

Aalborg Universitet

Comparison of Heuristics for Generating All-partition Arrays in the Style of Milton
Babbitt

Bemman, Brian; Meredith, David

Published in:
Proceedings of the 11th International Symposium on Computer Music Multidisciplinary Research

Publication date:
2015

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Bemman, B., & Meredith, D. (2015). Comparison of Heuristics for Generating All-partition Arrays in the Style of
Milton Babbitt. In M. Aramaki, R. Kronland-Martinet, & S. Ystad (Eds.), Proceedings of the 11th International
Symposium on Computer Music Multidisciplinary Research (pp. 770-777). The Laboratory of Mechanics and
Acoustics.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://vbn.aau.dk/en/publications/7f46f850-4ea2-4a83-86c4-717885b6d213

Comparison of heuristics for generating
all-partition arrays in the style of Milton Babbitt

Brian Bemman and David Meredith

Aalborg University
{bb,dave}@create.aau.dk

Abstract. An all-partition array is a mathematical structure developed
by Milton Babbitt (1916–2011) for organizing the pitch classes in many of
his twelve-tone works. Constructing an all-partition array requires find-
ing a sequence of ` aggregate-forming subsets of a matrix of pitch classes
called a PCMatrix. Each of these ` subsets corresponds to a distinct in-
teger partition and ` is the total number of distinct integer partitions
possible, given the number of rows in the PCMatrix. Collectively, the
` subsets (or integer partitions) form a partition of the PCMatrix. In
some types of all-partition arrays, where ` = 58, the PCMatrix does not
contain all 12` pitch classes. In these types, Babbitt developed a method
for adding to the PCMatrix what we call outer-aggregate repeated pcs
(OARPs). A self-contained sequence of integer partitions is one in which
each integer partition either contains a complete aggregate or an incom-
plete one that can be made complete by adding OARPs. It is noteworthy
that, when constructing an all-partition array, Babbitt started out with a
non-self-contained sequence of partitions. In this paper, we use a known
self-contained sequence as a basis for forming two heuristics that se-
lect integer partitions likely to have been chosen by Babbitt. We suggest
these heuristics will select integer partitions more likely to produce a self-
contained sequence and we present it as a means for efficiently searching
the space of possible sequences. We apply our heuristics to both types of
sequences and conclude with a simple method for evaluating the results.

Keywords: Babbitt, all-partition array, heuristic, city block distance

1 Introduction

The all-partition array is a structure used by Milton Babbitt (1916–2011) to or-
ganize the pitch class content of many of his twelve-tone compositions. While the
details of its structure have been written about extensively (see, in particular,[4]),
we will focus on the decisions Babbitt made in constructing it, offering some new
definitions and insights into this process. Before considering the basic construc-
tion of the all-partition array, we present some preliminary definitions. We use
the term aggregate in the usual way to mean the universe of pitch classes— that
is, the set {0, 1, . . . 11}. A tone-row, A = 〈p1, p2, . . . p12〉, is then an ordered set
of pitch classes that contains each element in the aggregate exactly once—that
is,
⋃12

i=1{pi} = {0, 1, . . . 11}.

2 Bemman and Meredith

Our following definitions apply specifically to the structure of the all-partition
array in a way that will become evident below. An integer partition, which we
denote by IntPart(s1, s2, ..., sk), is a representation of an integer n =

∑k
i=1 si,

as an unordered sum of k positive integers, s1 . . . sk. For example, if n = 12 and
k = 6, then one possible integer partition is IntPart(3, 3, 2, 2, 1, 1). An integer
composition, denoted by IntComp(s1, s2, ..., sk), is a representation of an integer

n =
∑k

i=1 si, as an ordered sum of k positive integers. For example, if n = 12 and
k = 6, then IntComp(3, 3, 2, 2, 1, 1) 6= IntComp(3, 2, 1, 3, 2, 1). We define a weak
integer composition, WIntComp(s1, s2, ..., sk), to be a representation of an inte-

ger n =
∑k

i=1 si, as an ordered sum of k non-negative integers, (i.e., including
0). For example, if n = 12 and k = 6, then WIntComp(6, 6, 0, 0, 0, 0) is a weak
integer composition. We further define two relations, partitionally equivalent and
partitionally distinct. Two integer compositions, c and d, are partitionally equiv-
alent if and only if [c] = [d], where [c] and [d] denote the integer partitions
associated with, c and d, respectively. Two integer compositions, c and d, are
partitionally distinct if and only if [c] 6= [d].

