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CHAPTER 110 
 
 
 

ACTIVE FLAP CONTROL OF LONG SUSPENSION BRIDGES1 
 

H.I. Hansen & P. Thoft-Christensen  
 University of Aalborg, Aalborg, Denmark. 

 
 

 

ABSTRACT 
This article is an extended summary of a Ph.D. Thesis; see Hansen [1]. In the thesis 
theoretical and experimental effects of flap control on a bridge section are compared. 
Dynamics of long suspension bridges is summarized with special attention on the 
flutter phenomenon. The aerodynamic derivatives for a flat plate with flaps are derived 
based on the Theodorsen theory. Estimation of the flutter wind velocity is shown when 
both the Theodorsen method and the Air Material Command method are used. Three 
control algorithms are described, namely Classical Linear Optimal closed-loop control, 
Instantaneous Optimal closed-loop control and control with constant phase angles 
between the motion of the bridge section and the flap motions. Wind tunnel 
experiments are described and the experimental data are analysed. Finally the results of 
the wind tunnel experiments are compared to the theory. 
 
 
1. INTRODUCTION 
During the last decades the span length of suspension bridges has grown rapidly. The 
Akashi Kaikyo Bridge with span length 1,991 m was opened for traffic in April 1998 
and it is so far the longest suspension bridge of the world. Another long suspension 
bridge which was opened for traffic in June 1998 is the Great Belt Bridge with span 
length 1,624 m. Of future ultra-long span suspension bridges that may be constructed 
can be mentioned the Messina Crossing with the span length 3,300 m and the crossing 
of the Gibraltar Straits with the span length 3,550 m; see Brown [2]. 

To increase the span length the suspension bridge can be optimized with regard to 
materials, deck shape and cables as described by Brown [2], Gimsing [3], Astiz [4], 

1 Journal of Structural Control, Vol. 8, No. 1, June 2001, pp. 33-82. 
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Ostenfeld [5] and Ostenfeld & Larsen [6]. Another possibility may be to introduce the 
intelligent bridge, where active control systems are used to limit the vibrations. A step 
in this direction is to introduce passive control systems, e.g. viscoelastic damping 
elements, tuned mass dampers and eccentric masses, as described by Ostenfeld & 
Larsen [6]. 

The main problem in designing ultra-long span suspension bridges is flutter, 
which is an aeroelastic phenomenon; see Astiz [4]. Flutter occurs when the bridge is 
exposed to a wind speed above a critical value called the flutter wind velocity. The 
oscillations in flutter are perpendicular to the wind direction and may be torsional, 
vertical or a combined torsional and vertical motion. The flutter wind velocity is 
decreased with decreasing structural stiffness and damping. The problem of flutter, 
therefore, becomes more important with increasing span lengths of bridges as flutter is 
closely related to the stiffness of the bridge, which in turn is dependent on the span 
length, see Madsen & Ostenfeld-Rosenthal [7].  

COWI consult has patented a 
control system with actively controlled 
flaps in European Patent Specification [8]. 
The flaps are integrated in the bridge gir- 
der so each flap is the streamlined part of 
the edge of the girder, see figure 1. When 
the flaps are exposed to the wind they 
exert forces on the bridge girder. The 
directions and sizes of the forces can be 
regulated by regulating the flaps. By 
providing forces which counteract the 
motion of the girder the oscillations are 
damped.  

A number of sensors are placed 
inside the bridge girder to measure the position or motion of the girder. The 
measurements are transmitted to the control unit, e.g. a computer. The flaps are 
regulated based on a control algorithm that uses the measurements. In this way the flaps 
can be regulated continuously to counteract the motion of the girder. The flaps are 
divided into sections in the longitudinal direction of the bridge, and each of these 
sections can be regulated independently. The overall safety of the active control system 
is increased by the number of main control units and thus the number of independent 
sections. It is not necessary to mount flaps to the bridge girder over the entire span of 
the bridge. They may be mounted where they have the greatest effect, i.e. where the 
girder has the largest deflections. For symmetric modes of oscillations the optimal 
place is about the central part of the span and for asymmetric modes the optimal places 
are near the quarter points of the span.  

If the safety of a long suspension bridge has to rely on a control system it is 
preferred that such a system is passive. Active control systems for limitations of 
vibrations of civil engineering structures have primary been used to fulfil serviceability 
state and comfort demands. In this case failure of the control system is not critical for 
the users of the structure or the structure itself. Therefore, the reliability of such 
systems is of less importance. Active control systems may in the future be common 
elements in wind sensitive bridges to enhance the comfort of the users, see Ostenfeld & 
Larsen [6].  

Figure 1.Flaps as integrated parts of the  
bridge girder.  
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The safety of a suspension bridge is governed by its response to infrequent and 
extreme loading, e.g. when it is exposed to the flutter wind velocity. As a result the 
active control system in an intelligent bridge may remain in stand-by mode for many 
years and perhaps decades without being activated. In this case it is very important that 
the control system is reliable at the very moment the dimensioning load is acting on the 
structure. The reliability of the control system can be improved by making several 
independent systems with separated power supplies and by performing regular tests, 
e.g. by frequent use of the active control system also to fulfil serviceability state and 
comfort demands.  
 
 
2. DYNAMICS OF LONG SUSPENSION BRIDGES  
The motion-induced wind loads on a streamlined bridge deck with integrated flaps are 
described in section 2.1 by a number of coefficients called aerodynamic derivatives. 
For new bridge designs these coefficients must be estimated by wind tunnel tests or by 
numerical flow simulations. For flexible bridges the cross-sectional shape of the bridge 
deck is the most dominating factor on the wind loads; see Scanlan [9]. Therefore, 
bridge section models are used to estimate the aero- dynamic derivatives. During 
preliminary design the aerodynamic derivatives may be approximated by the values for 
a flat plate which are summarized in section 2.1.  

Estimation of the flutter wind velocity by Theodorsen's method is described in 
section 2.2. The Air Material Command (AMC) method for estimating the necessary 
structural damping of the bridge section as a function of the mean wind velocity is 
described in section 2.3. As an example, the flutter wind velocity and necessary 
structural damping are estimated for the model used in the wind tunnel experiments. In 
the example the aerodynamic derivatives for a flat plate are used.  
 
