
 

  

 

Aalborg Universitet

Papers

Volume 7: 2004-2008

Thoft-Christensen, Palle

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Thoft-Christensen, P. (2008). Papers: Volume 7: 2004-2008. Department of Civil Engineering, Aalborg
University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 19, 2024

https://vbn.aau.dk/en/publications/3174dc20-e6c9-11dd-b0a4-000ea68e967b


Chapter 125  

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 125 
 
 
 

KNOWLEDGE-BASED SYSTEMS FOR THE ASSESSMENT AND 
MANAGEMENT OF BRIDGE STRUCTURES 1 

 
A. Miyamoto*, P. Thoft-Christensen** & B. Yan*  

*Yamaguchi University, Ube, Yamaguchi, Japan 
**Aalborg University, Aalborg, Denmark 

 
 

 

ABSTRACT 
It is becoming an important social problem to make maintenance and rehabilitation of 
existing infrastructures such as bridges, buildings, etc. The kernel of such structure 
management is to develop a method of safety assessment on items which include 
remaining life and load carrying capacity. The aim of this paper is to summarize the 
finding of up-to-date research articles concerning the application of knowledge-based 
systems to assessment and management of structures and to illustrate the potential of 
such systems in the structural engineering. Two modern bridge management systems 
(BMS's) are presented in the paper. The first is a BMS to assess the performance and 
derive optimal strategies for inspection and maintenance of concrete structures using 
reliability based and knowledge based systems. The second is the concrete bridge rating 
expert system (BREX) to evaluate the performance of existing bridges by incorporating 
with artificial neural networks and fuzzy reasoning. 
 
1. INTRODUCTION  
In the field of structure management engineering, a great deal of decision making often 
depends on the judgement and experience of the domain experts in related fields, such 
as technologists and engineers. Then an important parameter in management for 
structures is the assessment that should include technological evaluation and 
economical analyses referring to initial cost and diagnostic technologies for 
maintenance throughout service life. Since the necessity of developing a computer-
aided structure assessment and management system has been point out for maintenance, 

1 Asian Journal of Information Technology, Vol. 3 (11), 2004, pp. 1083-1102. 
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diagnosis, repair and rehabilitation of existing structures. There are multiple processes 
of damage with a lot of damage factors in existing structures in service. Then in the 
processes of the structure assessment and management are included a subjective 
uncertainty of the domain experts such as professional experience, knowledge on 
structure management, etc. 

New technologies applicable to structure assessment and management such as 
information technology (IT), artificial intelligence (AI) which based on a soft 
computing technique, are making remarkable progress. Knowledge-based expert 
systems (KBESs) with "if-then" rules as one of the artificial intelligence techniques are 
the most common technology, which can be effectively utilized as the structure 
management supportive tool when such experiences and knowledge are organized, 
coordinated and developed into a knowledge-based system. As another promising new 
technology, artificial neural networks (ANNs) that originated from a desire to simulate 
how the human brain processes information. ANNs with the back propagation of error 
algorithm are able to learn from the past experiences and knowledge by a teacher data. 
The mechanism of the organization of the neurons and modification of weights of the 
connections among the neurons in ANNs usually called the machine learning in 
KBESs. 

The aim of this paper attempts to review and analyse the potential of utilizing 
knowledge-based systems in structure assessment and management and to make clear 
the limitations such systems based on the qualitative and quantitative information. The 
sections that follow will review two quite different knowledge-based BMSs. The first is 
a BMS to assess the performance and derive optimal strategies for inspection and 
maintenance of concrete structures using reliability based and knowledge based 
systems. The second is the concrete bridge rating expert system (BREX) to evaluate the 
performance of existing bridges by incorporating with artificial neural networks and 
fuzzy reasoning. 

 
 

2, KNOWLEDGE-BASED AND RELIABILITY-BASED SYSTEMS FOR 
STRUCTURAL PERFORMANCE ASSESSMENT 
 
2.1 Introduction 
In this chapter BMS's are discussed with special emphasis on reinforced concrete 
bridges. However, BMS's for prestressed concrete bridges, steel bridges, or composite 
bridges can be developed in a similar way. 

The present bridge management systems are in most cases based on a 
deterministic approach and the assessment of the reliability or the safety is therefore in 
general based on subjective statements. In future bridge management systems we will 
see a change to stochastically based systems with rational assessment procedures. 
Future management systems will be computerized and different types of knowledge-
based systems will be used. The format of future bridge management systems is 
illustrated by  the EU supported management systems BRIDGE I and BRIDGE2. 

For many years it has been accepted that steel bridges must be maintained due to 
the risk of corrosion of steel girders etc. The situation is a little different for reinforced 
concrete bridges. Although a vast majority of reinforced concrete bridges have 
performed satisfactorily during their service life, numerous instances of distress and 
deterioration have been observed in such structures in recent years. The causes of 
deterioration of reinforced concrete bridges are often related to durability problems of 
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the composite material. One of the most important deterioration processes, which may 
occur in reinforced concrete bridges, is reinforcement corrosion, caused by chlorides 
present in de-icing salts and/or carbonation of the concrete cover zone. 

Improved stochastic modelling of the deterioration is needed to be able to 
formulate optimal strategies for inspection and maintenance. However, such strategies 
will only be useful if they are combined with expert knowledge. It is believed that 
future management systems will be expert systems or at least knowledge-based 
systems; see Thoft-Christensen [1], Thoft-Christensen et al. [2] and Thoft-Christensen  
[3]. 

 
2.2 Optimal strategies for inspection and maintenance of bridges 
2.2.1 Diagnostic methods   
Diagnosis of bridges showing signs of functional or structural deterioration is the first 
step that has to be taken before making any decisions regarding maintenance or repair. 
It is necessary to define clearly what the damage problems are. It is very costly to start 
diagnosis without knowing which information one wants to gather. When the 
diagnostic method (or methods) is selected, it is necessary to gather the know-how, 
equipment, manpower and facilities needed. Diagnostic work is usually disruptive for 
the normal functioning of the bridge and must be limited as much as possible in time 
and space. 
 
2.2.2 Correlations between defects and diagnostic methods  
A correlation matrix between the diagnosis methods and the defects can be established 
so that each line represents a defect and each column a diagnostic method. At the 
intersection of each line and column a number representing the correlation between 
defect and diagnostic method can then be introduced. Such a matrix helps the inspector 
in choosing the best inspection method, as a function of the detected defect. 
 
2.3 Development of optimal strategies 
2.3.1 Inspection strategies   
Methods and computer programs for determining rational inspection and maintenance 
strategies for bridges are developed. The optimal decision is based on the expected 
benefits and the total cost of inspection, repair, maintenance and complete or partial 
failure of the bridge. 

Furthermore, the reliability has to be acceptable during the expected lifetime. 
Inspections of bridges are in this BMS divided into three types: 

• Current inspections, which are performed at a fixed time interval, e.g. 15 
months. The inspection is mainly a visual inspection. 