From the definitions above, we state that constructing an all-partition ar-
ray requires finding a sequence of ` partitionally distinct integer compositions
that exhaustively (and, typically, almost exclusively) partition a matrix of pitch
classes we call a PCMatrix into complete aggregates. In this paper we will focus
on the so-called six-part all-partition arrays that have the following characteris-
tics [4]:

1. the dimensions of its PCMatrix are 6× 96;
2. it is constructed from 48 twelve-tone rows;
3. integer compositions where n = 12 and k = 6 are used; and
4. ` = 58.

Figure 1 shows two partitionally distinct integer compositions and how each is
used in a selection of a PCMatrix to form regions containing a complete aggregate
in the first and an incomplete aggregate in the second.

Fig. 1: WIntComp(3, 3, 2, 2, 2, 0) forming a complete aggregate (indicated by the
solid line) and WIntComp(1, 0, 4, 3, 0, 4) forming an incomplete aggregate (indi-
cated by the dashed line) in a selection of a PCMatrix. Note that the incomplete
aggregate is missing pitch class 4 and has two occurrences of pitch class 8.

Each composition in Figure 1 consists of 6 segments, one in each row, whose
lengths are equal to its summands. For example, in the first composition, WInt-

Milton Babbitt’s Incomplete All-partition Array 3

Comp(3,3,2,2,2,0), these segments have lengths 3, 3, 2, 2, 2 and 0. One will note,
however, that the first composition forms a complete aggregate while the sec-
ond composition (indicated by the dashed line boundary) forms an incomplete
aggregate as it is missing pitch class 4 and contains two occurrences of pitch
class 8. Babbitt’s method for dealing with such a composition was by finding
pitch classes from the first composition that, when repeated and pushed inside
the region formed by the second composition, would form a complete aggregate.
These repeated pitch classes we call outer-aggregate repeated pcs (OARPs). As
the PCMatrix contains only 576 pitch classes (6 × 96), there must be an addi-
tional 120 of these OARPs added to it in order to have all 12` required pitch
classes. Figure 2(a) shows how this incomplete aggregate formed by the second
composition in Figure 1 is made complete with OARPs.

(a) WIntComp(1, 0, 4, 3, 0, 4) with
OARPs added to form a complete
aggregate.

(b) WIntComp(4, 1, 3, 3, 0, 1)
with OARPs added to form a
complete aggregate.

Fig. 2: Two possible sequences of two compositions. (a) Composition from Figure
1 with OARPs (in bold) added to complete its aggregate. (b) A second possible
composition with its (single) OARP added.

As has been noted, Babbitt’s method for completing aggregates only by re-
peating pitch classes was intended to preserve the order of pitch classes in a
twelve-tone row [4]. One will note in Figure 2(a) that these pitch classes are 10
and 4 (shown in bold). However, Figure 2(b) shows that another composition in
the second position is successful in forming a complete aggregate after the ad-
dition of its (single) OARP. There are, on average, ≈ 78 possible compositions
at each position and the problem we seek to address next is determining which
of these compositions are “better” and what it means for a composition to be
better than another.

2 Self-contained sequences

We define a self-contained sequence of compositions as one in which each compo-
sition forms a region that either contains a complete aggregate or can be made
to do so by using Babbitt’s method of adding OARPs. We borrow the term “self-
contained” from [4], used to describe a type of all-partition array, and extend
it to describe such an array’s corresponding sequence of compositions. Exam-
ples of a sequence of this type in Babbitt’s works can be found in, for example,

4 Bemman and Meredith

Sheer Pluck and Joy of More Sextets. In a significant number of Babbitt’s works,
however, Babbitt used a non-self-contained sequence of compositions whose 58th

composition formed an incomplete aggregate that could not be made complete
with OARPs. Such pieces include, for example, About Time and Arie da Capo
[4]. For comparison, Figure 3 shows the final two compositions of a self-contained
and a non-self-contained sequence.

(a) Self-contained
sequence of composi-
tions.

(b) Non-self-contained sequence of composi-
tions.

Fig. 3: Final two compositions in, (a), a self-contained and, (b), a non-self-
contained sequence of compositions. Note location of the missing pitch class
at the end of the third row of the matrix corresponding to the 58th composition.

