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CHAPTER 105 
 
 
 

SUSPENSION BRIDGE FLUTTER FOR GIRDERS WITH 
SEPARATE CONTROL FLAPS1 

 
T. Huynh & P. Thoft-Christensen 

Aalborg University, Aalborg, Denmark 
 
 
 
ABSTRACT  
Active vibration control of long span suspension bridge flutter using separated control 
flaps (SFSC) has shown to increase effectively the critical wind speed of the bridges. In 
this paper, an SFSC calculation based on modal equations of the vertical and torsional 
motions of the bridge girder including the flaps is presented. The length of the flaps 
attached to the girder, the flap configuration, and the flap rotational angles are 
parameters used to increase the critical wind speed of the bridge. To illustrate the 
theory a numerical example is shown for a suspension bridge of 1000m + 2500m + 
1000m span based on the Great Belt Bridge streamlined girder. 

 
 

1. INTRODUCTION 
The motion-induced wind 

loads on bridges have in many 
cases been transformed into 
catastrophic forces. As 
examples, mention can be made 
of the destruction of the 
Brighton Chain Pier suspension 
bridge (1836), the Ohio River 
Bridge, (West Virginia 1854) 
and the well-known Tacoma 
Narrows Bridge (1940), see 
figure 1. 

1 Journal of Bridge Engineering, Vol. 6, 2001, pp. 168-175. 
 

Figure 1.Tacoma Narrows Bridge Collapse (1940)  
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There are three main reasons for these dynamic collapses: (1) Aerodynamic 
instability (negative damping) producing self-induced vibrations in the structure, (2) 
Eddy formations, which might be periodic in nature, and (3) Random effects of 
turbulence, i.e. the random fluctuations in velocity and direction of the wind. These 
three subjects have been important topics within suspension bridge aerodynamic 
stability research for the last 60 years. A relatively new research area on aerodynamic 
stability for very long-span bridges is based on actively controlled flaps attached along 
the girders, Ostenfeld & Larsen [1]. The purpose of applying the so-called control flaps 
is that the small rotations of the flaps attached along the girder in strong wind will 
generate the aeroelastic forces to counteract the aeroelastic forces occurred from the 
girder vibration. Two designs for the control flaps have been the revolving “wind nose” 
as the integrated parts of the girder and the separated flaps attached under the girder, 
see figure 4. Hansen & Thoft-Christensen [2], [3] and Hansen [4] have investigated the 
first-mentioned design. This paper deals with the last-mentioned design. 

 
 

2. SUSPENSION BRIDGE FLUTTER 
Let vz(x,t) be the vertical displacement along the girder in mode i, and rx(x,t) the 

torsional displacement in 
mode j, both coupled to 
produce a flutter mode at the 
time t, see figure 2 

)()(),( tzxtxv iiz φ=         (1) 
)()(),( txtxr jjx αψ=     (2) 

where φi(x) and ψj(x) are the 
vertical mode i and the 
torsional mode j at the joint x 
on the girder, respectively. 
zi(t) and αj(t) are the 
associated modal coordinates 
in the modes i and j. 

The motion-induced forces due to the movement of the girder in the coupled 
vertical-tosional mode k can be written, Scanlan (1996) 
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where UBK ω=  is the reduced frequency, B is the girder width, U is the uniform 
approach velocity of the wind, and ω is the bridge circular frequency of oscillation at 
the wind action U. )(* KHi  and )(* KAi , i=1,2,3,4 are the flutter derivatives determined 
experimentally in a wind tunnel. 

The modal wind load and the modal mass due to a coupled vertical-torsional 
mode k are 
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Figure 2. Vertical and torsional displacements  
of the girder section 
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where m and J are the mass and the mass moment of inertia per unit span including 
cables. Each of integral (5) and (6) is a sum of three integrals, namely, two for the side 
spans of the lengths Ls and one for the main span of the length Lm. The corresponding 
mode shapes φs,k(x), ψs,k(x) of the side spans, and φm,k(x), ψm,k(x) of the main span are 
given in the Appendix. 
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and where (3) and (4) have been inserted. φi ≡φk ≡φ1 for the 1st symmetric vertical 
(SV1) mode, and ψj ≡ψk ≡ψ1 for the 1st symmetric torsional (ST1) mode are assumed to 
couple at the flutter mode. In the short form, (7) and (8) can be written as: 
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The modal mass at the pure vertical mode and the pure torsional mode is, cf. (6) 
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The governing equations for the vertical-torsional flutter problem are  

( ) deck
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( ) deck
xx FtttM =++ )()(2)( 2αωαzωα ααα                                (16) 

where ωz and zz are the natural SV1 frequency (in rad/s) and the associated damping 
ratio. ωα and zα are the natural ST1 frequency and the associated damping ratio.  