• Detailed inspections are also done at a fixed time interval. The time interval is a 
multiple of the current inspection time interval, e.g. 5 years. The detailed 
inspections are visual inspections but can also include non-destructive in-situ 
tests. 

• Structural assessments are only performed when a current or detailed inspection 
shows some serious defects, which require a more detailed investigation. The 
structural assessment can include laboratorial tests, in-situ tests with non-
portable equipment, static and dynamic load tests. The tests are usually very 
costly compared with the other two inspection types. 
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2.3.2 Maintenance and repair decision systems.  
It is convenient to divide that part of the decision system, which is used to assist in 
maintenance and repair planning into two subsystems.  

The maintenance subsystem deals with maintenance repair techniques and small 
repair i.e. repair of unimportant structural defects. Generally this subsystem is always 
used after a current or detailed inspection.  

The repair subsystem helps choosing the best option of structural repair when an 
important deficiency that impairs the functionality of the bridge is detected. It is 
basically an economic decision (based obviously on structural and traffic engineering 
data) in which the costs are quantified. Generally this subsystem is used after a 
structural assessment. 
 
2.4 Application of expert knowledge 
The objective of using knowledge-based system technology in bridge management is to 
produce a software tool to assist bridge inspectors as well as engineering experts in 
their tasks of assessing and improving the reliability of concrete bridges. 
 
2.4.1 Architecture  
The first step is to identify the various software subsystems and the relations between 
them i.e. the software architecture that will set the basis for the development of the 
knowledge-based systems. It is natural in bridge management to develop two different 
modules aimed at different goals. The first provides technical support to the inspector 
during, the inspection process at the bridge site. The second assists the engineer in the 
analysis of the safety of bridges as well as in the selection of maintenance and repair 
methods. 
 
2.4.2 Software modules  
A number of software modules interact with the knowledge-based systems through 
specifically designed data files: 

• Updating analysis: Based on inspection information and other new information 
the reliability estimates and the data in the databases is updated. 

• Reliability analysis: The reliability of the bridge is evaluated as a function of 
time. 

• Structural analysis: The system is open so that the user is able to use any finite 
element software. 

• Inspection program: Based on the data in the databases and the reliability 
estimates the optimal time for the next inspection is calculated using the 
updating module. 

The next step is to identify the representation schemes and inference mechanisms 
best suited for the implementation of the knowledge-based systems. 
 
2.4.3 Implementation of the knowledge based system  
As mentioned earlier in bridge management it is convenient to have at least two 
systems, namely one to be used in the inspection phase and one to be used during 
maintenance and for repair decisions. The first system is highly based on "correlation 
matrices". Correlation matrices are defined for: defects/diagnostic methods, 
defects/causes and defects/repair methods. A pseudo-quantitative classification of the 
type no correlation, low and high correlation is used. 

Correlation between defects as well as diagnostic and repair methods is also 
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needed. Each matrix is e.g. is organized so that each line represents a defect and each 
column a possible diagnosis method, cause or repair method. At the intersection of each 
line and column a number representing the correlation between defect and possible 
element of reference is introduced. 

It is important for the applicability of the knowledge-based system that it gives all 
the information needed during and after inspections. Such information is: general 
information about the bridge, related diagnostic methods, probable causes, associated 
defects and provisional defect report. 
 
2.4.4 Databases  
A crucial task in the development of knowledge-based systems is the definition of the 
databases. An exhaustive study of the data collected for concrete bridges, both at the 
design stage and after it has been constructed must be provided. At relevant moments 
of the bridges service life (usually after construction and after important rehabilitation 
work is performed), its real situation must be thoroughly described so that future 
inspections have something to relate to. When the database definition is completed then 
the set of parameters required for the reliability estimation, the cost optimization, and 
additional bridge parameters dealing with the bridge repair cost and corrosion 
descriptive parameters are added. 

Most existing bridge management databases are insufficient for e.g. reliability 
assessment and for implementing modem decision-making tools. 
 
2.4.5 Expert modules  
A number of expert modules are needed to define the architecture of the knowledge-
based system: database module, inspection module and a decision module. The 
decision is divided into a number of sub-modules such as: a maintenance/small repair 
sub module, an inspection strategy sub module and a repair/upgrading/replacement sub 
module. 
 
2.4.6 The inspector’s functionalities  
The inspector must be able to perform activities like: 

• Review all the information contained in the database of the bridges. Different 
types of data are recorded for each bridge: identification and bridge site 
information, design information, budget information, traffic information, 
strength information, load information, deterioration information, factors that 
model the costs and data for the cross-sections defined for the bridge. 

• Define new cross-sections. 
• Receive technical support regarding the most appropriate diagnostic methods to 

be used in order to conclude about the existence of a defect. 
• Receive technical support regarding the possible causes responsible for a defect. 
• Record the results of the inspection. 

 
2.4.7 The inspection engineers functionalities  
The inspection engineer must at his office be able to: 

• View the inspection results recorded at any previous inspection performed in 
any of the bridges of the database. 

• Enter the data of a bridge in the bridge's database. 
• View the data of a bridge and edit it. 
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• Define new critical cross-sections for any of the bridges in the database. 
• Complete the data of the defects detected at the inspection by describing the 

defect in greater detail and by entering the results of the tests performed. 
• Update data for the cross-sections and inspection results after repair. 

 
2.5 Bridge management systems for concrete 
In this section some important issues related to advanced BMS’s are discussed namely 

• Deterioration of bridges 
• Stochastic modelling of failure modes 
• Stochastic modelling of the inspection 
• Stochastic modelling of repair 
• Updating techniques 
• Reliability analysis. 

 
2.5.1 Deterioration of bridges .  
Corrosion is one of the most important deterioration mechanisms for steel as well as 
reinforced concrete bridges. In this section a stochastic model for corrosion of 
reinforcement in reinforced concrete bridges is shown. 

Fick's law of diffusion often models the rate of chloride penetration into concrete 
  
                                                  (1) 

 
where Dc is the chloride diffusion coefficient, x is the distance from the surface and t is 
time.  

The solution of Equation (1) is 
  
                                                                      (2) 

 
 
where C(x,t) is the chloride content at the distance x from the surface and at the time t. 
C0 is the initial chloride content. The corrosion initiation period 

 
                                       (3) 

 
 
where Ci is the initial chloride concentration, Ccr is the critical chloride concentration, 
and d1 – D1 /2 is the concrete cover. The diameter D1(t) of the reinforcement bars at the 
time t after initiation of corrosion can the be modelled by 
                                                                                                         

                                                                                                                                                             (4) 
 
where D1(0)is the initial diameter, Ccorr is a corrosion coefficient, and icorr is the rate of 
corrosion. 
 
