summary

In this chapter the framework for controller synthesis presented in thviopse
chapter was applied to a simple model of a nonholonomic wheeled mobile ro-
bot, i.e. an unicycle. The nonlinear unicycle model was transformed intoax line
control system by using dynamic feedback linearization and dynamic éxtens
The requirement specification expressing the desired behavior of tbgclen
was formulated in Linear-time Temporal Logic (LTL). The bisimulation algo-
rithm was used for obtaining an abstraction in the form of a finite bisimilar quo-
tient of the linear control system. A controller was then synthesized from the
Biichi automaton and the finite abstraction. Subsequently, the closed Isop sy
tem of discrete nature is refined resulting in a linear hybrid system. A saftwar
implementation of linear hybrid systefd in SIMULINK and SSATEFLOW was
provided and a simulation was performed. The results of simulating the seftwar
implementation of the linear hybrid system are presented showing that the sys-
tem operate as expected. Finally, a conclusive discussion of the nawehfork
proposed i the previous chapter was given.



Chapter 9

Conclusions and
Recommendations

The overall aim of this thesis has been to investigate automated synthesis of
coordination and control of multi-robot systems. The thesis introduces tw
different approaches to synthesis that are potentially suitable for genarafio
engineering systems.

In the following we conclude on the two frameworks presented in chapter 5
and 7, respectively, that is

Framework I Motion planning of a network of multi-modal robots with respect
to formal requirement specifications in Computational Tree Logic (CTL).

Framework Il Controller synthesis for linear control systems with respect to
formal requirement specification in Linear-time Temporal Logic (LTL).

Framework | : Multi-robot Motion Planning

e By abstracting a network of multi-modal robots, modeled as hybrid au-
tomata, to the world of timed automata symbolic reasoning about coor-
dinated motion planning solutions was possible with respect to a formal
requirement specification in Computational Tree Logic (CTL). Compo-
sition of multi-modal robots in the network modeled as timed automata
was possible through the introduction of synchronization channels thus

129
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Conclusions and Recommendations

allowing a multi-modal robot and associated controller to communicate.
Further, global optimal solutions was found thus minimizing the num-

ber of robot movements or accumulated time required for the network of
multi-modal robots to reach their goal positions, in order to satisfy the
requirement specification in CTL.

The framework presupposes an infra-structure of the multi-modal robots
with feedback controllers that constraint the motion capabilities of the
individual multi-modal robots in the network. This means that the indi-
vidual robots can have more complex dynamics compared to what was
expressed by the hybrid automaton modeling a multi-modal robot.

The use of Computational Tree Logic (CTL) as a requirement specifica-
tion mechanism for the network of multi-modal robots allow to express
requirements that cannot be specified using classical control thelsy, A
CTL allows to express the desired global behavior for the network of
multi-modal robots.

The proposed framework is also applicable to multi-modal robots mov-
ing in a three-dimensional (3D) environment. To allow this, the hybrid
automata, modeling a multi-modal robot, must be expanded with two
additional states for moving in the; and —z3-direction, respectively.
However, this would result in an increased computational complexity of
subsequently model checking the system.

A drawback of the proposed framework is the computational complexity
of model checking the system in UPPAAL. It is a known fact that the
computational complexity is exponential in the number of robots, con-
trollers, and size of the occupancy table representing the environment.

The framework is applicable to other application domains than robotics
that is systems where planning and motion coordination is necessary, i.e.
as in formation flying of satellites and aerial vehicles.

Framework Il : Robot Controller Synthesis

e The framework originally developed by Tabuada and Pappas [Tabuada

and Pappas, 2006] was extended to fit with the problem of synthesizing
a controller for a mobile robot, given a requirement specification in LTL.
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This required some modifications which were primarily concerned with
the input to the framework and with the software implementation of the
linear hybrid system obtained by refinement.

e A software implementation of the hybrid linear system was not provided
in [Tabuada and Pappas, 2006] for the purpose of simulating the synthe-
sized controller and the linear control system. Therefore, to demonstrate
the correctness of the synthesized controller a software implementation
of the linear hybrid system was provided iM&LINK and SATEFLOw,
showing that the synthesized controller equivalently would work on the
nonlinear system.

e The framework is applicable to a large class of nonholonomic mobile ro-
bots, including the unicycle, that can be transformed into linear control
systems using e.g. dynamic feedback linearization and dynamic exten-
sion.