Let both z and α be the temporary dimensionless BUts =  at flutter, the following 
relations are applied, Scanlan (1996) 
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Assuming that both z and α at the flutter mode are proportional to tie ω  where 
tieztz ω0)( =  and tiet ωαα 0)( = . Setting moreover tKs ω= , UBK zz ω= , 

and UBK αα ω= . Using (14) and (17), eqs. (15) and (16) can be written as: 
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The flutter conditions (the zero determinant for the coefficients of z and α given 

above) with H1 to H4 and A1 to A4 given by (12) and (13) inserted, are 
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Ucr and ωcr can be found directly by graphical iteration using Maple V and 
Matlab : 
(1) Use MatLab to express the flutter derivatives Hi

*(U,ω) and Ai
*(U,ω) in the 

polynomial of U and ω based on e.g. measured values from wind tunnel tests. 
(2) Express Re(Det) and Im(Det) in one unknown ω  for a prediction of U, where ωz, 

ωα , zz , zα , r, m, J, and B all are constants. For a prediction of U, Re(Det) and 
Im(Det) are plotted by Maple V as a function of ω. The flutter solution ωcr is found 
where Re(Det) and Im(Det) are intersecting on the ω-axis (ωz <ωcr <ωα) and Ucr is 
the last U predicted. (For a predicted U < Ucr, the intersection will be below the ω-
axis and vice versa, see the numerical example in section 4). 

The suspension bridge flutter conditions (19) and (20) are also known as the 
sectional flutter conditions when setting ΞΞ = ΦΨ = 1, i.e. the first SV and ST mode 
shapes are equal to a constant mode shape indicating a possible mode coupling. In the 
case of a full-span bridge, the deformations of the girder are functions of the position 
along the girder axis so that the sectional assumption is no longer valid, especially 
when the deformations (mode shapes) of the flaps along the girder are taking into 
account in the flutter conditions.   

For multi-mode flutter (depends on the bridge design, the natural mode shapes 
and its frequencies) the governing flutter equations (15) and (16) are increased to a 

number of equations according to 
the number of modes, say m 
modes. Hence, the determinant 
condition (18) becomes of the 
dimension m×m.  In case of the 
Great Belt Bridge, a two-mode 
flutter analysis consisting of the 
SV1 and the ST1 mode gives a 
almost unchanged results 
compared to a four-mode analysis 
including the SV2 and ST2 
modes, Nielsen & Huynh [5]. 

 
 

 
 
 

Figure 3. The Great Belt Bridge (1998) 
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3. SUSPENSION BRIDGE FLUTTER FOR GIRDER WITH SEPARATED 
CONTROL FLAPS (SFSC) 
The aeroelastic forces occur from the girder cross-section and the flaps are as shown in 
figure 4. The system is assumed to oscillate from position B to C. The total aeroelastic 
forces on the girder and on the flaps are 
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where ),( txrle
x  and ),( txrtr

x  are the leading and trailing flap rotations from horizontal 
position. ),( le

xz
le
z rvL  and ),( tr

xz
tr
z rvL  are the lift-induced forces from the leading and trailing 

flaps. ),( le
xz

le
x rvM  and ),( tr

xz
tr
x rvM  are the moment-induced forces from the leading and 

trailing flaps. 2),(),( Btxrtxv x=  is the vertical displacement of the flaps due to the girder 
rotation rx. 2),( BrvL tr

x
tr
z  and 2),( BrvL tr

x
le
z −  are the moment-induced forces from the lift of 

the leading and trailing flaps due to the vertical displacement v(x,t). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the system oscillates purely vertically, the vertical displacements of the 
flaps at location x are the same as the girder vertical displacement at the same location: 
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When the system oscillates purely torsional, the rotations of the flaps at location x 
are assumed to be atr and ale times the rotation of the girder rx,j(x,t) (by external power) 