2.5.2 Stochastic modelling of failure modes   
A number of failure modes for structural elements must be modelled. In this section is 
shown as illustration modelling of an ultimate limit state (ULS) and a serviceability 
limit state for a concrete slab bridge namely; see Thoft-Christensen et al.[2] 
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• An ultimate limit state (ULS): collapse limit state (using yield line analysis) 
• A serviceability limit state (SLS): crack width limit state (using linear elastic 

analysis) 
The following safety margin can be used for the collapse limit state: 

 
                                                                                                                                      (5) 
 

where VC  is a model uncertainty variable, ED is the energy dissipated in yield lines, and 
WD is the work done by the applied loads. 

The basic variables used in the yield line ULS are: thickness of slab, cube 
strength of concrete, density of concrete, depth of reinforcement, yield strength of 
reinforcement, and two load parameters. 

Cracking shall be limited to a level that will not impair the proper functioning of 
the structure or cause its appearance to be unacceptable. In the absence of specific 
requirements (e.g. water tightness), it may be assumed that limitation of the maximum 
design crack width W max to about 0.3 mm will generally be satisfactory for reinforced 
concrete members with respect to appearance and durability. 

A crack width limit state can be formulated by 
  
                                                                                                                           (6) 

 
where Wmax is the maximum allowable crack, Wd is the design crack width, and Zd is a 
model uncertainty stochastic variable. 
 
2.5.3 Stochastic modelling of the inspection  
Two types of uncertainty in the models for inspections must be considered. The first 
type of uncertainty is related to the uncertainty (reliability) of an inspection method, 
i.e., how good is an inspection technique to detect a defect if a defect is present and 
what is the risk that the inspection method indicates a defect when there is no defect 
(false alarm). The second type of uncertainty is related to the measurement uncertainty 
when a detected defect is being quantified. Stochastic models must be derived for the 
most important inspection methods. 
 
2.5.4 Stochastic modelling of repair   
Repair implies that new and/or modified values of parameters are needed to model the 
behaviour of the bridge after the repair. In relation to stochastic modelling of repair the 
quantities can be divided into the following groups: 

• Quantities (deterministic or stochastic), which are the same before and after 
repair. 

• Quantities, which can be modelled by deterministic variables. The values for 
these quantities are known rather precisely after the repair. 

• Quantities, which can be considered new outcomes of the old stochastic 
variables used before the repair. A variable of this type is modelled by 
introducing a new stochastic variable with the same distribution function but 
statistically independent of the old stochastic variable. 

• Quantities modelled by new stochastic variables correlated or not correlated 
with the old stochastic variables. 

In addition to the above models it can be relevant to update the distribution 
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functions of the stochastic variables when observations are obtained in connection with 
the repair. The following important structural repair types must be modelled: concrete 
patching (with deteriorated concrete removal), concrete patching (with reinforcement 
cleaning), concrete patching (with reinforcement splicing/replacement) and concrete 
encasing (with reinforcement splicing/replacement). 
 
2.5.5 Updating techniques  
When new information becomes available the estimates of the probability of failure 
(and the reliability) of structures can be updated. New information can be divided in 
three types: 

• Sample information on basic variables 
• General information on stochastic variables 
• Linguistic information  

When new information is available as samples of one or more stochastic basic 
variables Bayesian statistical methods are used to obtain updated (predictive) 
distribution functions of the stochastic variables. 

In some cases the information obtained by measurements is not directly related to 
a basic stochastic variable. The information is generally modelled by using a stochastic 
variable, which is a function of the basic stochastic variables. The event margin is a 
stochastic variable and it is therefore possible to estimate the probability that the event 
occurs. Further, this type of information can be used to update the probability of failure 
of a structural element. 

Basic variable updating is performed within the framework of Bayesian statistical 
theory; see Lindley [4] and Aitchison & Dunsmore [5]. The updating based on general 
information is mainly based on the Bayesian methods suggested by Madsen [6] and 
Rackwitz & Schrupp [7]. 

Let the density function of a stochastic variable X be given by ( ),Xf x Θ , where 
Θ  are parameters defining the distribution of X. The parameters Θ  are treated as 
uncertain parameters (stochastic variables). ( ),Xf x Θ  is therefore a conditional density 

function ( )Xf x Θ . The initial (or prior) density function for Θ  is called ( )g θ
Θ
′ . 

When an inspection is performed n realizations ( )*
1,..., nx x x=  of the stochastic 

variable X are obtained. The inspection results are assumed to be independent. An 
updated density function Θ  taking into account the inspection results is then defined by 

  
                                                                                                         (7) 

 
where 
 
 

The updated density function of X taking into account the realizations 
( )*

1,..., nx x x=  is then obtained by 
  
                                     (8) 

 
In the knowledge-based systems the functions ( )g θ

Θ
′ , ( )g θ

Θ
′′ , and ( )*

Xf x x  

are implemented for several distributions. 
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2.5.6 Reliability analysis  
The reliability of the bridge is measured using the reliability index β for a single 
failure element or for the structural system (the bridge): see Thoft-Christensen & Baker 
[8] or Thoft-Christensen & Murotsu [9]. The reliability is assumed to decrease with 
time due to the deterioration. The failure modes can e.g. be stability failure of columns, 
yielding or shear failure in a number of critical cross-sections of the bridge. If a system 
modelling is used then it is assumed that the structure fails if anyone of these failure 
modes fails, i.e. a series system modelling is used. 

It is assumed that uncertain quantities like loading, strength and inspection results 
can be modelled by N stochastic variables ( )1,..., NX X X= . The structure is modelled 
by m potential failure modes , 1,...,iF i m= . Failure mode i is described by a safety 
margin 

                                                                (9) 
 

The element reliability index ( )i tβ  at the time t for failure mode Fi is connected 

to the probability of failure ( )
iFP t  by (Thoft-Christensen & Baker [8]) 

                                                         
                                                   (10) 

 
where Θ  is the standard normal distribution function. The probability of failure ( )

iFP t  
in the time interval [0, t] is determined from 

  
                                                     (11) 

 
In Thoft-Christensen et al. [2] is in an example shown how a reliability 

assessment of a concrete bridge taking into consideration corrosion of the 
reinforcement may be performed. The example is based on an existing UK bridge, but 
some limitations and simplifications are made. 

A plastic collapse analysis and estimation of the load are performed using the 
COBRAS program; see Middleton [10]. The reliability analysis (element and system) is 
done using the programs RELIAB01 [11] and RELIAB02 [12]. The RELIAB and 
COBRAS programs have been interfaced and include for each iteration of the reliability 
analysis an optimisation algorithm to determine the optimal yield line pattern. The 
estimation of the deterioration of the steel reinforcement is based on the program 
CORROSION [13]. 
 
2.6 BRIDGE1 & BRIDGE2 BRIDGE MANAGEMENT SYSTEMS 
2.6.1 Introduction  
Some results from the research project "Assessment of Performance and Optimal 
Strategies for Inspection and Maintenance of Concrete Structures using Reliability 
Based Expert Systems", supported by EU within the BRITE/EURAM research 
programme, is presented in this chapter. 

