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BUFFETING RESPONSE OF SUSPENSION BRIDGE GIRDER 
WITH SEPARATE CONTROL FLAPS1 

 
T. Huynh & P. Thoft-Christensen  
 University of Aalborg, Denmark. 

 
 

 

 

ABSTRACT 
This paper presents the calculation of the root mean square (RMS) response of a 
suspension bridge using separate control flaps (SCF) in turbulence conditions. It is 
assumed that the mean wind velocity is not large enough to cause coupled vibrations 
and that single mode buffeting response is of interest. The RMS response is determined 
on the basis of the equation of motion, which is formulated stochastically according to 
the wind random turbulence components. It is further assumed that the sum of the 
motion-induced forces and the buffeting-induced forces from the girder and the flaps is 
computed on the basis of independent flutter derivatives and independent aeroelastic 
coefficients from the girder and from the flaps. The theory is demonstrated by a 
numerical example based on a long-span suspension bridge model with the Great Belt 
girder. 
 
 
1. INTRODUCTION 
Several short-span cable-supported bridges built in the 19th century have been 
oscillating in both purely vertical and purely torsional modes due to the wind, William 
[3] and Scruton [6]. Assuming that the mean wind velocity U is constant along the span, 
the flutter wind velocity can be considerably increased when aeroelastic forces of the 
separate control flaps attached along the girder are used. Further, depending on the flap 
lengths along the girder and the flap configurations in different locations, control 

1 Proceedings Second European Conference on Structural Control, Champs sur Marne, France, July 3-6, 
2000 
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spillover can be regulated or omitted in multimode coupled flutter, Huynh [1] and 
Huynh & Thoft-Christensen [7]. 

However, the wind buffeting effect due to the natural wind flow can induce 
vibrations of the bridge at a wind velocity lower that the flutter wind velocity.  

The girder response to turbulence buffeting in a single mode is addressed in this 
paper for several reasons. Firstly, to be able to reduce the complications related to the 
forces from the control flaps. Secondly, since the buffeting vibration occurs at a lower 
mean wind velocity than flutter, the modal coupling effects due to wind action are 
usually not strong compared to those of damping. Thirdly, to ensure that the single-
mode vibrations do not develop a catastrophic vibration amplitude. Finally, multimode 
coupled buffeting analysis for the girder with SCF can be developed from the analysis 
in the present paper and from a series of papers by Scanlan and his associated workers 
for a traditional suspension bridge. 
 
 
2. FORMULATION OF GENERALISED FORCES AND EQUATION OF 
MOTION 
Let Mi denote the generalized inertia of a full-span bridge in vibration mode i. The 
equation of motion for mode i is 
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where ξi(t) is the generalised coordinate in mode i. ωi is the radian natural frequency 
and ζi is the damping ratio without wind in mode i. The total generalised forces on the 
right-hand side of Eq. (1) consist of the aeroelastic forcing term “ae” and the buffeting 
term “b” of the girder and of the flaps in mode i, respectively. They are defined by: 
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where φi(x) and ψi(x) are the vertical and the torsional mode shapes in mode i. deckaeL , 
leaeL  and traeL  are the motion-induced lift per unit span of the girder, the leading and the 

trailing flap, respectively. deckaeM , leaeM  and traeM  are the corresponding motion-induced 
moment per unit span. It is assumed that the lifts depend on the vertical motion only 
and that the moments depend on the torsional motion and its velocity only. Then, Simiu 
& Scanlan [5] 
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where ρ is the air density, B is the girder width, 'B  is the flap width, ωi0 is the vibration 
frequency of the bridge when the motion-induced forces take place, ωi0,c is the 
frequency when this motion is affected by the control flaps. ∗

1H , ∗
2A  and ∗

3A  are the 
uncoupled flutter derivative of the girder depending on the actual frequency of the 
bridge under wind action. ∗

5H , ∗
6A  and ∗

7A  are similarly the uncoupled flutter derivatives 
of the flaps determined by the Theodorsen circulatory function (also frequency 
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dependent). ale and atr are the rotational amplification factor of the leading and the 
trailing flaps. For atr = ale = 1, xtraeleae rrr ==  where rx is the rotation of the girder. The 
buffeting-induced lift and moment per unit span of the girder and the flaps are, Simiu & 
Scanlan [5] 

( )[ ]UtxwCCUtxuCBUtxL DLLdeck
b ),(),(2½),( 2 +′+= ρ       (7) 

[ ]UtxwCUtxwCBUtxM MMdeck
b ),(),(2½),( 22 ′+= ρ    (8) 

( ) 















+′+



=








),(
),(

 
1
1),(2'½

),(
),( 2

txr
txr

CC
U

txuCBU
txL
txL

tr
b

le
bf

D
f

L
f

Ltr
b

le
b ρ           (9) 

















′+



=








),(
),(

 
1
1),(2'½

),(
),( 22

txr
txr

C
U

txuCBU
txM
txM

tr
b

le
bf

M
f

Mtr
b

le
b ρ        (10) 

where u(x,t) and w(x,t) are the along-wind and the vertical turbulence components. CL , 
CM , and CD are the non-dimensional lift, moment and drag coefficient. They depend on 
the angle of attack rb of the wind to the girder. bLL drdCC =′ and bMM drdCC =′  are the 
slope of CL and CM, respectively. Coefficients with superscript f refer to the flaps. The 
angles of attack of the leading and trailing flap can written (see Fig. 1) 
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Figure 1: Buffeting-induced wind loads and positive definition 
of deformation direction. 