9.1 Recommendations

However, two frameworks have been outlined in this thesis but the following
open issues are recommendable for further investigation. The issupsare
tized as follows, with decreasing priority

Framework | : Multi-robot Motion Planning

1. The computational complexity of model checking the system in UP-
PAAL can be overcome by guiding the search such that an extensive
search is avoided. UPPAAL CORAUppsala University and Aal-
borg University, 1995b] uses an extension of timed automata called Lin-
early Priced Timed Automata (LPTA) which allows to annotate the timed
automaton model with the notion of cost. The idea is then be to have
a low cost for moving in a direction that would bring each multi-modal
robot closer to its goal position, opposed to a high cost if moving in a
direction that brings the robot away from the goal position. Subsequently

1A branch of UPPAAL for cost optimal reachability analysis.
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UPPAAL CORA could be used to find the most optimal location trajec-
tory, i.e. a location trajectory with the lowest accumulated cost for each

robot.

. As a result of model checking the system UPPAAL generates a strat-

egy in the form of a sequence of input synchronization actions, one for
each multi-modal robot in the network, in order to satisfy a requirement
specification in CTL. The sequence of input synchronization actions cor
responds to a set of way-points connecting the initial and goal position.
A natural next step would be the development of a controller, possibly of
hybrid nature to track the set of way-points.

Framework Il : Robot Controller Synthesis

1. The novel framework proposed is a step towards automated controller

synthesis for mobile robots, given a nonlinear model of the system and
a requirement specification in Linear-time Temporal Logic (LTL). A nat-
ural next step is the development of a tool that automatically synthesize a
controller for a mobile robot, given a nonlinear model and a requirement
specification in Linear-time Temporal Logic (LTL).

. Expressing the desired behavior of the system in Linear Tempor#t Log

(LTL) can be complex and possibly render the framework less applica-
ble. To make the framework more applicable to engineers unfamiliar with
requirement specification in Linear-time Temporal Logic (LTL) a more
"natural language" for requirement specification than LTL should be in-
vestigated. Alternatively, the possibility to translate a more "natural lan-
guage" to a requirement specification in LTL should be investigated.

. It would be desirable to expand the framework to networks of robbts. |

possible, this could eventually require some major modifications of the
framework. The composition of robots could be performed at the level of
modeling the system. Thus, a linear control system can be formed that is
composed of: linear control system, i.e.
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such that system matrices are given by

A1 Bl
A=

Unifying Framework I+lI

The two frameworks could potentially be combined to an unifying framework
for motion planning and control of networks of robots. Framework | would
then be used for motion planning for the network of robots, where a feasib
motion plan for the robots is generated, taking into account coordinationgamon
the robots. Subsequently, framework Il would then be used for syimthgs
hybrid controller for each of the robots in the network, satisfying the motiam p
generate using framework I.
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Appendix A

System Parameters

Global Declarations for System

/I Declarations of global clocks, variables, constants and channels.

/I global clocks
clock tinme; /I measures globaltime for system

/I global constants
const int Z 1
const int Z 2
const int N =
const int M=

7; I horizontal size of Z
7; [/l vertical size of Z
/I number of robots + 1
3; /I number of obstacles + 1

W w I

/I global variables
int[0,1] Z[Z 1][Z_2]; [/ltwo-dimensional integer array Z
int[0,1] i,j; /l index variables
int[1, N robot No;
int[1, M obsNo;

/I global channels
chan sigma_21, sigma_31, si gnma_41, si gna_51; // synchronization channels
chan sigma_22,sigm_32,sigma _42,sigm_52;
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Local Declarations for Robot
/I Declarations of local clocks, variables and constants.

/I local clocks
clock c; /I measures local time for robot

I/l local variables
int[0,Z 1] z_1; /ldiscrete horizontal position of robot in grid

int[0,Z_2] z_2; [ldiscrete vertical position of robot in grid

Local Declaration for Obstacles
/I Declarations of local clocks, variables and constants.