)()(,
,

, tx
a
a

r
a
a

r
r

jj
tr

le
jx

tr

le
tr

jx

le
jx αψ



=



=












            (24) 

where atr and ale are the rotational amplification factor of the trailing and leading flaps, 
respectively. atr = ale =1 indicates that rx

tr = rx
le = rx i.e. the flap rotations are the same 

as the girder rotation.  
The vertical translation v(x,t) due to a small girder rotation rx(x,t) is    
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Figure  4.  Motion-induced wind loads on the girder and on the flaps 
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The aeroelastic from the flaps caused by vz and the flaps rotations are 
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The lift forces from the flaps caused by v and the flaps rotation are 
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where 
   UBK ω''=      (29)  

and where 'B  is the width of the flaps (e.g. 10% of the girder width). The flap flutter 
derivatives )'(KHi

∗  and )'(KAi
∗ ,  I = 5, 6, 7, 8 given by Simiu & Scanlan [7] are 
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and where )'(kF  and )'(kG  are known as the real and the imaginary parts of the 
Theodorsen circulation function )'(kC  given by (Theodorsen Function Exact Values for 
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3456 '
457

3399'
423

2642'
547

1533'
1039
537)'( kkkkkF −+−=  

1372
1377'

1990
4299'

357
1847 2 +−+ kk              (34) 

12 11 10 9 8 7

6 5 4 3 2

11549 41019 72058 206821 572785 289524( ') ' ' ' ' ' '
45 19 9 12 24 13

157031 25197 24646 26462 2941 7121 207' ' ' ' ' '
11 4 13 69 57 1617 69064

 

G k k k k k k k

k k k k k k

= − + − + −

+ − + − + − −    (35)  

2 2
5 61( , ) ' ' ( ') ( ') '

12( , )

le le le
x z x x

ztr tr tr
x z x x

M v r rU B K A K A K Bv
U UM v r r

r ∗ ∗    = +    
     






 1317 



Chapter 105 

where   
2'2'' KUBk == ω         (36) 

 
 
4. MODAL WIND LOADS ON THE FLAPS AND SFSC 
The modal wind loads from the flaps are  
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where (39) is the moment contribution of the leading and trailing flaps due to the 
rotation of the flaps and due to the vertical translation v(x,t) when the girder rotates. 
The total lift and torque from the flaps can be written, when (26) to (28) have been 
inserted into (37) to (39)   
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and where the lengths |L2−L1| of the flaps are entered into the modal wind loads in the 
integrals  
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The total modal wind loads on the girder including the flaps are 
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Returning to the governing equations without the flaps (15), (16) and (10), (11) it 
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SFSC conditions can be written in the form of (19) and (20) as 
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5. NUMERICAL EXAMPLE 
Suspension bridge and flutter example 
To illustrate the theory a numerical example is shown for the bridge in figure 5. The 
bridge data are: 

• Main span length Lm= 2500 m 
• Side span length Ls = 1000 m 
• Cable sag in main span  fm = 265 m 
• Cable area (one main cable) Ac= 0.56 m2 
• Cable mass (one main cable) mc= 4396 kg/m 
• Cable space B= 27 m 
• Girder mass mg= 14908 kg/m 
• Girder mass mom. of inertia Jg = 2.5 E6 kgm2/m 
• Youngs modulus E= 2.1 E11 N/m2 
• Shear modulus G=  0.808 E11 N/m2 
• Air density r= 1.29 kg/m3 
• Struc. damp. of SV and ST mode= 0.02 

 
Figure 5 shows the main structure of the suspension bridge. The streamlined 

girder of the Great Belt Bridge is used as input member data. Figure 6 shows the SV1 
mode and the ST1 mode of the suspension bridge computed by GTSTRUDL. 

 
The three first SV and ST frequencies are shown in Tables 1, where the results 

from the CAE and the analytical solution (AM) are compared. The associated analytical 

• • 
• • 

• • 2500  
(100 x 25) 

1.6%  Parbola  slope 
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  T.P. 
 

1000 

girder 
cable 

3 1000 

girder 
cable 

↓ ↓ 

• 

• • 

• 

3 

Figure  5.  Design example, status supports and dimension in m 
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Figure 6. a) 1st symmetric vertical mode (SV1), and 
               b) 1st symmetric vertical mode (ST1) 
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mode shapes given in the Appendix are applied in the flutter conditions (19), (20) and 
(57), (58). 

The conditions (19) and (20) are solved graphically using Maple V, see figure 7. 
The flutter solutions from the suspension bridge conditions and from the sectional 

conditions (where Φ = Ξ = Ψ in (19) and (20)) are compared in Table 2. 
 