2.1 Wind loads on bridge section with flaps 
A rather streamlined bridge section is investigated, see figure 2. As shown by Ostenfeld 
& Larsen [6], streamlining the bridge deck increases the flutter wind velocity. A 
coordinate system is defined in the centre of mass gravity CG of the bridge section. The 
x-axis is horizontal and defined to be positive in the direction of the trailing edge. The 
y-axis is horizontal and perpendicular to the x-axis. The z-axis is vertical and is defined 
to be positive downwards.  

 
The bridge section is considered to be stiff and the motion in the direction of the x-axis 
is ignored. Thereby, the bridge section has two degrees of freedom, selected as the 
vertical displacement in the z-direction and the rotation α of the centre of mass gravity 
of the bridge section (positive clockwise). The angle tα  of the trailing flap and the 

Figure 2. Definition of positive directions for bridge. 
i   
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angle lα  of the leading flap are positive clockwise and refer to the undeflected 
position, i.e. relative to the bridge deck.  

The modes that give coupled oscillations in vertical bending and torsion have 
their largest deflections in the same part of the bridge, i.e. the first symmetrical vertical 
bending mode may couple with the first symmetrical torsional mode; see Dyrbye & 
Hansen [10]. In the following it is assumed that the horizontal motion for the bridge 
deck is uncoupled with the bending/torsional motion. As described by Dyrbye & 
Hansen [10], the horizontal deflections may be significant for suspension bridges with 
very long spans. When the whole bridge span is analysed the following approach must 
therefore be extended by additional motion-induced load terms.  

The wind is composed of a mean wind velocity U, measured in the undisturbed 
stream, and the turbulence components ux and uz, see figure 2. The turbulence 
component in the y-direction uy is ignored. The stream around the model results in 
pressure differences on the upper and lower surface of the model. These pressure 
differences can be integrated into a load FP (in the centre of mass gravity, positive 
downwards) and a moment FM (positive clockwise) both per unit length in the y-
direction.  

The total wind load Ftot on a bridge section is composed of three components: the 
mean wind load FU, wind load from turbulence Fu and the motion-induced (or 
aeroelastic) wind load Fa; see Dyrbye & Hansen [10].  

Ftot = FU + Fu + Fa                                                 (1)  
The suspension bridge must be designed to withstand the drag forces from the 

mean wind U and aeroelastic effects, such as torsional divergence, vortex-induced 
oscillation, flutter, galloping, and buffeting (caused by wind turbulence components u); 
see Simiu & Scanlan [11]. For ultra-long span suspension bridges the main aeroelastic 
effect of concern is flutter; see Astiz [4] and Larsen & Walther [12]. In flutter the 
motion-induced wind load Fa is dominating in equation (1). Flutter occurs at a critical 
wind velocity at which the energy input from the motion-induced wind load is equal to 
the energy dissipated by structural damping; see Dyrbye & Hansen [10]. The critical 
wind velocity is called the flutter wind velocity Uf. The flutter phenomenon was first 
investigated in aerospace engineering and the relevant terms were carried over to wind 
engineering. Flutter of bridge sections is described by Simiu & Scanlan [11] and Larsen 
& Walther [12]:  
• Single-degree flutter in torsion, also called stall flutter, is a pure torsional motion 

of the bridge section. The amplitude of the torsional oscillation grows with 
increasing wind velocity.  

• Binary flutter, also called classical flutter, is a coupled vertical and torsional 
motion of the bridge section. Once the wind velocity exceeds the flutter wind 
velocity the oscillations grow to catastrophic amplitudes.  
As described by Simiu & Scanlan [11], flutter may involve nonlinear 

aerodynamics. However, the flutter problem has been successfully solved by linear 
analysis methods. The motion-induced force Fa is divided into the motion-induced 
vertical load P

aF  and the motion-induced moment M
aF . The equations of motion of a 

bridge section exposed to the motion-induced forces are  
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where m and I are the mass and the mass moment of inertia, respectively, both per unit 
length, z denotes the vertical bending motion, α  denotes the torsional motion, ς  is the 
damping ratio and w is the undamped circular eigenfrequency. The motion-induced 
wind loads P

aF and M
aF are described by three components:  

- Loads P
adF  and M

adF  due to movement of the bridge deck, see section 2.1.1 
- Loads P

atF  and M
atF due to movement of the trailing flap, see section 2.1.2.  

- Loads P
alF  and M

alF  due to movement of the leading flap, see section 2.1.3.  
 
2.1.1 Loads due to Movement of Bridge Deck  
Based on principles of potential flow theory, Theodorsen [13] has shown that for thin 
airfoils (without flaps) in incompressible flow the expressions for P

adF  and M
adF  are 

linear in z and α  and their first and second derivatives. Assuming harmonic vibrations 
at the frequency w the motion-induced forces due to movement of the bridge deck can 
be written; see Scanlan [9],  

 
where p is the mass density of air, B is the width of the bridge section, /K B Uω= is 
the reduced frequency and *

1H ,…, *
4H , *

1A ,..., *
4A are non-dimensional aerodynamic 

derivatives. The aerodynamic derivatives must be estimated by wind tunnel 
experiments or by numerical flow simulations, see Larsen & Walther [12]. During 
preliminary design of bridges the aerodynamic derivatives may be approximated by the 
corresponding values for a flat plate as derived by Theodorsen [13]. For a flat plate the 
aerodynamic derivatives are as follows:  
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where F(k) and G(k) are the real and imaginary parts of the Theodorsen circulatory 
function. The reduced frequency k is based on the half width of the bridge section, i.e. k 
= K/2. The aerodynamic derivatives are shown in figure 3 and figure 4 for a flat plate as 
functions of the reduced velocity Ur defined by  
 
 
 
where f is the frequency.  

As seen in figures 3 and 4 the numerical values of the non-dimensional 
coefficients *

iH  and *
iA  are generally increasing with increasing reduced velocity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Aerodynamic derivatives for moment on flat plate. 
 

2.1.2 Loads due to Movement of Trailing Flap 
As for the bridge deck, Theodorsen [13] has shown that the loads due to movement of a 
trailing flap on a thin airfoil in incompressible flow are linear in the angle of the trailing 
flap at and the first and second derivatives. Assuming that the trailing flap is moved at 

Figure 3. Aerodynamic derivatives for force on flat plate. 
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the same frequency w as the bridge deck, the motion induced forces due to movement 
of the trailing flap can be expressed by additional aerodynamic derivatives. 
 