The main objective of the project was to optimise strategies for inspection, 
maintenance and repair of reinforced concrete bridges by developing improved 
methods for modelling the deterioration of existing as well as future structures using 
reliability based methods and knowledge based systems. 
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2.6.2 Reliability assessment   
In this bridge management system the probability of failure is estimated using the 
reliability program RELIAB. 

The system reliability index ( )s tβ  is connected to the probability of failure 

( )
iFP t  of the series system in the time interval [0, t] by 

                                                                                                       
                                                      (12) 

 
where the probability of failure ( )FP t  is determined by the approximation; see Thoft-
Christensen & Murotsu [9] 

                                                                                                          (13) 
 
where ( )1,..., mβ β β=  and ( )tρ  is a matrix whose elements are the correlation 
coefficients between the linearised failure margins of the elements in the series system. 

mΘ  is the m-dimensional normal distribution function. 
In the bridge management systems BRIDGE1 and BRIDGE2 the updating of 

stochastic variables etc. is performed using the techniques described earlier. 
 
2.6.3 Functionalities of BRIDGE1 and BRIDGE2  
The expert system is divided into two modules BRIDGE1 and BRIDGE2 which are 
used in two different situations, namely by the inspector of the bridge during the 
inspection at the site and after the inspector has returned to his office. 

During the inspection the knowledge based system will supply information on: 
the causes of observed defects, appropriate diagnostic methods, and related defects. 
Further, the inspector will be asked to record the inspection results so that they can be 
used later for e.g. assessment of the reliability of the bridge and in the decision whether 
a detailed structural assessment is needed. 

A detailed analysis of the state of the bridge after an inspection is performed 
when the inspector has returned to his office, and after testing in the laboratory has 
been performed. The output of the analysis includes an updated estimation of the 
reliability of the bridge, decision whether a structural assessment should be made, 
decision whether to repair or not, relevant repair procedures, and the time for repair. 
Expert knowledge is used to improve the quality of the decisions. 
 
2.6.4 Application of BRIDGE1 and BRIDGE2  
The general inspection, maintenance, and repair model from inspection no. i at time ti 
to inspection no. i+1 at the time ti+1 = ti + ∆ t is indicated in Figure 1, where also the 
application of the modules BRIDGE1 and BRIDGE2 is shown. 

The symbols used in Figure 1 are: 
C: Current inspections are performed at a fixed time interval, e.g. 15 months. 
D: Detailed inspections are also periodic at a fixed time interval, which is a multiple 

of the current inspection time intervals, e.g. 5 years. 
A: Structural assessments are only performed when a current or detailed inspection 

shows some serious defects, which require a more detailed investigation. 
M: Maintenance and repair of minor defects. 
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R: Structural repair. 
B1: Application of BRIDGE1 during the inspections. 
B2(M): The maintenance subsystem in BRIDGE2 assists in the selection of 

maintenance work and repair of minor structural defects to be performed. 
B2(I): The inspection module in BRIDGE2 assists in selecting the next type of 

inspection. 
B2(R): The repair subsystem in BRIDGE2 assists in selecting the best repair 

technique. The selection is based on economic considerations and expert 
knowledge. 
After a current or a detailed inspection BRIDGE2 is used to rate the maintenance 

and minor repair work needed and to decide if a structural assessment has to be 
performed. The decision is based partly on estimates of the reliability of the bridge and 
partly on expert knowledge. The decision does not include economic considerations. 

After a structural assessment BRIDGE2 is used to decide if a repair has to be 
performed and also to give the optimal point of time for the repair. Expert knowledge 
as well as numerical algorithms is used. The decisions are partly based on a cost-based 
optimization where different repair possibilities (selected by expert knowledge) and no 
repair are compared. 
 
2.6.5 Decision model with regard to structural assessment  
As shown in Figure 2, a structural assessment is recommended if the updated reliability 
index for the bridge Uβ  is smaller than or equal to a minimum reliability index minβ . 
If the updated reliability index for the bridge is greater than the minimum reliability 
index then the decision is taken based on expert knowledge. 

Let ti be the time of a periodic inspection and let the updated reliability index at 
the time t be ( ), it tβ . The general decision model with regard to the structural 
assessment can then be formulated as: 

• If ( ) min
1,i it tβ β+ > then the inspection at the time ti+l should be a current or 

detailed inspection unless the damage is so serious that a structural assessment 
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is needed. This decision is based on expert knowledge. minβ  is the minimum 
acceptable reliability index (e.g. 3.72). 

• If ( ) min
1,i it tβ β+ ≤  then a structural assessment should be performed before the 

next periodic inspection. 
 
 
 
 
 
 
 
 
2.6.6 

Modelling of repair.  
After a structural assessment it must be decided whether the bridge should be repaired 
and if so, how the repair is to be performed. Solution of this problem requires that all 
future inspections and repairs be taken into account. 

In order to decide which repair type is optimal after a structural assessment; the 
following optimization problem is considered for each repair technique: 
   

                                                                                                  (14) 
                                                                                                                                                                                                                                                                                                                             

                                                (15) 
 
where the optimization variables are the expected number of repair NR in the remaining 
lifetime and the time TR of the first repair. W is the total expected benefits minus costs 
in the remaining lifetime of the bridge. B is the benefit. CR is the repair cost capitalized 
to the time t=0 in the remaining lifetime of the bridge. CF is the expected failure costs 
capitalized to the time t=0 in the remaining lifetime of the bridge. TL is the expected 
lifetime of the bridge. Uβ  is the updated reliability index. minβ  is the minimum 
reliability index for the bridge ( related to a critical element or to the total system). 

The repair decision is then based on the results of solving this optimization 
problem but also on expert knowledge. 
 
2.6.7 Elicitation   
Expert knowledge plays a very important role in this project. As a simple example 
decisions resulting in Structural assessment or No structural assessment are described 
for one of the most important defects namely "rust stain". 
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If rust stain is observed at the inspection then the following question is asked: 
Question 1: What is the extent of rust stain? 

Possible answers to question 1: 
1. Single rust stains => No structural assessment (it is assumed that single rust stains do 
not question the structural safety or the global functionality of the bridge) 
2. Locally many rust stains => question 2 
3. Widespread rust stains => Structural assessment (it is assumed that there is a global 
corrosion of the reinforcement in the bridge) 

If item 2 is the result of question 1 then question 2 is asked. 
Question 2: What is the location of rust stains? 

Possible answers to question 2: 
1. A critical place regarding humidity => Structural assessment (a place is critical if it 
e.g. is exposed to splash of water from cars passing under the bridge) 
2. Near places where maximum moments occur => Structural assessment 
3. Other places => No structural assessment 

The result of the elicitation is illustrated in the Figure 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
2.6.8 BRIDGE1   
As mentioned earlier, the expert system module BRIDGE1 is used at the bridge site 
during an inspection. This expert system module contains useful information 
concerning the bridge inspected and the defects observed. The information includes: 
general information about the bridge, appropriate diagnostic methods for each defect, 
probable causes for each defect, and other defects related to a defect. It is also possible 
to create a provisional defect report. 