Freq. CAE 

[rad/s] 
AM 
[rad/s] 

Deviation Freq. CAE 
[rad/s] 

AM 
[rad/s] 

Deviation 

ωz1 
ωz2 
ωz3 

0.404 
0.630 
0.953 

0.402 
0.631 
0.987 

0.5% 
0.2% 
3.6% 

ωα1 
ωα2 
ωα3 

1.276 
1.932 
2.626 

1.131 
2.097 
2.416 

11.4% 
8.5% 
8.0% 

Table 1.  Natural vertical and torsional frequencies, 3 first symmetric modes 
 
 

Freqquency Suspension bridge Section Deviation 
Ucr     [m/s] 58.22 55.85 4.2% 
ωcr    [rad/s] 0.853 0.878 2.9% 

Table 2. Flutter Solutions 
 
 
6. NUMERICAL ANALYSIS OF SFSC CONDITIONS 
The SFSC conditions (57) and (58) are studied for the following varied parameters of 
the flaps: a) Rotational amplification factors ale and atr, b) Rotational directions of the 
flaps, i.e. the signs of ale and atr (flap configurations), and c) the length of the flaps 
attached along the girder (Eq. (50)). 
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Im(Det) 

Ucr = 58.216 m/s 
ωcr = 0.853 rad/s 
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Re 

Im 

Figure 7. Flutter results from the suspension bridge conditions (21) and (22) 
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• Configuration Minus+Minus (CMM): Both of the flaps rotate against the girder. 
The flap levels in CMM are horizontal if rle = rtr = −rx, which gives an increase 
in the critical wind speed Ucr from 58.1 to 66.2m/s, i.e. 14%. Ucr increases until 
ale = atr = −4 and decreases afterwards. CMM is a good configuration for 
damping of the torsional vibration of the girder (decreasing critical frequency), 
figure 8. 

 
 
 
 
 
 
 
 
 
 
 

• Configuration Minus+Plus (CMP): The leading flap rotates against the girder, 
the trailing flap rotates with the girder. CMP is the most effective configuration 
against flutter when Ucr strongly increases for a small rotation of the flaps. For 
full flaps in the main span and the side spans, rle = −1.5rx and rtr = 1.5rx, Ucr 
increases 54% (from 58.1m/s). ωcr increases to the 1st ST frequency and 
indicate the torsional divergent flutter. By increasing ale and atr up to −3 and 3, 
Ucr and ωcr can still be found, but ωcr exceeded the 1st ST frequency indicated 
that higher modes are involved in flutter (control spillover has taken place in the 
higher modes). The wind speed increase mathematically unlimited without any 
intersecting the Re(Det) and Im(Det) on the ω-axis, figure 9. 

• Configuration Plus+Plus (CPP): Both of the flaps rotate with the girder. For rle 

= rtr = rx the flaps are not rotated relative to the girder. Ucr increases 6% (from 
58.1m/s), but decreases afterwards for increasing flap rotations. The increasing 
ωcr shows torsional instability when the leading and the trailing flap are rotated 
in the same direction with the girder, figure 10. 
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Figure 9.  Configuration CMP and full flaps 
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• Configuration Plus+Minus (CPM): The leading flap rotates with the girder, the 

trailing flap rotates against the girder. The CPM is the last possible 
configuration for a simultaneous rotation of both leading and trailing flaps. 
With this configuration, Ucr decreases from the beginning so CPM is an 
undesirable configuration against the flutter, figure 11. 

 
 
 
 
 
 
 
 
 
 
 
 

• Minimization of the Flaps Length using CMP: The flap rotations are regulated 
on the basis of the girder small rotations, which are 2.4° at the flutter velocity 
58.2m/s at the center joint of the main span, Huynh [5]. Therefore the flaps 
rotation can be increased for reducing of the flaps length. In figure 12 the flutter 
solutions are solved for several combinations of the flap lengths along the 
center side spans and the main span. The following parameters are fixed: a) 
40% and 50% increase of the critical wind speed Ucr and b) CMP with leading 
and trailing flap rotational amplifications of −3 and 3. 