 
 
 
 
 
where ( ) ( ) ( ) ( )* * * *

5 6 5 6, , andH K H K A K A K are aerodynamic derivatives. For a flat 
plate with a trailing flap the derivatives are 
 
 
 
 
 
 
 
 
 
 
where Ti, i = 1,4,7,8,10,11 are the Theodorsen constants. The constants depend on the 
location of the flap hinge relative to mid chord denoted by c, see figure 5. 

The width of the flat plate excluding flaps is denoted B'. In this section two 
lengths of flaps are investigated, namely with lengths 0.15B' (short flaps) and 0.25B' 
(long flaps). The lengths of the flaps and the corresponding c values are shown in figure 
5. The Theodorsen constants are shown in table I for long and short flaps. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The additional aerodynamic derivatives are 

shown in figure 6 and figure 7 for long and short 
flaps. The forces and moments introduced due to 
movement of the   trailing flap are generally 
bigger for the long flaps than for the short flaps. 
 
 
 

Figure 5. Different lengths of flaps investigated. 

Table I. Theodorsen constants 
for long and short flaps. 
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2.1.3 Loads due to Movement of Leading Flap 
Theodorsen's theory for a flat plate is extended to include a leading flap by assuming 
that the angle of the leading flap has no effect on the circulation. It can be shown that 
loads due to movement of a leading flap on a thin airfoil in incompressible flow are 
linear in the angle of the leading flap al and the first and second derivatives. Assuming 
the leading flap is moved at the same frequency w as the bridge deck and the trailing 
flap, the motion-induced forces due to movement of the leading flap can be expressed 
by additional aerodynamic derivatives. 
  
 
 
 
 
 
where ( ) ( ) ( ) ( )* * * *

7 8 7 8, , andH K H K A K A K are aerodynamic derivatives. For a flat 

Figure 6. Aerodynamic derivatives for force on flat plate due to movement 
of trailing flap. Indices l and s denote long and short flap, respectively.  
 

Figure 7. Aerodynamic derivatives for moment on flat plate due to movement 
of trailing flap. Indices l and s denote long and short flap, respectively.  
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plate with a leading flap the derivatives are 
 
 
 
 
 

 
 

 
 
 

 
The additional aerodynamic derivatives for short and long flaps are shown in 

figures 8 and 9. As for the trailing flap, the forces and moments due to movement of the 
leading flap are bigger for long flaps than for short flaps. By comparing figures 6 with 
8 and 7 with 9 it is seen that turning the trailing flap is more efficient than turning the 
leading flap the angle l tα α= − . This is due to the effect of the trailing flap on the 
circulation. 
 

Figure 8. Aerodynamic derivatives for force on flat plate due to movement of 
leading flap. Indices l and s denote long and short flap, respectively.  
 

Figure 9. Aerodynamic derivatives for moment on flat plate due to movement 
of leading flap. Indices l and s denote long and short flap, respectively.  
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2.2 Estimation of the flutter wind velocity 
As described in section 2.1 two types of flutter are investigated, namely single-degree 
flutter in torsion and binary flutter. In this section the estimated flutter wind velocity for 
the two flutter types by using Theodorsen's method are shown for a bridge section with 
leading and trailing flaps. The angles of the leading flap al and the trailing flap at are 
expressed in terms of the torsional angle a of the bridge section. 

  
 
 

where  lϕ  and tϕ  are the phase angles between the flaps and the torsional angle and al 

and at are the flap amplification factors. A flap amplification factor is defined as the 
amplitude of the flap relative to the amplitude of the torsional motion. In the following, 
a flap configuration refers to fixed parameters al, at, lϕ  and tϕ  for the flaps. The results 
for a bridge section without flaps can be found by setting 0l ta a≡ ≡ in the expressions 
shown in this section. 
 
2.2.1 Single-Degree Flutter in Torsion 
In single-degree flutter in torsion the flutter wind velocity Uf is defined as the velocity 
at which the total damping (structural and aerodynamic) in torsion is zero. The bridge 
will oscillate at a circular eigenfrequency close to 0ta ≡ ; see Dowell et al. [14]. The total 
damping is zero for 
 
 
where 
 
 
 

For a flap configuration the flutter wind velocity is 
  
 
 
where Kf is the largest value of K (corresponding to the smallest value of U) for which 
equation (29) is true. For a flat plate without flaps the flutter condition yields 
 
 
 
where ( )2A K∗  is negative, see figure 4. Thereby a flat plate will not perform single-
degree flutter in torsion. 
 
2.2.2 Binary Flutter 

In binary flutter the oscillations of the bridge in both vertical and torsional 
directions will become harmonic at the circular eigenfrequency fω  at a critical wind 
velocity Uf. Thereby the structural dissipated energy in the period Tf = 2 / fπ ω  will be 
equal to the energy input of the motion-induced wind load, see Dyrbye & Hansen [10]. 
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The circular flutter eigenfrequency fω  is between the circular eigen-frequencies for the 
bridge section in bending and torsion, i.e. z f αω ω ω≤ ≤ .  

The binary flutter condition is 
    
where 
 
 
 
 
 
where z0 and 0α  are the amplitudes of the vertical and torsional motion, respectively, 
and αϕ  is the phase angle between the vertical and torsional motion. By inserting the 
flutter condition in the matrix equation of motion the flutter point can be found 
graphically by the method described by Dowell et al.[14]. For a number of values of the 
reduced frequency K the values Xr(K) and Xi(K) are calculated as solutions to the 
following equations: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where 
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The flutter point (Xf, Kf) is the point where the solution curves Xr(K) and Xi(K) 
cross. The circular flutter frequency fω  and the flutter wind velocity Uf can be 
determined by 
 
 
 
 

When there is more than one intersection of the solution curves, the flutter point 
corresponds to the intersection point with the largest value of K (corresponding to the 

smallest value of U). The factor 0

0

i

z
e αϕα −  defined by equations (33) and (35) can be 

calculated by inserting the values fω  and Kf into the matrix equation of motion with 
the flutter condition. The phase angle αϕ  between the vertical and torsional motion is 
 
 
 
 

As an example, the flutter wind velocity for binary flutter is estimated for the 
bridge section model used in the wind tunnel experiments. The bridge section model is 
equipped with long flaps; see the corresponding flat plate in figure 5. The parameters of 
the model are shown in table II. The aerodynamic derivatives for the model are 
approximated by the values for a flat plate shown in section 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 