The general information about the bridge stored in the database for the selected 
bridge can be reviewed. The database contains information about: bridge site, design, 
budget, traffic, strength, load, deterioration, factors that model the costs, and the cross-
sections entered for the bridge. 

New cross-sections can be entered for the selected bridge. The information stored 
in the database for each cross-section contains: cross-section identification, geometry of 
cross-section (detailed description of the reinforcement layers for cross-sections in the 
deck), failure mode, and load data. Technical support can be provided for a defect. 

The technical support includes a list of diagnostic methods that can be used to 
observe a selected defect. The list is divided into high and low correlated diagnostic 
methods for the selected defect. 

A list of defects associated with the selected defect is also included. This list is 

 1701 



Chapter 125  

very useful since the defects, which can be found with a high probability, can be 
reviewed if the selected defect is observed. Measures for the correlations between the 
selected defect and the related defects are shown. 
 
2.6.9 BRIDGE2   
The expert system module BRIDGE2 is used to make a detailed analysis of the bridge 
after an inspection when testing has been performed in the laboratory. New bridges and 
cross-sections can be entered into the database and existing bridges and cross-sections 
can be edited. For the bridges in the database the following options are available: 
review provisional defect reports, enter inspection results, estimate the reliability index, 
plan maintenance work and estimate costs, plan structural repair work and estimate 
costs, and review the agenda of inspection for one bridge or all bridges. Further, the 
database can be updated after repair. 

 New bridges can be entered and existing bridges can be edited. The general 
information about the bridges stored in the database contains information about: bridge 
site, design, budget, traffic, strength, load, deterioration, factors that model the costs, 
and the cross-sections entered for each bridge. 

After an inspection the provisional defect reports recorded at previous inspections 
can be reviewed. A description of the detected defects and measurements of diagnostic 
methods can be entered. After a repair the databases can be updated. 

The integrated FORTRAN program RELIAB can estimate the reliability index 
for the bridge. The reliability index when no inspection results are taken into account 
and the updated reliability index when all inspections performed for the bridge are both 
taken into account can be estimated. 

The following sub modules are integrated into BRIDGE2: 
• BRIDGE2(M) is the maintenance/small repair sub module. This sub module 

assists in selecting the maintenance work and repair of minor structural defects 
to be performed and estimates the maintenance costs. The defects are rated 
based on the defect classification in terms of rehabilitation urgency, importance 
of the structure's stability, and affected traffic recorded during the inspection. 

• BRIDGE2(I) is the inspection strategy sub module. This assists in the decision 
whether a structural assessment is needed before the next periodic inspection. 
The decision made in BRIDGE2(I) is mainly based on the updated reliability 
index for the bridge calculated by RELIAB. If the value of the updated 
reliability index for the bridge is acceptable then each of the defects detected at 
the latest periodic inspection and the combination of defects are investigated 
based on a cost-benefit analysis by the FORTRAN program INSPEC. 

The FORTRAN program RELIAB can be used to estimate the reliability of a 
bridge. The FORTRAN program INSPEC can be used to estimate the optimal repair 
time and number of repairs for a given repair method. The estimation is based on a 
cost-benefit analysis for the bridge. The total expected benefits minus expected repair 
and failure costs in the remaining lifetime of the bridge is optimized. 

 
 

3. CONCRETE BRIDGE RATING EXPERT SYSTEM (BREX) 
3.1 Concept of the system 
The authors Miyamoto and Yan have been developing a knowledge-based expert 
system, which can be used to evaluate the performance of existing concrete bridges on 
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the basis of knowledge and experience acquired from domain experts (Kusida et al. 
[14], Miyamoto et al. [15], Miyamoto et al. [16], Miyamoto et al. [17], Miyamoto et al. 
[18], Miyamoto et al. [19], Morikawa et al. [20], Nishimura et al. [21]. The proposed 
expert system is called the Concrete Bridge Rating EXpert System (BREX). The 
objective of the system is to evaluate the present performance of target bridge members 
in terms of factors such as serviceability, load-carrying capability, and durability. The 
input data for rating a concrete bridge are the technical specifications of the target 
bridge, environmental conditions, traffic volume, and other subjective information that 
can be obtained through simple visual inspection. In this study, load-carrying capability 
and durability are used to estimate serviceability. Load-carrying capability is defined as 
the aspect of bridge performance that is based on the load-carrying capacity of a bridge 
member, and durability is defined as the ability of a bridge member to resist material 
deterioration and is based on the rate of material deterioration of the member. These 
two aspects of bridge performance are applied as indices for considering the necessity 
of performing maintenance on deteriorated bridges. Specifically, load-carrying 
capability is applied as an index for estimating the necessity of strengthening, and 
durability is applied as an index for estimating the necessity of repair. 

In the expert system, the performance of a target bridge is evaluated according to 
a diagnostic process, which is modelled on the inference process domain expert's 
employ for rating an existing concrete bridge. This process is expressed by a 
hierarchical structure and has twelve main judgment items. The ultimate goal of this 
process is "serviceability." The hierarchical structure expresses the relationship 
between judgment items and input data, such as inspection data and technical 
specification data, or between judgment items. In practice, these relationships are 
expressed by "If-then" rules with fuzzy variables. 

Consequently, the fuzzy inference of the expert system is drawn from these rules. 
Naturally, these rules could be written directly into a computer in a computer language. 
In this study, however, these rules are implemented in a computer after a set of the rules 
relating judgment items and input data or relating judgment items is transformed to a 
hierarchical neural network. In other words, hierarchical neural networks identify a 
diagnostic process. The system can easily refine the knowledge base; that is, "If-then" 
rules with fuzzy variables, by use of a machine learning method. More specifically, the 
system refines the knowledge base by applying the Back-Propagation method see 
Rumelhart et al. [2]. Therefore, since the network is capable of performing fuzzy 
inference and machine learning, the system can be called a Neuro-Fuzzy expert system. 

Generally, although a neural network is a powerful machine-leaning tool, the 
inference process of a neural network becomes a "black box," which renders the 
representation of knowledge in the form of rules impossible.  

However, the hierarchical neural network proposed in the present study 
contributes to prevent an inference process from becoming a black box. As described 
later, the effectiveness of the hierarchical neural network and machine learning method 
was verified by comparison of the diagnostic results of bridge experts and those of the 
proposed system. 
 
3.2 Knowledge-based expert system for existing concrete bridges 
In the expert system, the target bridge is diagnosed according to a diagnostic process, 
which is modelled on the inference mechanism used by domain experts for rating 
bridges (see Figure 4). In a previous study, the authors used the Fuzzy Structural 
Modeling (FSM) method (Tazaki & Amagasa [23]) to create the diagnostic process for 
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main girders and slabs. Each process employs twelve main judgment items. These 
judgment items are evaluated by combine with about 90 input data items, such as 
technical specifications, traffic volume, and results of visual inspection. The process is 
a hierarchical structure in which the ultimate goal is "serviceability." 