 
 
 
 
 
 
 
 
 
 
 
 
7. SUMMARY AND CONCLUSION 
A suspension bridge of 1000m+2500m+1000m span with separated control flaps has 
been studied for flutter onset based on the Great Belt girder. A 50% increase of Ucr can 
be obtained for 46 flap sections of dimension 2.7m×25m located along the main span 
center (of 46% length of the main span). The full flutter period Tf is the oscillations 
time of the girder from A to C and back to A, FIG. 13. This period is also the sum of 
the four periods BC, CB, BA and AB. The girder will reach its peak rotation value at C 
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Figure 11.  Configuration CPM and full flaps 

flap
mL   

[% Lm] 

flap
sL   [% Ls] 

2030 m 

2706 m 
3408 m 

4147 m 4924 m 
5723 m 

2315 m 

2990 m 
3689 m 

4427 m 5203 m 
6002 m 

34 

36 

38 

40 

42 

44 

46 

48 
 
 
 
 

0 20 40 60 80 100 

50% incr. Ucr 

40% incr. Ucr 

Figure 12. CMP for different combination of flap lengths 
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from B in 1.3 seconds at flutter, i.e. the flap rotation within this period is twice the 
girder rotation rx. The rotations of the flap away from the center are less because the 
girder rotations are reduced towards the pylon. The magnitude of the flap rotations 
ompcared to the girder and the length of the flaps attached along the girder are further 
presented in the paper.  
 

 Control No flaps 
      Ucr [m/s] 87.14 58.22 
      ωcr [rad/s] 1.250 0.853 
      Tf   [sec] 5.03 7.35 

                          Table 3. Flutter for 46% Flaps in the Main Span Center 
 
 

 
 
 
 

Following the increased Ucr by using the CMP, the associated critical frequency 
also increases considerably inasmuch as the control forces have modified the flutter 
mode (torsional divergent flutter). As long as the desired Ucr (and hereby the required 
control forces) does not produce a higher flutter mode frequency than the ST1 natural 
frequency, no control spillover takes place in the higher ST modes. 

However, at present, the SFSC condition assumes that the forces generated from the 
girder-wind-interaction and the forces generated from the flap-wind-interaction (for 
separated flaps) are based on the independent flutter derivatives of the girder and the 
flaps. The girder-flap interaction (and hereby the new flutter derivatives of the whole 
system) for a full span model example needs further study in wind tunnel (or by 
computer simulation) to supplement the assumption of the paper. 
 
 
APPENDIX. NATURAL MODE SHAPES AND FREQUENCIES OF 
SUSPENSION BRIDGES 
In this appendix the natural mode shapes and frequencies of suspension bridge are 
outlined analytically, Nielsen & Huynh [6]. The cable mode shape of the main span 
φm,i(x) is:  

( ) ( ) ( )2
2,  cossin 

2
tan11)( ξξξξφ −+
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 Ω−

Ω
= iii

i

i
im Bx              (63) 

Figure 13. Three vertical positions of the girder and the flaps at flutter  
A[−rx(Tf /4, x), −vz(Tf /4, x)], B [0,0] and C [rx(Tf /4, x), vz(Tf /4, x)] 
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where Ωi = non-dimensional vertical frequency (symmetric) in mode i, mLx=ξ ,  x is 
the coordinate along the main span, and  
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H is cable horizontal force, mp is the pylon equivalent mass at the pylon top (assumed 
to be zero).  k(Ωi) is the dynamic stiffness of the side span cable of mode i given by 
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θ is the angle between the chord of the side span cable and horizon. Lc , fc and T are, 
respectively, the chord length, the cable sag and the chord force of the side span cable. 
mc and mg is the cable mass (one) and the girder mass per unit span. Ac is the cable area. 
The dimensionless frequency factor Ωi is determined iterative by the condition 

)(
2

4
22

tan
3

2 i
iii c Ω





 Ω−

Ω
=






 Ω

λ
     (71) 

where 

1
)(

 
6

)( 2

2
+

Ω−Ω
=Ω

mipmi
i mLmHLk

c αλ  , 2
m

ii mL
H

Ω=ω                  (72) 

ωi is the symmetric vertical frequency of mode i in rad/s. 
The side span cable mode shape φs,i(xc) of the bridge vertical mode i can be 

written in the form 
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where cc Lx=ξ , xc is the coordinate along the chord of the side span cable, and where 
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For ST mode j ψm,j(x) and ψs,j (x) are still given by (63) and (73). Ωj is iterated by 
the unchanged condition (71), but the girder torsional stiffness is now taking into 
account in the equation of motion of the cable, Nielsen & Huynh [6]. 
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