/I local variables _ _ . - _
int[0,Z_1] z_1; /ldiscrete static horizontal position of obstacle in

grid
int[0,Z_2] z_2; [l discrete static vertical position of obstacle in
grid

System Declarations
/I Declarations of process assignments and system definition.
/I Process assignments

// robots
R 1 = Robot(1,5,3,1,sigma_21, signa_31, signa_41,

sigma_51);
R 2 = Robot(2,5,4,1,sigma_22, signa_32, signa_42,
si gma_52);
/[ controls
C 1 = Control (sigma_21, sigma_31, signa_41, si gma_51);
C 2 = Control (sigm_22,sigma_32,sigma_42, si gma_52);
// obstacles
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01
02

03

04

05

06

07

038

09

0 10
0 11
0 12
0 13
0 14
0 15
0 16
0 17
0 18
0 19
0 20
021
0 22
0 23
0 24
0 25
0 26
0 27
0 28
0 29
0 30
031
0 32

obstacl e(1,0,0);
Cbstacl e(2,1, 0);
obstacl e( 3, 2,0);
Cbst acl e(4, 3, 0);
Obst acl e(5, 4,0);
Cbst acl e(6, 5, 0);
st acl e(7, 6, 0);
Cbst acl e(8,6,1);
st acl e(9, 6, 2);
bst acl e( 10, 6, 3);
Cbst acl e(11, 6, 4) ;
obstacl e(12,6,5);
Cbst acl e( 13, 6, 6) ;
obst acl e( 14, 5, 6) ;
(bst acl e( 15, 4, 6) ;
ost acl e( 16, 3, 6) ;
Cbst acl e( 17, 2, 6) ;
st acl e( 18,1, 6);
bst acl e(19, 0, 6);
ost acl e( 20,0, 5);
bst acl e( 21,0, 4);
Cbst acl e( 22,0, 3);
obst acl e(23,0, 2);
Cbst acl e( 24,0, 1);
obst acl e(25,2,1);
Cbst acl e( 26, 3, 2);
ost acl e( 27, 4, 2);
Cbst acl e( 28, 4, 3);
ost acl e( 29, 3, 3);
bst acl e( 30, 2, 4);
st acl e(31,4,5);

= (bstacl e(32,5,5);

/I System definition

systemR 1, R2, C1, C2, 01, 02, 03, 04, OS5,
o6, 07, 08, 09 010, 011, 012, 013, 014,
0O 15, 016, 017, 018, 019, 020, 021, 022,
023, 024, 025 026, 027, 028, 029, 030,

0 31, 0 32;






Appendix B

Special Forms of Linear Control
Systems

In this appendix we review the Controller form and Brunovsky normainfor
which are two special forms of both continuous-time and discrete-time linear
control systems. However, the two special forms will be described foretis-
time linear control systems.

Consider a discrete-time linear control system

Yo oz(t+1) = Ax(t) + Bu(t), (B.1)

where matricesA € R™™™ and B € R™ ™ are generally constant and state
variablez € R™ and control variable; € R™ are discrete. In the following is
referred to as the state of the system arak the input to the system. Further,
R™ is referred to as the state space or set of states of the systeRi"aad the
observation space or set of observations.

The computation of the Brunovsky normal form for the system (7.12) com-
prises two steps

e First, the linear syster is transformed into the controller form, denoted
Y. with a linear change of coordinates,

e Second, the controller fori., is further reduced into the Brunovsky nor-
mal form, denoted’ with a linear state feedback.

In the following ... The controllability matriX € R™*™" for the system (B.1)
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is given by
C=[B AB ... A"!'B] (B.2)
=[b1 ... by Aby ... Aby A%by ... A%b, ...
A"y o A, (B.3)

Let X be a linear control system as defined in Eq. B.1. The sequence of
positive integers: = (K1, k2, - - ., km ), Whererank B = m are called the con-
trollability indices of the system satisfying

K1 > Ko > ...> kp Suchthate) + ko + ...+ Ky, = 0. (B.4)

B.1 Controller Form

The decomposition of state spaRé for linear control systent: according to
controllability indicess = (k1, k2, . . ., k) results in a new controllability ma-
trix C € R™*" given as

C=|by Aby A%by ... A" 1by by Aby A%by ... A™271py ...

b Aby A2by, ... A”m_lbm], (B.5)

where the vectors are arranged as follows. Select, starting from thaneft
moving to the right, the first independent columns of Eq. (B.3). Recorder these
columns by taking firsb;, Ab;, A%b;, etc., until all columns involving; have
been taken; then take, Aby, A%bs, etc., and lastly, take,,, Ab,,, A%b,,, etc.,
to obtain Eq. (7.17). The integer denotes the number of columns involvihg
in the set of the first linearly independent columns found in the controllability
matrix C, when moving from left to right.