The flutter point is (Xf, Kf) = (1.273, 0.758). The circular flutter frequency fω and 

Table II. Parameters for bridge section model used in example. 
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flutter wind velocity Uf  are 
 
 
 
 
 

As expected, the circular flutter frequency is between the circular frequencies for 
bending and torsion, see table II. By using equation (44) the phase angle between the 
vertical and torsional motion can be calculated 
 
 
 
 

The flutter wind velocity Uf for binary flutter is calculated for different flap 
amplification factors al and phase angles CPI for the leading flap. The trailing flap is 
not moved, i.e. 0ta ≡ . The results are shown in figure 10. The flutter wind velocity is 
increased when the phase angle for the leading flap lϕ  is in the interval 
[ ]0.6 / 6; 6.6 / 6π π , otherwise the flutter wind velocity is decreased. The phase angle for 
maximum increase of the flutter wind velocity is dependent on the value of the flap 
amplification factor al. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The flutter wind velocity Uf for binary flutter is calculated for different values of 
at and tϕ  for the trailing flap. The leading flap is not moved, i.e. 0la ≡ . The results are 
shown in figure 11. The interval where the flutter wind velocity is increased, when the 
trailing flap is moved, is dependent on the flap amplification factor at. The flutter wind 
velocity is generally decreased when the phase angle of the trailing flap tϕ  is in the 
interval [ ]/ 6; 6 / 6π π . For phase angles outside this interval the flutter wind velocity is 
generally increased. Again the phase angle for maximum increase of the flutter wind 
velocity is dependent on the value of the flap amplification factor at. 

By comparing figures 10 and 11 it is seen that the trailing flap is much more 
efficient than the leading flap. The potential theory used assumes that there is no 
separation of the flow around the flat plate. This assumption can hardly be met in 

Figure. 10. Flutter wind velocity when only the leading flap is used. 
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practice, therefore it is expected that the effect of the trailing flap is overestimated by 
the Theodorsen theory for a flat plate. For small values of the flap amplification factors 
the optimal phase angles are 3 / 6lϕ π≈  and 8 / 6tϕ π≈ . These phase angles are used in 
figure 12 where movement of both flaps compared to movement of the leading and 
trailing flap separately is shown. As seen in figure 12 the flutter wind velocity is only 
slightly increased for flap amplification factors below approximately 0.8 when only one 
flap is moved. When the trailing flap is moved with a flap amplification factor at above 
0.8 the flutter wind velocity is increased considerably and for at > 0.95 binary flutter 
will not occur. By using both flaps, binary flutter will not occur when both flap 
amplification factors are above approximately 0.6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Movement of both flaps compared to movement of the flaps separately. 
 
2.3 Estimation of damping by te AMC method 
In the Air Material Command (AMC) method the necessary structural damping of the 
bridge section for fulfilling the binary flutter condition in equation (33) is plotted 
against the mean wind velocity; see Fung [15]. Flutter occurs when the necessary 
structural damping exceeds the actual structural damping of the bridge section. By 

Figure 11. Flutter wind velocity when only the trailing flap is used. 
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using the AMC method the following equation is solved with respect to the complex 
variable Z 
 
 
 
 
 
 
 
 
 
 
For a number of reduced frequencies K1, K2,..., equation (48) is solved and 
corresponding values of the mean wind velocity U and the damping factor g are 
calculated 
 
 
 
 
 

The damping factor g is defined as twice the necessary structural damping (for 
binary flutter. It is assumed that the structural damping is the same for bending and 
torsion, i.e. zαz z z= = , The flutter wind velocity Uf is found by 
 
 

As in section 2.2, the bridge section model used in the wind tunnel experiments is 
used in the example. The parameters for the model are shown in table II and the 
aerodynamic derivatives for a flat plate are used. The following approximation is made: 
z = 0.01. The results are shown in figure 13 for no movement of the flaps, i.e. al = at = 
0, and for al = at = 0.6, 3 / 6lϕ π=  and 8 / 6tϕ π= . 

 
 
 
 
 
 
 
 
 
 
 
 
 

. 
 
 
 
The flutter wind velocity for the bridge section model is found as the mean wind 

velocity for which g = 0.02. For no movement of the flaps the flutter wind velocity is 

Figure 13. Damping factor as a function of the mean wind velocity. 
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8.22 m/s. This value is very close to the flutter wind velocity found by Theodorsen's 
method in section 2.2, i.e. 8.18 m/s. If it is assumed that the structural damping z  is in 
the interval [0.008; 0.012] corresponding to the structural damping for torsion and 
bending, respectively, then the flutter wind velocity is in the interval [8.18; 8.27] m/s, 
which agrees very well with the flutter wind velocity found by Theodorsen's method. 
When both flaps are moved using al = at = 0.6 and the phase angles found in section 
2.2, i.e. 3 / 6lϕ π=  and 8 / 6tϕ π= , then the flutter wind velocity is increased to 10.43 
m/s in the interval [10.08, 11.24] m/s. Again, this flutter wind velocity agrees very well 
with the flutter wind velocity of 10.53 m/s for this flap configuration found by the 
Theodorsen method. 
 
 
3. ACTIVE CONTROL SYSTEMS 
In active structural control the motion of the structure is controlled by means of the 
action of a control system through some external energy supply. The basic active 
control configuration consists of: 

• Sensors located on or in the structure to measure excitation and/or structural 
response variables. 

• Devices to process the measurements and to compute the control action based 
on a control algorithm. 

• Actuators to make the control action. 
When the motion of the bridge is measured and used to calculate the flap 

positions (i.e. the control action), the control configuration is referred to as closed-loop 
control. The effect of closed-loop control is to modify the structural parameters 
(stiffness and damping) so that the bridge responds more favour ably to the excitation. 
When the wind velocity (i.e. the excitation) is measured and used to control the bridge 
the control configuration is referred to as open-loop control. The effect of the open-loop 
component is a modification of the excitation. In closed-open-loop control the flap 
positions are calculated based on both the measured motion of the bridge and the 
measured wind velocity. 

Three methods of computing the flap positions are described: 
• Classical linear optimal closed-loop control, see section 3.1. 
• Instantaneous optimal closed-loop control, see section 3.2. 
• Closed-loop control with constant phase angles between the motion of the flaps 

and the torsional motion of the bridge, see section 3.3. 
Classical linear optimal closed-open-loop and open-loop control are generally not 

feasible in structural control applications since for this type of control the excitation 
must be known a priori during the control interval; see Soong [16]. For instantaneous 
optimal control it is possible to derive the open-loop and closed-open-loop control 
laws; see Soong [16]. But these control laws that contain information about the 
excitation term are much more complicated than the closed-loop control law. 
 