 
For instance, Figure 4 shows the diagnostic process for main girders. The lowest-

rated judgment items, such as "Condition state of cracking" and "Condition state other 
than cracking," are first evaluated by use of input data such as visual inspection data 
and technical specifications. The "Condition state of cracking" is evaluated from 
inspection data such as [Crack conditions] and [Maximum crack width (mm)].  

Next, the higher-rated judgment items, such as "flexural cracks," "shear cracks," 
and "material deterioration," are diagnosed from the results of lower judgment items 
and/or input data. The damage degree of "flexural cracks" is determined from the 
results of "Condition state of cracking" and "Condition state other than cracking." 
Then, the higher-rated judgment items, such as "whole damage," "execution of work," 
and "service conditions," are also evaluated from the results of lower judgment items 
and/or input data.  

The final judgment item is "serviceability," which is evaluated according to the 
results of "load-carrying capability" and "durability." Each of these judgment items is 
assigned a soundness score, on a scale of 0-100, which is output from the expert 
system. The output score is categorized into one of five groups: 0-12.5, 12.6-37.5, 37.6-
62.5, 62.6-87.5 and 87.6-100. These groups are classified as "dangerous", "slightly 
dangerous", "moderate", "fairly safe", and "safe" respectively. In the present study, 
"safe" indicates that the bridge has no problems; "fairly safe" indicates no serious 
damage; "moderate" indicates the presence of some damage that requires continuous 
inspection; "slightly dangerous" indicates that the bridge should be repaired and/or 
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strengthened; and "dangerous" indicates that the bridge should be removed from 
service and requires rebuilding. In the expert system, the relationships between 
judgment items and input data and those between judgment items are expressed by "If-
then" rules with fuzzy variables. In addition, by introduction of machine learning into 
the expert system, these rules are implemented by hierarchical neural networks. A 
hierarchical network expresses a set of rules for evaluating a judgment item. 
 
3.3 Knowledge Representation and inference 
3.3.1 Knowledge representation  
The expert system evaluates the performance of a target bridge according to the 
diagnostic process, which expresses the relationships between judgment items and 
input data or between judgment items, as shown in Figure 4. In the knowledge base of 
the system, the diagnostic process is stored in the form of "If-then" rules with fuzzy 
variables. Consequently, these rules enable the system to perform fuzzy inference. The 
knowledge representation of the system is as follows. 

Ri: if xi is Ai  and ... and xm is Am then y is Bi                    (16) 
Where Ri is the fuzzy rule, x1,…,xm are input items (input data such as technical 
specifications and results of visual inspection), y is the  output item (diagnosis item; 
that is, judgment item), A1,..., Am are the fuzzy variables, Bi is the constant (soundness 
score on the scale of 0-100). 

For example, If ([Crack condition] is serious) and ([Maximum crack width] is 
huge) then ([Condition state of cracking] is 0.0). This rule is used in order to evaluate 
the judgment item "Condition state of cracking". 
 
3.3.2 Fuzzy inference process   
This section describes in detail the fuzzy inference process performed in the expert 
system. The portion of Figure 4 enclosed in a dotted box; namely, the inference process 
that evaluates "Condition state of cracking," is explained as an instance. Table 1 shows 
the fuzzy rules for evaluating the judgment item "Condition state of cracking." For 
example, Rule No.12 expresses the following fuzzy rule; If ([Crack conditions] is OK) 
and ([Maximum crack width] is OK) then ([Condition state of cracking] is 100.0). 

Since these rules employ some fuzzy expressions; namely antecedents of the 
rules employ some fuzzy propositions, the initial form of membership functions for 
fuzzy rules must be prepared. Figure 5 shows the membership functions related to the 

fuzzy rules for evaluating 
"Condition state of 
cracking." Table 2 shows an 
excerpt of the inspection 
sheet used for the system. 
The solid circles indicate 
inspection results. The 
inference process of 
"Condition state of 
cracking" diagnosis is 
described below, and is 
performed in 4 steps. 
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[Step 1] Input of data 
Input data are entered into the computer. As shown in Figure 4, the diagnosis of 

"Condition state of 
cracking" requires 
the input data [Crack 
conditions] and 
[Maximum crack 
width (mm)]. In the 
present study, these 
input data are 
acquired by simple 
visual inspection 
(see Table 2). 
Therefore, the values 
of G 1-1 and G 1-2 
in Table 2; that is, 
0.7 and 0.5 (mm), 
are used as the input 

data for the diagnosis. 
 
[Step 2] Calculate the grade of membership functions used in antecedents (see 
Figures 5 and 6) 
The rules of the expert system employ some fuzzy propositions in antecedents of "If-
then" rules. In the present study, a fuzzy set is expressed by membership functions. 

Consequently, from the values of input data for evaluating a judgment item, the 
grades of membership functions used in antecedents are first calculated. In this 
example, since the inspection value of [Crack conditions] is 0.7, this value matches two 
membership functions, which express the fuzzy set for {not serious} and that for 
{serious}.  

Therefore, these grades of membership functions are 0.8 and 0.4, respectively 
(See Figure 5.(a)). However, the grade of membership function that expresses the fuzzy 
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set for {OK} is 0.0, because the inspection value doesn't match the membership 
function.  

Similarly, considering the inspection value of [Maximum crack width (mm)], 
which is 0.5, the value also matches two membership functions, which express the 
fuzzy set for {small} and that for {large}. Therefore, these grades of membership 
functions are both 0.8 (See Figure 5.(b)).  

The other grades of membership functions are 0.0, because the value doesn't 
match the other 
fuzzy sets; namely, 
{OK} and {huge}. 
The left-hand 
section table in 
Figure 6 indicates 
the fitness of each 
fuzzy proposition in 
antecedents to the 
inspection results; 
namely, [Crack 
conditions]=O.7 and 
[Maximum crack 
width (mm)]=0.5. 
 
 
 

[Step 3] Calculate the fitness of each rule to input values (see Figure 6) 
Whereas Step 2 calculates the fitness of each fuzzy proposition in antecedents to input 
values, Step 3 calculates the fitness of each rule to input values. As shown in Figure 6, 
the fitness of each rule employs the following equations from the grades of membership 
functions estimated in Step 2. 

                                                                                     (17) 
  

 
                                                                                                                                              (18) 

 
where ˆiµ is the fitness of ith rule to input values, such as inspection results, ( ),i j jxµ is 
the grade of a membership function, I is the identification number of fuzzy rule, j  is the 
identification number of input variable and fuzzy variable, xi is the input variable, ,i jµ  

is the fuzzy variable for input variable xj, ij  is the identification number of fuzzy set on 
fuzzy variable ,i jµ , and n is the number of fuzzy rules. 