Them integersk; fori = 1,...,m is called the controllability indices of
the system.

Now define

g; = ilﬁi, (86)
i=1



B.1 Controller Form 147

such that
01 = K1, (B.?)
09 = K1 + Ko, (88)
Om =KL+ ...+ Em.- (B.9)
ConsiderC~! € R™ " and letd;, whered] € R" fori = 1,...,m de-

note thes;-th row of C~1. The invertible linear transformatioH € R™*" is a
similarity transformatiordefined as

dq
d1A

dy A1
: (B.10)

dm
A

_dmA.nmil_
The controller form (single input case) of a linear control syskia given by

e o x(t+1) = Acx(t) + Beoul(t), (B.11)
where A, and B, are the new system matrices, defined by

A.=HAH Y, (B.12)
B.= HB. (B.13)

The system matrices are of the following form
0 1 - 0 B;

A, = : : : . B.=| |, (B.14)
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where each bloclB; € R**™ are of the form

0O --- 00 o0
Bi=|: Do aE (B.15)

o --- 0 1 X e X
wherel in the last row ofB; occurs at thé-th column location foé = 1,...,m

and x denotes non-fixed entries. In (B.14) thefori = 0,...,n — 1 are the
coefficients of the characteristic polynomigls) of matrix A, i.e.

a(s) =det(sI — A) = " + an_15" " + -+ + a1s + . (B.16)

B.2 Brunovsky Normal Form

At this point we will assume that the matricds and B, are in controller form.
It is possible to writed. and B, in a systematic way

A, = A + B'A,,, B.= BBy, (B.17)

where(A’, B') € R™"*™ x R™™ are the Brunovsky normal form ¢f4, B) in
(B.1). The matrices4,, € R™*™ andB € R™*™ consists of ther;-th, os-th,
..., om-th rows of A, and B,, respectively. The matriced,, and B,, is that
part of controllable linear control system (B.1) that can be altered byrlstate
feedback

v = Fz + Vu. (B.18)
Notice that
ACF = Ac + Bcha (Blg)
is also in controller form with identical block structure ds for any F.. Thus,
the pair(A.r, B.) has the same controllability indices= (1, ..., x,,) as the
pair (A¢, Be).
Selecting
Ag=A + B/Adm, (B.20)

and requiring thatl.r = Ay, implies

B'(Ap + BnF.) = B'Ay,.. (B.21)
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Thus, we have that
F.= B, (Aq, — An), (B.22)

whereB,,,, Aq4,,, andA,, are them o;-th rows of B., A4, and A, respectively
ando; are defined in (B.6). Fad,;,, = 0 which is the case foA in Brunovsky
normal form, (B.25) reduces to

F.= B, 'A,. (B.23)
The matrixF. is related taF’ by
F =F,H, (B.24)
which leads to
F=RBA,,H. (B.25)
The invertible linear transformatioii € R™*™ is given by
V =08 (B.26)
The Brunovsky normal form of linear control system is given by
Y oooa(t+1) = A2 (t) + B/ (t), (B.27)

whereA’ and B’ are the new system matrices aricandu’ are the new state and
control variables, defined as

A'=H(A+BF)H™, (B.28)
B' = HBYV, (B.29)
2 = Huz, (B.30)
W =Fz+ Vu. (B.31)

The system matriced’ and B’ are of the following form

A0 .0 b, 0 00 0
|0 A 0 PO U 00 0
0 0 ... A 0 0 ... 00 ...

Rm Km

(B.32)



150 Special Forms of Linear Control Systems

where each blockl; < R"** andb;, € R" fori = 1,...,m are of the form
[0 1 0 0] 0]
001 ... 0 0
A, =+« . i, BL=|]. (B.33)
000 ... 1 0
0 0 0 0] 1]

The system in Brunovsky normal forkl with statex’ € R™ and inputu’ € R™
is related to the linear control systethby an invertible state/input transforma-
tion matrix (somorphismU : R™ x R™ — R™ x R™ defined as

A A
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