3.1 Classical linear optimal Closed-Loop Control 
In structural control applications of classical linear optimal control the usually studied 
performance index J to be minimized in the control interval [0; tf] can be written as 
follows; see Soong [16] 
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where the vectors y and u are composed of the structural parameters and the control 
actions, respectively. 
 
 
 
 
 
 
 

Q and R are weighting matrices, where the elements are selected to achieve the 
desired connection between the control effectiveness and the control energy 
consumption. I.e. large values of the elements in Q compared to the elements in R 
indicate that the reduction of the motion of the model is more important than the energy 
required turning the flaps. The following weighting matrices are used by Wu et al.[18]. 
 
 
 
 
 
where Ms and Ks are the mass and stiffness matrices, respectively. I is the identity 
matrix. The factor β  is the relative importance of the control effectiveness compared 
to the control energy consumption. For the uncontrolled case, β = ∞ . 

The linear optimal closed-loop control law is e.g. derived by Soong [16]. 
 
 
 
where the control gain matrix ( )lo tG  is given by 
 
 

 
The Riccatti matrix P(t) is found by solving the Riccatti equation 

 
 
 

The elements in the Riccatti matrix are constant during most of the control 
interval dropping to zero near the end of the control interval, i.e. near tf. Therefore, the 
time-dependent Riccatti matrix is approximated by the constant matrix P corresponding 
to the values in the first part of the control interval. 

Then the control gain matrix is 
 
 
 

As an example, the gain matrix loG  is calculated for the bridge section model 
used in the wind tunnel experiments for β  = 10 and β  = 100. The parameters of the 
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model are shown in table II. The aerodynamic derivatives for the model are 
approximated by the values for a flat plate shown in section 2.1. It is assumed that the 
model performs binary flutter with fω  = 6.62 rad/s and Uf = 8.18 m/s, see equations 
(45) and (46). 
 
 
 
 
 

As expected, the elements of the gain matrix are reduced when the β -value is 
increased. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vertical and torsional uncontrolled motion and controlled motion with β  = 

10 and β  = 100 are shown in figures 14 and 15, respectively. Both the vertical and 
torsional oscillations are reduced very fast, especially for β  = 10. 

The movements of the trailing and leading flap are shown in figure 16 for β  = 
10 and in figure 17 for β  = 100. The maximum flap angle for β  = 10 is about 16° and 
for β  = 100 the maximum angle is about 8°. For both β -values the trailing flap is 
turned more than the leading flap and there is a phase angle between the motion of the 

Figure 14. Uncontrolled and controlled vertical motion for 
β  = 10 and β = 100 using classical linear optimal control. 

Figure 15. Uncontrolled and controlled torsional motion for 
β  = 10 and β = 100 using classical linear optimal control. 
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trailing flap and the leading flap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Instantaneous optimal Closed-Loop Control 
In instantaneous optimal control a time-dependent performance index J(t) is defined by 
e.g. 
 
 

This performance index is minimized at every time instant t during the control 
interval, i.e. for all 0 ft t≤ ≤ ; see Soong [16]. 

In instantaneous optimal closed-loop control the control law is 
 
 

The control gain matrix is 
 
 
where t∆  is a small time interval; see Soong [16]. By comparing the gain matrices loG  
and ioG  for linear optimal and instantaneous optimal closed-loop control it is seen that 
the Riccatti matrix P in equation (60) is replaced by t∆ Q  in equation (65). The 
instantaneous control law is thus much simpler than the linear optimal control law 
because solving the Riccatti matrix is omitted. 

Figure 16. Flap angles for β  = 10 using classical linear optimal control. 

Figure 17. Flap angles for β  = 100 using classical linear optimal control. 
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The control gain matrix is calculated for the example described in section 3.1 for 
(3 = 2 and (3 = 10. The weighting matrices in equations (55) and (56) for classical 
linear optimal control are used 
 
 
 
 
 
 

When β  is multiplied by a factor a, G is multiplied by /l α , as 1 1/ β− =R I . The 
flap angles only depend on the vertical and torsional velocities for the current selection 
of weighting matrices R and Q. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vertically and torsionally uncontrolled motion and controlled motion with β  

= 2 and β = 10 are shown in figures 18 and 19, respectively. Both the vertical and 
torsional oscillations are reduced very fast, especially for β  = 2. 

The movements of the trailing and leading flap are shown in figure 20 for β  = 2. 
The flap angles shown in figure 20 can be compared with the flap angles shown in 

Figure 18. Uncontrolled and controlled vertical motion for  
β  = 2 and β  = 10 using instantaneous optimal control. 

Figure 19. Uncontrolled and controlled torsional motion for  
β  = 2 and β  = 10 using instantaneous optimal control. 
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figure 16, where classical linear optimal control is used. The shapes of the flap angle 
curves are much alike, but the flaps are slightly delayed in instantaneous control 
compared to classical linear optimal control. 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Constant phase angle 
As described in section 2.2.2, binary flutter occurs when the structural dissipated 
energy Edis is equal to the energy input Einput from the motion-induced wind load during 
a period. The binary flutter condition is 
 
 
 
where z0 and 0α  are the amplitudes of the vertical and torsional oscillations and αϕ  is 
the phase angle between the vertical and torsional oscillation. 

The structural dissipated energy per metre during the period 2 /f fT π ω=  is 
 
 
 
 
 

The energy input per metre during the period Tf for no regulation of the flaps 
is 
 
 
 
 
 
 

As both the oscillations and the motion-induced wind load have sine-shape, this 
shape is also selected for the control action and thereby the flap angles. 
 
 
 
where 0tα  and 0lα  are the amplitudes of the flap angles and zω  and lϕ  are the phase 
angles between the torsional oscillation and the flap oscillations. 

The additional energy input per metre ,input tE∆ and ,input lE∆ during the period Tf for 
regulation of the trailing and leading flap, respectively, is 
 

Figure 20. Flap angles for β  = 2 using instantaneous optimal control. 