 
By transferring the aeroelastic forcing terms given by (2) to (6) on the left-hand 

side of Eq. (1) and by assuming that the stochastic modal response is given by 
tjii et ωωξξ )()( = (Simiu & Scanlan, (1996)), where ω = 2πf is the actual frequency, 
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The aeroelastic modal integrals Φae and Ψae in (13) and (14) are defined by 
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The generalised buffeting forces on the girder and on the flaps are (see (2) and (7) 
to (10)) 
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3. MEAN SQUARE OF RESPONSE IN FREQUENCY DOMAIN STOCHASTIC 
ANALYSIS 

Let the Fourier transform of a modal response ξi be defined by ∫
∞ −= 0

 )()( dtet tjii ωξωξ . 
Take the Fourier transforms on both sides of (12), using (16), and multiply both sides 
by their complex conjugates. Then, multiply the final equation by 2/T and go to the 
limit T → ∞ to obtain the spectrum of modal response in the form, Huynh [1] 
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is the cross-spectrum of the wind turbulence component u and w, both measured in the 
bridge longitudinal direction at xa and xb, respectively. The cross spectra Suw and Swu are 
neglected. Su(xa, xb ,ω) and Sw(xa, xb ,ω) are assumed to take the real forms in (20). z is 
the girder elevation, f is the frequency of the wind fluctuation. C is a non-dimensional 
decay constant that determines the spatial extent of the correlation in the turbulence 
(experimental determined). The wind spectra from Simiu & Scanlan [5] are given by: 

[ ]( )352 501200),( UzfUzufzSu += ∗  ,  [ ]( )352 )(10136.3),( UzfUzufzSw += ∗      (21) 

where )ln()(4.0)( 0zzzUzu =∗  is the friction velocity, z0 is the roughness length. 
Ju(C, f ) and Jw(C, f ) are the joint acceptance functions defined by: 
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which describes the interaction of the actual mode shapes (in (17) and (18)) and the 
wind load fluctuations measured at two joints xa and xb along the girder, Dyrbye & 
Hansen [4]. 

Finally, the frequency response function is given by 
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For a purely vertical mode i, ψi(x) ≡ 0, Ju and Jw are given by (see (17), (18), and 
(22)) 
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where Ji(C) is the integral (Lm is the main span length) 
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where the vertical mode shape )( mLxφ  is distinctly between the symmetrical mode, the 
asymmetrical mode, the main span and the side span (see Huynh [1]). The integral (25) 
is solved on the assumption that the correlation only depends on the distance |xa− xb| 
and not on each of the coordinates (by two equivalent single integrals, see Dyrbye & 
Hansen [4]). 

For a purely torsional mode i, φi(x) ≡ 0, Ju and Jw are given by (see (17), (18), and 
(22)) 
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where Jj(C, f ) are similarly given by (25), but the torsional mode shape ψ  now replaces 
the vertical mode shape φ. Finally, the mean square values of the vertical and the 
torsional response at position x on the main span are ((24) and (26) are inserted) 
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For 'B = 0 (no flaps), Eqs. (27) and (28) become the expressions given by Simiu & 
Scanlan [5], where the frequencies and the total damping ratios are replaced by 
quantities only depending on the girder. 
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4. NUMERICAL EXAMPLE  
  

Figure 2: a) Symmetric Vertical mode SV1 and b) Symmetric Torsional mode ST1.  
 
A long-span suspension bridge based on the Great Belt Bridge girder and the 
corresponding flutter derivatives is designed to illustrate the outlined theory. The main 
span length Lm = 2500 m, side span length Ls = 1000 m, cable sag in the main span fm = 
265 m, cable space B= 27 m, girder mass (incl. cables) m = 23700 kg/m, girder mass 
moment of inertia J = 2.5 E6 kgm2/m, air density ρ = 1.29 kg/m3 and structural 
damping in the vertical and the torsional mode are 0.02. The SV1 and ST1 modes are 
considered. The associated analytical mode shapes shown in Fig. 1 are used in (27) and 
(28), Huynh [1]. 
 
4.1 Aerodynamic Damping and Frequency depending on the Flap Rotations 
For a purely vertical mode in wind, Ψae ≡ 0, Mi ≡ mΦ (where Φ ≅ Φae assuming that the 
aeroelastic forces act on the full-span bridge). The aerodynamic vertical damping 
related to the flaps and the total vertical damping are (see (13) and (14)) 
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The vertical damping ratio ζz related to ∗

5H  (flaps) is high compared to ∗
1H  (girder). 