Equation (18) indicates that all fitness values of fuzzy propositions in the same 
fuzzy rule are multiplied, that is to say, all grades of membership functions in the same 
rule are multiplied. Therefore, when the inspection results [Crack conditions] =0.7 and 
[Maximum crack width (mm)]=0.5 are entered into the system, the values given in the 
right-hand section in Figure 6 are estimated by Equations (17) and (18). Rule No.2 and 
Rule No.3 both have a fitness of 17%, and Rule No.6 and Rule No.7 both have a fitness 
of 33%. 
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[Step 4] Calculate a soundness score for a judgment item (see Figure 7) 
In the final step, a soundness score for a judgment item is calculated from the fitness of 
rule acquired in Step 3 and soundness scores described in consequents of fuzzy rules. A 
soundness score for input values is estimated by the following equation. 

                                                             
                                                  (19) 

 
where, ˆiµ is the fitness value of kth rule, which is acquired by Equation (17), kω  is the 
soundness score described in consequents of kth fuzzy rule. 

Consequently, a judgment item is assigned a soundness score on a scale of 0-100. 
For example, when the input [Crack conditions] =0.7 and [Maximum crack width 
(mm)]=0.5 is entered, the expert system outputs the soundness score of 42.2 as the 
result of diagnosis of input data (see Figure 7). 
 
3.4 Fuzzy inference based on neural network 
3.4.1 Structure of fuzzy inference system using a hierarchical neural network.  
In the expert system, the inference mechanism for evaluating a judgment item is 
constructed with a hierarchical neural network consisting of 5 layers, as shown in 
Figure 8; see Miyamoto et al.[24] and Okada et al.[25].  

The knowledge for diagnosing "Condition state of cracking"; that is to say Table 
1 and Figure 5 (fuzzy rules and membership functions for fuzzy sets), are implemented 
in the computer by the neural network shown in Figure 8. Therefore, the neural network 
can carry out the fuzzy inference mentioned in the previous section.  

In the present study, the layers of the network are referred to as layers (A), (B), 
(C), (D) and (E), respectively. These layers have neurons of three different types. The 
neurons in layers (A), (C) and (E) are linear neurons. The neurons in layer (B) are 
sigmoid neurons. The neurons in layer (D) are referred to as normalization neurons that 
employ Equation (17). The Arabic numerals in the layer (D) neurons correspond to the 
number (No.) in Table 1. Therefore, clearly the connections from layer (C) to layer (E) 
express a fuzzy rule. A boxed value represents the initial connection weight between 
neurons or the initial threshold for a neuron. 
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Next, is described the manner in which the initial values of weight and threshold 

are set. The layers (A)-(B)-(C) in the network identify the fuzzy sets in antecedents of 
fuzzy rules. If the membership function of a fuzzy set is an increasing function or a 
decreasing function, the form is identified by a sigmoid function; a sigmoid neuron is 
employed in layer (B) for an increasing function or a decreasing function.  

If the membership function is a convex function, the form is identified by the 
combination of two sigmoid functions; two sigmoid neurons are employed in layer (B) 
for a convex function. Then, the weights (0) between layer (A) neurons and layer (B) 
neurons, and the thresholds (B) of the (B) neurons are calculated according to the 
following equations. 

1. Approximation of decreasing function 
 
 
 
                                                                                                                                                                               (20) 
 
 
 

2. Approximation of increasing function 
 

 
 
                                                                                                                                                               (21) 
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3. Approximation of convex function 
  
 
 
 

                                                                                                                                                                                                            (22) 
 
 
 
 
 

Note that h is a real number, which satisfies f(h) ~ 1.0, where, f(h): sigmoid 
function. In the present study, h = 3.5. In the case of approximation of an increasing 
function or a decreasing function, the weights between layer (B) neurons and layer (C) 
neurons are set to 1.0. In the case of approximation of a convex function, the weights 
between layer (B) neurons and layer (C) neurons are set to -1.0 for smaller threshold 
and 1.0 for larger threshold. In addition, initial weights between layer (C) neurons and 
layer (D) neurons are all 0.5. The initial weights between layer (D) neurons and layer 
(E) neurons are set according to Table 1. These weights express soundness scores 
described in consequents of fuzzy rules. 

Consequently, when input data are entered into the system, layers (A)-(B)-(C) 
perform the processing of [Step 1] and [Step 2] described earlier. Next, layers (C)-(D) 
perform the processing of [Step 3]. Finally, layers (D)-(E) perform the processing of 
[Step 4]. 
 
3.4.2 Modification of fuzzy rule by machine learning  
In the hierarchical network shown in Figure 8, each weight and threshold is set for a 
specific purpose as mentioned above. Therefore, the network is capable of modifying 
fuzzy rules by altering these parameters, such as weight and threshold.  

Thus, applying the Back Propagation algorithm to the network as a machine 
learning method is easy, because the structure of neural network is hierarchical. More 
specifically, the elements modified by machine learning are the weights between layer 
(A) neurons and layer (B) neurons, the thresholds of layer (B) neurons, and the weights 
between layer (D) neurons and a layer (E) neuron. The weights of layers (A)-(B) and 
the thresholds of layer (B) neurons are used in order to express membership functions 
in antecedents of fuzzy rules.  

Consequently, weight alteration after learning indicates the slope alteration of the 
corresponding membership function, and threshold alteration after learning indicates 
the axis movement of the membership function in the horizontal direction. In the 
learning of layers (D)-(E) weight, the proposition in consequents of fuzzy rules is 
changed. For instance, if the weight between a layer (D) neuron and a layer (E) neuron 
is changed from 0.0 to 1.0, the proposition described in consequents of fuzzy rule is 
changed from ([Condition state of cracking] is 0.0) to ([Condition state of cracking] is 
1.0). 

 
3.5 Verification of effectiveness of machine learning 
The proposed expert system is developed in Visual Basic and C programming 
languages and runs on a personal computer. In this section, the expert system is applied 
to seven existing bridges (nine spans), all of which are RC T -girder-type bridges, in 
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order to test validity of the learning capability. These target bridges stand in Yamaguchi 
Prefecture. 
 
3.5.1 Questionnaire survey of domain experts and Visual inspection of bridges  
The purpose of the questionnaire survey of domain experts is to acquire teacher data 
necessary for learning, whereas, the purpose of visual inspection of bridges is to collect 
inspection data to be entered into the system.  

The domain experts also use the inspection results to fill out the questionnaires. 
The results of questionnaire survey and visual inspection were used as training data for 
carrying out machine learning. In the present study, for collecting training data, visual 
inspection of bridges and the questionnaire survey were conducted over 2 days.  

Seven domain experts from four construction-consulting companies in and 
around Yamaguchi Prefecture participated in the survey. The survey covered nine spans 
of seven bridges. One set of survey forms, prepared for each span, consists of three 
different handouts; inspection record sheets (8 pages) to be used to record visual 
inspection results, a model drawing of each bridge on which the respondents write 
down whatever comes to mind during inspection, and questionnaire sheets (10 pages) 
to obtain teacher data required for machine learning.  

The inspection record sheets are formatted so that the respondents can choose a 
score from an 11-point rating scale ranging from 0.0 to 1.0 in increments of 0.1, answer 
multiple-choice questions, and enter numerical values (See Table 2). The questionnaire 
sheets are formatted so that the respondents can answer in the form of a score on a 0-
100 scale in increments of 5 points (see Figure 9). 