 1401 



Chapter 110  

The flap configuration parameters 0tα , 0lα , tϕ  and lϕ  can be selected so the 
energy input is reduced. The optimal phase angles are found for 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For the example described in section 3.1 the force of the motion-induced wind 

load ( )P
adF t and the vertical velocity ( )z t are shown in figure 21. The moment of the 

motion-induced wind load ( )M
adF t and the torsional velocity ( )tα are shown in figure 

22. The time intervals with positive contribution to inputE  are marked with “+” in 
figures 21 and 22. The time intervals with negative contribution to inputE  are marked 

Figure 21. Sign of contribution to energy extracted 
from force of motion-induced wind load. 
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with “-“. The dissipated structural energy and the energy input are disE  = inputE  = 0.136 
Nm/m. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The additional energy input per metre ,input tE∆ and ,input lE∆ during the period Tf is 
dependent on tϕ  and lϕ , respectively, see figures 23 and 24. The optimal flap angles 
and maximum contribution to energy input per metre are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For flap angle amplitudes equal to the amplitude of the torsional motion, i.e. 

0 0 0 0.098t lα α α= = =  the total energy input is 

Figure 22. Sign of contribution to energy extracted 
from moment of motion-induced wind load. 
 

Figure 23. Energy input due to movement of trailing flap. 
 

Figure 24. Energy input due to movement of leading flap. 
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As seen the effect of the trailing flap is about seven times the effect of the leading 
flap. The flap configuration described decreases the energy extracted from the wind, so 
binary flutter will not occur for the investigated wind velocity. 
 
 
4. WIND TUNNEL EXPERIMENTS 
The purpose of the wind tunnel experiments is described in section 4.1. The bridge 
section model is described in section 4.2. The test programme used during the 
experiments is described in section 4.3. Examples of results of damping experiments 
are shown in section 4.4 and estimation of parameters is described in section 4.5. The 
results of the wind tunnel experiments are compared with the flat plate approximation 
in section 5. 

The bridge section model, suspension system, flap regulation system and the 
wind tunnel experiments are further described in Hansen [1] and (Hansen et al. [17]. 
 
4.1 Purpose of the experiments 
The purpose of the experiments with the bridge section model in the wind tunnel is 
primarily to investigate how the damping of the model is dependent on the flap 
configuration for increasing wind velocities. These results are compared with the 
theoretical results for a flat plate by using the Air Material Command (AMC) method 
described in section 2.3. 

The bridge section model is dimensioned to fit into the Wind Tunnel for Building 
Aerodynamics at the Instituto Superior Tecnico in Lisbon, Portugal, whereby a 
practically usable model is dimensioned. Further, it is important that the model is 
realistic compared to a real bridge - but no specific bridge is investigated. Both the 
trailing flap and the leading flap can be regulated in the model, since the effect of two 
flaps instead of one is essential. The purpose of the flap in the leading edge is primarily 
to introduce a load on the bridge opposite to the motion of the bridge. The purpose of 
the flap in the trailing edge is primarily to change the direction of the wake. The flaps 
are able to rotate approximately o20± from the horizontal positions. It is of interest to 
investigate flaps with different lengths. Therefore, flaps with lengths 0.15B' and 0.25B' 
are constructed, where B' is the width of the bridge section model excluding flaps. 
During the wind tunnel experiments only the long flaps have been used. 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. Simplified model of suspension bridge section with flaps. 
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4.2 Bridge section model 
Experiments have shown that the critical wind velocity for a streamlined girder is much 
higher than for a rectangular girder, see (Ostenfeld & Larsen, 1992). The bridge section 
model is therefore made streamlined with the flaps as the streamlined part. A simplified 
model of the bridge section equipped with flaps is illustrated in figure 25. The width of 
the model excluding flaps is B' and the height of the model is 0.15B'. In the 
experiments two long flaps with the length 0.25B' are used. For illustration the model in 
figure 25 is shown with a long flap at the left hand side and a short flap at the right 
hand side. 
 
4.3 Test programme 
In the experiments the following control algorithm is used to calculate the desired 
angles ( )t tα and ( )l tα of the trailing and leading flap: 
 
 
 
where is the torsional angle of the model at the time t, at and al are amplitude 
amplification factors for the trailing and leading flap, respectively. The flaps are started 
slowly by multiplying the desired positions by a factor t/T0 when t < T0. The time for 
slow start is selected equal to T0 = 1 s. The following experiments are performed: 
• The flaps are not regulated, flap configuration 0: at = al =0. 

 - Free vibration (vertical motion, torsional motion, both vertical and torsional 
motion). 

 -  Both vertical and torsional motion with the following wind speeds: 2.5 m/s, 4.0 
m/s, 5.9 m/s, 7.1 m/s, 7.5 m/s and 8.2 m/s. 

• Both flaps are regulated, flap configuration 1: at =-6 and al =6. 
 -  Free vibration (torsional motion, both vertical and torsional motion). 
 -  Both vertical and torsional motion with the following wind speeds: 2.5 m/s, 4.0 

m/s, 5.9 m/s, 7.1 m/s and 7.7 m/s. 
•  Both flaps are regulated, flap configuration 2: at = -20 and al =20. 

 -   Free vibration (torsional motion, both vertical and torsional motion). 
 -  Both vertical and torsional motion with the following wind speeds: 2.8 m/s, 4.1 

m/s and 6.1 m/s. 
•  Both flaps are regulated, flap configuration 3: at = 6 and al =-6. 

 - Free vibration (torsional motion, both vertical and torsional motion). 
 -  Both vertical and torsional motion with the following wind speeds: 2.5 m/s, 4.0 

m/s, 5.9 m/s and 7.1 m/s. 
• The flaps are not regulated, flap configuration 4: at =20 and  al =-20. 

-  Both vertical and torsional motion with the following wind speeds: 2.8 m/s, 4.2 
m/s and 6.1 m/s. 

 
4.4 Examples of damping experiments 
In this section the torsional motion is shown as a function of time for wind speed 6.1 
m/s and flap configurations 0, 2 and 4. 

Figure 26 shows the torsional motion when the flaps are not regulated. The 
measurements are very noisy. During the first period the amplitude of the torsional 
motion is reduced from 2.6° to 2.4°, i.e. 8%. Figure 27 shows that flap configuration 2 
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is very efficient to control the torsional motion of the model. Even though the flaps are 
started slowly during the first second the amplitude of the torsional motion is reduced 
from 2.7° to 1.1°, i.e. 62%. Figure 28 shows the actual positions for the trailing flap for 
the example in figure 27. Figure 29 shows that the angular motion is growing, i.e. there 
is flutter, when flap configuration 4 is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Example of torsional motion for flap configuration 0 and with wind speed 
6.1 m/s. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. Example of torsional motion for flap configuration 2 and with wind speed 
6.1 m/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Example of torsional motion and actual flap positions for the trailing flap for 
flap configuration 2 and with wind speed 6.1 m/s. 
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Figure 29. Example of torsional motion for flap configuration 4 and with wind speed 
6.1 m/s. 
 