Note in Figure 3(a) that each composition forms a complete aggregate made
by adding OARPs; whereas in (b), the final composition is missing pitch class
9. Using Babbitt’s method of adding OARPs, however, the only available pitch
class is 2. Returning to the problem posed in Figure 2(b), we suggest then that
the criterion by which we can judge a composition as better than another, is
how likely that composition is to result in a self-contained sequence. We believe
this is a valid criterion as Babbitt continued to use self-contained rather than
non-self-contained sequences in many of his works.

3 Two heuristics for constructing a self-contained
sequence

In constructing the self-contained sequence shown in Figure 3(a), there are
≈ 7858 possible sequences that make up the search space. Of these, very few
will be non-self-contained and even fewer will be self-contained. Confronted with
these odds, it is necessary to develop some heuristic or greedy approach for de-
ciding which compositions to choose when constructing a sequence that satisfies
the constraints of an all-partition array. By comparing the sequences of compo-
sitions from Figure 3(a) and (b) and their corresponding PCMatrixes we might
be able to deduce some qualities that make a self-contained sequence. In doing
so, one immediate difference is clear: the right edge of the PCMatrix belonging
to the self-contained sequence is less ragged.

Milton Babbitt’s Incomplete All-partition Array 5

3.1 Equal-row-length heuristic

Our equal-row-length heuristic works from the hypothesis that self-contained
sequences are more likely to contain compositions that collectively result in a
PCMatrix with rows of approximately equal length. We suggest that a straight-
forward way to achieve this is to ensure that compositions progress at approxi-
mately equal rates in each row. Let’s suppose we have a list of possible composi-
tions, Ck = 〈c1, c2, ...cn〉, at position k, where 1 ≤ k ≤ `. Ideally, if all rows of the
PCMatrix have progressed at the same rate, then after choosing a composition
for position k, the lengths of each row up to position k would be 12k/r, where
r is the number of rows in the PCMatrix. Let’s suppose that the actual length
of a row j would be li,j after choosing ci from Ck. To measure the ”raggedness”
or degree of inequality of line length that results from choosing ci at position k,
we use the following formula, based on city-block distance:

Di =

r∑
j=1

∣∣∣∣li,j − 12k

r

∣∣∣∣ (1)

where |x| denotes the absolute value of x and where, for each k, we choose
the ci that minimizes the total difference, Di. Returning now to the two possible
compositions shown in Figure 2, the distance measure after choosing (a) is D = 6
while the distance measure after choosing (b) is D = 10. According to our
heuristic, the composition in (a) is thus better than the composition in (b).
That is, this composition contributes to producing rows of more similar length
at this position than the other composition. Moreover, it is also the composition
Babbitt chose when constructing his own sequence.

3.2 Zero-gain segments heuristic

Using city block distance in the manner described, it is possible that two com-
positions will result in the same distance, Di, defined in Eq. 1. This does not
mean, however, that each of their rows will have the same length. We thus
propose a second heuristic for further discriminating compositions, which we
call zero-gain segments. This heuristic judges a composition better than another
based on the qualities it shares with the composition that immediately precedes
it in the sequence. Let’s suppose we have two adjacent compositions, A and B
where A = 〈s1, s2, ..., sk〉 and B = 〈t1, t2, ..., tk〉. The weight of B, as defined by

w =
∑k

i=1 ri is the sum of reward, ri, where

ri =

{
1, if (si = 0 Y ti = 0); and

0, otherwise.
(2)

The zero-gain segments heuristic assigns an integer weight equal to the num-
ber of instances where there is a zero summand in the current composition and
a non-zero summand at the corresponding position in the previous composition
(or vice versa). For example, we return again to our two possible compositions,

6 Bemman and Meredith

WIntComp(1, 0, 4, 3, 0, 4) and WIntComp(4, 1, 3, 3, 0, 1) shown in Figure 2. Ac-
cording to the zero-gain segments heuristic, the former composition has a w = 3
while the latter composition has a w = 2, with respect to the composition,
WIntComp(3, 3, 2, 2, 2, 0), that immediately precedes them in the sequence. Un-
like the equal-row-length heuristic, the higher the weight found by zero-gain
segments heuristic, the better. We may combine both of these heuristics to pro-
duce a new weight, W = D − w, which we attempt to minimize at each step in
the process of choosing compositions.