3.5.2 Practical application and verification of the expert system  
Table 3 summarizes the questionnaire results of main girder diagnosis by domain 
experts. The numerical values in parentheses represent averages of scores assigned by 
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the four domain experts, out of the total of seven, who have more than 10 years' 
experience.  

The letters S, f-s, M, s-d, and D in the table represent safe, fairly safe, moderate, 
slightly dangerous, and dangerous. These labels classify the average values in 
parentheses into five categories, the criteria used by the respondents for this 
categorization having been mentioned earlier. A number appearing after a bridge name 
indicates span number. Tables 4 and 5 present the diagnosis results of main girders 
before learning and after learning, respectively.  

 

 
 
As mentioned earlier, in the present study, the Back Propagation method was 

applied as a learning method. The re-substitution method was applied to the system as a 
training method. The training method uses all combinations of questionnaire survey 
and visual inspection; nine sets for nine spans, as training data for machine learning. 

 Therefore, the data of a diagnosed bridge also include the training data. 
Evaluating the judgment items of a target bridge span on the basis of knowledge 
modified by the above training method is equivalent to evaluating the judgment items 
of an already-encountered span after completing learning sessions for a number of 
spans.  

The shaded areas in the tables indicate the following: Gray shading indicates a 
system output value that deviates one order from the teacher value (See Table 3), and 
black shading indicates an output value that deviates two or more orders from the 
teacher value.  

The total error at the bottom of the table is a span-by-span sum of errors for each 
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judgment item. Comparison of these outputs (Tables 4 and 5) with the questionnaire 
survey results (Table 3) reveals that of the 108 judgment items (9 spans x 12 judgement 
items) for the main girders, 42 items before learning and 88 items after learning show 
agreement with the questionnaire results, 58 items before learning and 20 items after 
learning show deviation of one order from the teacher value, and 8 items before 
learning show deviation of two or more orders from the teacher value. Thus, the total 
agreement ratios before learning and after learning are 38.9 and 81.5 percent, 
respectively.  

Improvement of agreement ratio shows the validity of applying the machine 
learning method to the system. However, since the reliability of the system depends on 
information on the distribution of bridge damage used for neural network learning, we 
must increase the number of sample bridge data sets used for learning and acquire data 
sets for various damage conditions. 
 

 
 

 
 
 
 
 
 
 
 
 
N

ext, 

modification of fuzzy rules is shown in order to verify the effectiveness of the applied 
neural network structure. Refinement of fuzzy rules for evaluating "Condition state of 
cracking" is presented as an example. Figures 10 and 11 show the membership 
functions used in antecedents of fuzzy rules before learning and after learning, 
respectively.  

The symbols in the figures indicate the following(1), (2), and (3) indicate the 
membership functions of fuzzy sets {OK}, {not serious}, and {serious} for input data 
[Crack conditions] respectively, and I, II, III, and IV indicate the membership functions 
of {OK}, {small}, {large}, and {huge} for input data [Maximum crack width (mm)], 
respectively.  

Table 6 shows the weight modification between layer (D)-(E) neurons. No. in the 
table indicates rule number, which corresponds to Table 1. Comparing Figures 10 and 
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11, we notice that after learning, the horizontal width of membership function I is 
reduced by 2/3. The reduction indicates that the system after learning treats the input 

value of [Maximum crack 
width (mm)], which is smaller 
than that before learning, as 
the fuzzy set of {OK}. 

The other membership 
functions after learning are 
similar to those before 
learning. As a result of 
comparison of the weights 
before learning and the 
weights after learning in 
Table 6, the transition is 
summarized as follows. The 
weights of fuzzy rules 1, 2 
and 3 after learning are 
similar.  

Therefore, the difference between fuzzy sets {huge}, {large}, and {small} for the 
input data [Maximum crack width (mm)] isn't distinguished when the input value of 
[Crack conditions] entered in the system is categorized into the fuzzy set {serious} (see 
Table 1). The weights of fuzzy rules 5, 6 and 7 after learning are similar. 

Therefore, the difference between fuzzy sets {huge}, {large}, and {small} for the 
input data [Maximum crack width (mm)] isn't distinguished when the input value of 
[Crack conditions] entered in the system is categorized into the fuzzy set {not serious}. 
The weights of fuzzy rules 9, 10 and 11 after learning are similar.  

Therefore, the difference between fuzzy set {huge}, {large}, and {small} for the 
input data [Maximum crack width (mm)] clearly isn't distinguished when the input 
value of [Crack conditions] entered in the system is categorized into the fuzzy set 
{OK}. Consequently, after learning, although the membership functions of fuzzy sets 
{small}, {large} and {huge} for input data [Maximum crack width (mm)] didn't 
change, as shown in Figure 10.(b) and 11.(b),  

Table 6 indicates that these three categories; fuzzy sets {small}, {large}, and 
{huge}, can be regarded as one category. In other words, the domain experts don't use 
the four categories; fuzzy sets {OK}, {small}, {large} and {huge} for input data 
[Maximum crack width (mm)] in diagnosing the judgment item "Condition state of 
cracking"; rather, they use two categories; fuzzy set {OK} and a category that includes 
{small}, {large}, and {huge}.  

The weights of fuzzy rules 8 and 12 are similar; therefore the difference between 
fuzzy sets {not serious} and {OK} for input data [Crack conditions] obviously isn't 
distinguished when the input value of [Maximum crack width (mm)] is categorized into 
the fuzzy set {OK}.  

These results show that machine learning could reduce the number of fuzzy rules 
for evaluating the judgment item "Condition state of cracking". 
 
 
4. DISCUSSION AND SUMMARY 
In the first part of this paper development of advanced bridge management systems is 
discussed, with special emphasis on reinforced concrete bridges. Management systems 
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for prestressed concrete bridges or composite bridges can be developed in a similar 
way. The proposed procedures are illustrated by the EU-supported management 
systems BRIDGE1 and BRIDGE2. 

In the second part, a concrete bridge rating expert system with machine learning 
is presented. By application of a hierarchical neural network, the developed system not 
only performs fuzzy inference but also facilitates refinement of the knowledge base, 
based on data such as inspection results and questionnaire surveys of domain experts. 
Moreover, the proposed neural network contributes to prevent the inference mechanism 
from becoming a black box. The results of the present study can be summarized as 
follows: 

• As a method of knowledge base refinement, a learning method based on the 
hierarchical neural network has been presented. The method prevented the 
neural network from becoming a black box. 

• BREX was applied to the main girders of existing bridges in order to verify the 
effectiveness of the machine learning method. The knowledge base was refined 
from the results of questionnaire surveys of domain experts. Close agreement 
between the teaching values and the values after learning, and favourable results 
achieved as a result of knowledge base refinement confirm the effectiveness of 
the learning method in the system. However, in order to enhance the reliability 
of the expert system, the knowledge base must be refined through application to 
a greater number of bridges. 
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