4.5 Estimation of parameters 
The following parameters are estimated based on the experiments: 
• zω  and αω : the circular frequencies for the vertical and torsional motion, 

respectively. The circular frequencies are estimated by counting a number of cycles 
for the time series z(t) and ( )tα . 

• αz : the damping ratio for the torsional motion. The damping is estimated by using 
Hilbert transformation. 

• ata and ala: the actual amplitude amplification factors between the angular motion 
of the model and the actual positions of the flaps. These factors are estimated by 
optimization. 

• taϕ  and laϕ : the phase angles between the angular motion of the model and the 
actual positions of the flaps. These factors are estimated by optimization. 

The measured positions z(t), ( )tα , ( )ta tα and ( )la tα  are noisy, and therefore 

they are filtered. The filtered positions zf(t), ( )f tα , ( ),ta f tα and ( ),la f tα  are then used 
to estimate the above-mentioned parameters. 
 
4.5.1 Estimated Frequencies 
In figure 30 the circular frequencies for the vertical motion without wind are shown. 
The estimated frequencies are rather constant independently of the flap configuration 
and the main motion. The mean value of the circular frequency for the vertical motion 
is 5.2 rad/s. 

The circular frequency for the vertical motion can be estimated without wind. 
When the wind is blowing the vertical motion becomes rather irregular until it is 
possible to estimate it again. The frequencies are shown in figure 31. With increasing 
wind velocity the circular frequency for the vertical motion is reduced. It is not possible 
to estimate the circular frequency for the vertical motion when flap configuration 2 is 
used. 

In figure 32 the circular frequencies for the torsional motion without wind are 
shown. As for the vertical motion, the estimated frequencies are rather constant 
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independently of the flap configuration and the main motion. But there is a small 
tendency towards larger deviation of the results the more the flaps are moved. Note that 
flap configurations 1 and 3 specify small movement of the flaps. The mean value of the 
circular frequency for the torsional motion is 10.1 rad/s. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30. Estimated circular frequency for vertical motion without wind. The 
configuration is described by the flap configuration and the main motion, i.e. zα  
denotes a combined motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31. Estimated circular frequency for vertical motion with wind. 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Estimated circular frequency for torsional motion without wind. The 
configuration is described by the flap configuration and the main motion, i.e. 
zα denotes a combined motion. 
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The circular frequencies for the torsional motion used to estimate the damping of 
the motion are shown in figure 33. Again, with increasing wind velocity the circular 
frequency for the torsional motion is reduced dependent on the flap configuration used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 33. Estimated circular frequency for torsional motion with wind. For the wind 
speed 6.1 m/s the motion is damped very fast when flap configuration 2 is used. The 
frequency for this wind speed and flap configuration is therefore predicted based on the 
estimated values for other wind speeds and flap configurations. 
 
4.5.2 Estimated Damping Ratios 
In figure 34 the damping ratios for the torsional motion without wind are shown. The 
estimated damping ratios are rather constant independently of the flap configuration 
and the main motion. But when the flaps are moved the damping ratio is larger for the 
main torsional motion than for the combined motion. Further, the more the flaps are 
turned the larger the damping ratio. The mean value of the damping ratio for the 
torsional motion is 0.008. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 34. Estimated damping ratio for torsional motion without wind. The 
configuration is described by the flap configuration and the main motion, i.e. zα  
denotes a combined motion. 
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The damping ratio for the torsional motion for different flap configurations is 

shown as a function of the wind speed in figure 35. When flap configurations 1 and 
especially 2 are used the damping ratio is increased considerably, and when flap 
configurations 3 and 4 are used the damping ratio is decreased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35. Estimated damping ratio for torsional motion with wind. 
 
4.5.3 Estimated Amplifications and Phases 
The torsional motion can be described by 
 
 
 
where ( )A tα is the amplitude of the envelope curve for the torsional motion and 

( )tαω′ is the circular eigenfrequency for the damped torsional motion. 
The actual flap position for e.g. the trailing flap can be described by 

 
 
 
where taa  is the amplification factor and taϕ  is the phase angle for the trailing flap. The 
phase angle is equal to the damped circular frequency multiplied by the delay of the 
flap compared to the torsional motion, i.e. ta ttαϕ ω′= ∆ . In the same way the actual flap 
position for the leading flap can be described by the amplification factor laa  and the 
phase angle laϕ . 
 
 
where π . The amplifications taa  and laa  and the phase angles taϕ  and laϕ  are estimated 
for each flap configuration. The mean values are shown in table III. 
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Table III. Estimated amplification factors and phase angles. * For flap configuration 4 
the parameters are predicted based on the results for other flap configurations. 
 

As seen in table III, the trailing and leading flaps are moving with the same delay 
compared to the torsional motion. Note that the phase angles are equal because the 
angles of both flaps are positive downwards. Further, the amplitudes of the leading flap 
are slightly bigger than the amplitudes of the trailing flap. As expected the flap 
amplication factors are almost the same for flap configurations 1 and 3 and the phase 
angles are almost the same for flap configurations 1 and 2. Finally, as expected the 
difference between the phase angles for flap configurations 1 and 3 is approximately 
equal to π . 
 

5. EXPERIMENTAL RESULTS COMPARED WITH THEORY 
In this chapter the estimated parameters from the wind tunnel experiments are 
compared with the theoretical parameters by using the flat plate approximation 
described in chapter 2. 

The flap configurations used in the wind tunnel experiments are shown in section 
5.1. The wind dependent change of frequency and damping are compared with the 
theoretical values in sections 5.2 and 5.3. The optimal phase angles found in chapter 2 
are in section 5.4 compared to the phase angles used during the experiments. 
 
5.1 Flap configurations 
The positive directions of the vertical and torsional motions of the bridge section model 
and of flap positions are shown in figure 36. The positive directions are equal to the 
positive directions defined in section 2. In chapter 4.3 the angle of the leading flap is 
defined as positive downwards, e.g. opposite to the definition used in this chapter. 
 