4 Evaluating the heuristics

By applying our heuristics for each position, k, from 1 to ` and subsequently
sorting all ci in each Ck in ascending order of either Di or W , we propose that
a self-contained sequence will contain compositions that lie nearer the top of
each Ck. In other words, the lower the index, i, for the chosen ci, the better.
For comparison, Table 1 shows the index into Ck at each position, k, after
applying the equal-row-length heuristic, for each composition found in the non-
self-contained sequence and the self-contained sequence shown in Figure 3.

Equal-row-length
heuristic Arie da Capo – non-self-contained sequence

Index into C for each k 〈1, 6, 10, 2, 13, 55, 14, 8, 5, 36, 7, 27, 17, 1, 6, 28, 7, 3, 20, 21, 58, 4,
8, 24, 40, 3, 10, 13, 13, 3, 2, 29, 58, 8, 4, 35, 2, 23, 51, 2, 5, 50, 6, 8,
3, 32, 21, 6, 5, 2, 1, 3, 6, 6, 1, 1, 1, 1〉

Number of compositions 〈44, 94, 204, 89, 116, 141, 252, 42, 123, 72, 51, 141, 99, 61, 49, 129,
in C for each k 53, 46, 43, 53, 124, 112, 40, 61, 60, 28, 29, 28, 105, 84, 110, 69, 69,

59, 61, 84, 113, 83, 87, 49, 62, 61, 36, 46, 47, 53, 31, 37, 24, 13, 21,
17, 17, 6, 1, 1, 1, 1〉

Sheer Pluck – self-contained sequence

Index into C for each k 〈1, 51, 73, 5, 11, 14, 15, 6, 51, 222, 57, 12, 1, 9, 5, 18, 17, 36, 3, 83,
23, 23, 22, 28, 53, 9, 21, 3, 5, 42, 56, 45, 66, 11, 5, 2, 105, 25, 66, 9,
3, 3, 10, 5, 35, 4, 1, 3, 31, 1, 6, 6, 26, 3, 21, 4, 7, 1〉

Number of compositions 〈57, 73, 198, 53, 65, 179, 123, 81, 163, 295, 102, 31, 23, 188, 13, 58,
n C for each k 148, 130, 88, 117, 160, 136, 71, 72, 76, 125, 104, 208, 109, 44, 70,

147, 69, 66, 61, 32, 134, 98, 143, 34, 17, 20, 21, 61, 39, 8, 2, 9, 40,
17, 18, 13, 42, 12, 23, 4, 8, 1〉

Table 1: Equal-row-length indices, i, of the composition, ci, in Ck for each k
for the non-self-contained sequence in Arie da Capo (top) and the self-contained
sequence in Sheer Pluck (bottom), shown in Figure 3.

Milton Babbitt’s Incomplete All-partition Array 7

One will note that many of the indices for the non-self-contained sequence
shown in Table 1 (top) are relatively low, given the total number of compositions
found in C for each corresponding position appearing immediately below. For
example, in C3 there are 204 possible compositions yet the composition used
by Babbitt is the 10th best according to our heuristic. There are a number of
exceptions, however. For example, while in C33 there are 69 possible composi-
tions, the one chosen by Babbitt is the 58th. By comparison, the indices of the
self-contained sequence (bottom) appear higher.

We may evaluate our heuristic here by simply finding the mean value of all
indices for a particular sequence. As with city block distance, the lower the value
the better. The non-self-contained sequence shown in Table 1 has a mean index
of 14.4. In contrast, the self-contained sequence shown in Table 1 has a mean
index of 24.5. The difference between the two is in favor not of the self-contained
sequence (from which our heuristic was modeled), but of the non-self-contained
sequence. For comparison, we can combine the two heuristics and apply this to
the same sequences in the manner described above. Table 2 shows the index
into Ck at every position, k, after applying both equal-row-length and zero-
gain segments, for each composition found in both the non-self-contained and
self-contained sequences shown in Figure 3.