The total vertical damping γz,c is changed even for small values of ale and atr, Fig. 3. For 
a purely torsional mode in wind, Φae ≡ 0, Mi ≡ JΨ (where Ψ ≅ Ψae assuming that the 
aeroelastic forces act on the full-span bridge), the aerodynamic torsional damping 
related to the flaps and the total torsional damping are (see (13) and (14)): 
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 Figure 3: Dependence of aerodynamic vertical damping and total  
                vertical damping on the flap rotations (angle of attack). 
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The damping ratio related to ∗

7A  (flaps) is low compared to ∗
3A  (girder) in purely 

torsional mode, Fig. 4a. Consequently, the flap rotations do not modify the torsional 
frequency considerably, see (31). Up to U = 30 m/s and for ale = atr = +9, the frequency 
due to wind action +9,0 caω  is reduced by only 1.5% from 1.074 rad/s to 1.058 rad/s 
compared to no flaps, Fig. 4b. The damping ratio related to ∗

6A  (flaps) is also low 
compared to ∗

2A   (girder), Fig. 5a. Consequently, the total damping ratio c,aγ  given by 
(31) is always positive, although the rotational amplification of the flaps is strongly 
increased, Fig. 5b. 
 
4.2 Dependence of RMS Response on the Flap Rotations  
The following aeroelastic coefficients of the girder and the flaps are assumed  

Table 1 :  Lift, Drag and Moment coefficient for the Girder and for 
the Flaps 

 CL LC′  CD CM MC′  
Girder 0.067 4.37 0.57 0.028 1.17 
Flaps 0.07* 2π 0.60* 0.03* π/2 

         * Values assumed to be identical with the girder values. 
The girder angle rb(x,t) is defined positive clockwise (Plus), and the 

configurations of the flaps (leading + trailing) are similarly defined. The most 
interesting configuration of the flaps is the Configuration Minus Minus (CMM), where 
both the leading and the trailing flaps are rotated against the girder. Thus, a negative 

∗
3Aζaζ

+∗ 9,7Aζ

−∗ 9,7Aζ

[rad]
 ,0 caω

flaps) (no
0aω

+9,0 cωω

−9,0 caωa b

Figure 4: Dependence of aerodynamic torsional damping and 
frequency on the flap rotations (angle of attack). 

 

c,aγ
flaps) (noaγ
−9,caγ

+9,caγ

∗
2Aζ

aζ
−∗ 9,6Aζ

+∗ 9,6Aζ ba

Figure 5: Dependence of aerodynamic torsional damping and total  
               torsional damping on the flap rotations (angle of attack). 
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increase of ale and atr means that the term ( ) ( )trle
f
D

f
L aaCCB ++ '''  in Eq. (27) reduces the 

RMS vertical response (although the total vertical damping reduced in Fig. 3). At ale = 
atr = −3, the RMS vertical response at the main span centre is reduced to approximately 
one fourth from 0.40 m to 0.11 m at U = 40 m/s compared to a no flaps situation, Fig. 
6a. Similarly, the term ( )( )22 'BaaCBC trle

f
MM +′+′  in Eq. (28) for torsional response also is 

reduced for a negative increase of ale and atr, and thus also the RMS values. However, 
the small width 'B  of the flaps in purely torsional mode does not reduce the RMS 
response significantly since 22 '100BB = . The term above is decided by 2BCM′ of the 
girder, where f

MM CC ′≅′ is assumed in Table 1. 
Contrary to the CMM, the Configuration Plus Plus (CPP) raises the RMS response in 

both the vertical and the torsional modes because of the two terms mentioned above. 
Finally, for CMP or CPM, (ale

 + atr) = 0, there are no significant changes in response  
with the appearance of the terms '4 BC f

L  and 2'4 BC f
M  in  (27) and (28). 

 
 
 

Figure 6: Dependence of RMS response on the flap rotations (main span centre, CMM). 
 
 
5. CONCLUDING REMARKS 
In addition to the efficiency of using the separate flaps to increase flutter critical wind 
velocity of the suspension bridge, the flaps are also useful to reduce the mean square of 
girder response to turbulence buffeting. Most important is that the flaps do not induce 
unexpected response in the turbulence wind loads when using CMP. 

Further, by using the CMM with increasing ale and atr, the mean square of vertical 
response (single mode) reduced considerably. Unfortunately, a similar reduction for the 
torsional response requires wider flaps. 

The spectrum of the modal response depends on the joint acceptance function J(C, f ) 
that expresses the correlation of the aerodynamic forces along the girder. Two functions 
Ju and Jw related to the along wind turbulence component u(x,t) and the vertical 
turbulence component w(x,t) must be computed for each mode of the bridge subjected 
to turbulence wind loads. The joint acceptance function Jw is the dominant one and is 
referred to the slope of the aeroelastic coefficients of the girder. When using the CMM, 
the value of the function Jw is reduced with increased values of ale and atr. Therefore the 
mean square of response is also reduced. 

Finally, it should be noted that a reliable determination of the mean square response 
of a certain bridge to turbulence buffeting requires realistic information on the wind 
turbulence at the actual location.  
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