 
 
 
 
 

Figure 36. Definition of positive directions. 
 

The positions of the flaps (with positive directions as shown in figure 36) at 
selected time instants for flap configurations 1-4 are shown in figures 37-40. When flap 
configuration 0 is used the flaps are not moved. Based on the torsional motion a(t), the 
actual flap positions at and al are calculated by using equations (81) and (82) with the 
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estimated parameters shown in table III for each of the flap configurations. At eight 
time steps during a period the angle of the model and flaps are shown in the upper part 
of figures 37-40. 

For all flap configurations the flaps are near their horizontal positions when the 
angle of the torsional motion is maximum. Further, for all flap configurations the flaps 
are moved either up or down at the same time and the maximum angles of the flaps are 
when the model is approximately horizontal. 
 
5.2 Wind dependent change of frequency 
In figure 31 the circular frequency for the vertical motion as a function of the wind 
velocity is shown based on the wind tunnel experiments. The stiffness of the bridge 
section model with flaps for a pure vertical motion is 
 
 
 
where 
 
 
 
where ,z Uω is the circular frequency of the vertical motion dependent on the wind 
velocity U. The wind dependent circular frequency of the vertical motion is 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. Movement of flaps for flap configuration 1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 38. Movement of flaps for flap configuration 2. 
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Figure 39. Movement of flaps for flap configuration 3. 
 
 
 
 
 
 

 
 
 
 
 

Figure  40. Movement of flaps for flap configuration 4. 
 

According to Dyrbye & Hansen [10], the following approximation is quite 
accurate 
 
 
 
where zω  is the circular eigenfrequency for the vertical motion, i.e. without wind. 
Equation (85) can thereby be written 
 
 
 
 
 
 
 
 
 
 

Figure 41. Theoretical and experimental circular frequency for vertical motion with 
wind. 
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Note, that the vertical frequency is independent of the flap configuration. The 
frequencies estimated based on the experimental data are compared to the theoretical 
frequencies by using Theodorsen's theory for a flat plate, see figure 41. 

As seen in figure 41, only the first values of the circular frequency for the vertical 
motion for flap configuration 1 are on the theoretical curve. However, the theoretical 
curve for pure vertical motion does not agree with the binary flutter theory either, since 
the flutter wind velocity for the bridge section model is fω = 6.62 rad/s and the flutter 
wind velocity is fU = 8.18 m/s, see section 2.2. This may be explained by the pure 
vertical motion assumption for equation (87) contrary to the combined vertical and 
torsional motion for binary flutter. Perhaps the results would fit better if a Fourier 
analysis had been made. Also, for the experimental data the vertical frequency is 
independent of the flap configuration. 

In figure 33 the circular frequency for the torsional motion as a function of the 
wind velocity is shown based on the wind tunnel experiments. The stiffness of the 
bridge section model with flaps for a pure torsional motion is 
 
 
where 
 
 
 
where ,Uαω is the circular frequency of the torsional motion dependent on the wind 
velocity U 
and 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42. Theoretical and experimental circular frequency for torsional motion with 
wind for flap configuration 0-4. The number at the end of a solid line denotes the actual 
flap configuration. 

 
The wind dependent circular frequency of the torsional motion is 
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where αω  is the circular eigenfrequency for the torsional motion, i.e. without wind. 
Note that the torsional frequency is dependent on the flap configuration specified by the 
flap amplification factors at and al and the phase angles tϕ  and lϕ . The frequencies 
estimated based on the experimental data are compared to the theoretical frequencies by 
using the aerodynamic derivatives for a flat plate for flap configurations 0-4, see figure 
42. 

As seen in figure 42 the estimated values generally follow the theoretical curves 
for wind velocities below approximately 5 m/s. The only exception is flap 
configuration 2, but the deviations for this flap configuration can be caused by the 
relatively short time series because of the effective damping. The pure torsional motion 
does not completely agree with the binary flutter theory but the fit is much better than 
for the pure vertical motion described above. 
 
5.3 Wind dependent change of damping 
In figure 35 the damping ratio for the torsional motion is shown as a function of the 
wind velocity based on the wind tunnel experiments. The damping ratio can also be 
estimated by the AMC method described in section 2.3. The damping ratio g(U) 
defined in section 2.3 as twice the necessary structural damping is replaced by 

( ) ,00.5g U αz− + to be compared with the experimental damping ratios. The mean value 
of the damping ratio without wind is ,0 0.008αz = , see section 4.5.2. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 43. Theoretical and experimental damping for torsional motion with wind for flap 
configuration 0-4. The number at the end of a solid line denotes the actual flap 
configuration. 

The damping ratios estimated based on the experimental data are compared to the 
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theoretical damping ratios by using the AMC method and the aerodynamic derivatives 
for a flat plate for flap configurations 0-4, see figure 43. 

As seen in figure 43, the experimental damping ratio is smaller for flap 
configuration 0 and 1 than the theoretical damping ratio but the shape of the curve is 
almost the same. For flap configuration 2 the experimental damping ratio exceeds the 
theoretical ratio. For flap configurations 1 and 2 the theoretical curves show that no 
binary flutter will occur. For the flap configurations 3 and 4 the flutter wind velocity is 
decreased compared to flap configuration 0, where the flaps are not moved. 
 
5.4 Optimal flap positions 
There is no guarantee that the phase angles used in the wind tunnel experiments 

1.5lϕ ≅  rad and 4.5tϕ ≅  rad are optimal. When the flat plate approximation is used 
then the optimal phase angles are about 3 / 6 1.57lϕ π≅ =  rad and 8 / 6 4.19tϕ π≅ = rad 
for small values of flap amplification factors al and at, see section 2.2. Based on the 
performed experiments it is not possible to conclude which phase angles are optimal for 
the model, and therefore, it is also not possible to predict the optimal effect of the flap 
control system. 
 
 
6. CONCLUSION 
The main conclusions are summarized as: 
• Both theoretically and experimentally the flap control system was very efficient to 

limit the vibrations of the bridge section model. 
• Theoretically, long flaps are more efficient than short flaps. 
• Theoretically, the trailing flap is more efficient than the leading flap. It is optimal to 

use both flaps. 
• It is very important that the flaps are regulated as specified by the selected control 

algorithm as the flutter wind velocity can be decreased if the flap configuration is 
unfavourable. 
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