Equal-row-length and
zero-gain heuristics Arie da Capo – non-self-contained sequence

Index into C for each k 〈1, 5, 34, 28, 20, 78, 28, 4, 3, 13, 7, 27, 4, 5, 6, 34, 19, 5, 18, 14,
65, 2, 9, 20, 38, 3, 12, 10, 13, 13, 6, 51, 58, 10, 5, 31, 2, 11, 50, 2
3, 43, 4, 7, 2, 23, 23, 11, 4, 4, 1, 4, 6, 5, 1, 1, 1, 1〉

Number of compositions 〈44, 94, 204, 89, 116, 141, 252, 42, 123, 72, 51, 141, 99, 61, 49, 129,
in C for each k 53, 46, 43, 53, 124, 112, 40, 61, 60, 28, 29, 28, 105, 84, 110, 69, 69,

59, 61, 84, 113, 83, 87, 49, 62, 61, 36, 46, 47, 53, 31, 37, 24, 13, 21,
17, 17, 6, 1, 1, 1, 1〉

Sheer Pluck – self-contained sequence

Index into C for each k 〈1, 60, 29, 5, 4, 2, 3, 3, 38, 175, 56, 10, 1, 10, 3, 16, 18, 60, 1, 70,
18, 29, 10, 36, 65, 17, 32, 10, 10, 44, 56, 63, 58, 12, 2, 2, 107, 12, 38, 8
6, 7, 8, 2, 34, 5, 1, 2, 33, 1, 5, 6, 21, 2, 21, 4, 7, 1〉

Number of compositions 〈57, 73, 198, 53, 65, 179, 123, 81, 163, 295, 102, 31, 23, 188, 13, 58,
n C for each k 148, 130, 88, 117, 160, 136, 71, 72, 76, 125, 104, 208, 109, 44, 70,

147, 69, 66, 61, 32, 134, 98, 143, 34, 17, 20, 21, 61, 39, 8, 2, 9, 40,
17, 18, 13, 42, 12, 23, 4, 8, 1〉

Table 2: Equal-row-length and zero-gain indices, i, of the composition, ci, in Ck

for each k for the non-self-contained sequence in Arie da Capo (top) and the
self-contained sequence in Sheer Pluck (bottom), shown in Figure 3.

8 Bemman and Meredith

Using both heuristics this time yields a marginally worse result for the non-
self-contained sequence shown in the top of Table 2 with a mean index of 15.7.
However, there is a marginally better result for the self-contained sequence (bot-
tom) with a mean index of 23.4.

5 Conclusion

Constructing any sequence of compositions that satisfies the constraints of an
all-partition array is a difficult task because, while the number of possible se-
quences is very large, the number of these that will be self-contained sequences
is extremely small in comparison. The number of non-self-contained sequences
on the other hand, is higher, as the constraint that only OARPs can be used is
abandoned. Our findings suggest the possibility that, when constructing the non-
self-contained sequence of compositions used in Arie da Capo, Babbitt preferred
compositions at each step that resulted in the rows progressing at rates that were
as equal as possible. On the other hand, when constructing the self-contained
all-partition array for Sheer Pluck, it seems that, if he used the equal-row-length
heuristic at all, he did not assign it as high a priority in determining the sequence
of compositions. By incorporating the zero-gain segments heuristic, however, we
were able to better account for the sequence of compositions that Babbitt se-
lected in Sheer Pluck. Unfortunately, to our knowledge, only one self-contained
all-partition array sequence has been discovered to date, so it is currently dif-
ficult to evaluate our heuristics more rigorously. In future research we hope to
use these heuristics as part of a greedy algorithm that will efficiently construct
a new self-contained sequence of compositions in the style of Milton Babbitt.

6 Acknowledgements

The work reported in this paper was carried out as part of the EC-funded
collaborative project, “Learning to Create” (Lrn2Cre8). The Lrn2Cre8 project
acknowledges the financial support of the Future and Emerging Technologies
(FET) programme within the Seventh Framework Programme for Research of
the European Commission, under FET grant number 610859.

References

1. Babbitt, M.: Set structure as a Compositional Determinant. Journal of Music The-
ory 5, 72–94 (1987)

2. Bazelow, A.R., Brickle, F.: A Partition Problem Posed by Milton Babbitt. Perspec-
tives of New Music 14, 2, 280–293 (1976)

3. Knuth, Donald, Dancing Links.: http://www-cs-faculty.stanford.edu/~uno/

musings.html, Feb. 22, 2000
4. Mead, A.: An Introduction to the Music of Milton Babbitt. Princeton University

Press, Princeton, NJ (1994)

