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Abstract—With compressive sensing, the obtainable re-
construction quality depends on the original signal, the re-
construction algorithm, the measurement matrix, and the
dictionary matrix. The present paper is concerned with es-
tablishing performance indicators and using these to predict
reconstruction quality in atomic force microscopy applications.
For this purpose, we consider the well-known quantities of
coherence and mutual coherence. Furthermore, we propose a
new performance indicator derived from coherence in order
to better model the average reconstruction quality. Through
extensive simulations, affine models using the performance
indicators are evaluated in terms of modified coefficients of
determination. The results show that the proposed performance
indicator yields a better model than both coherence and
mutual coherence do. In conclusion, the proposed performance
indicator can be used to predict reconstruction quality for
the given application, and the affine prediction model can be
improved by including coherence and mutual coherence.

I. INTRODUCTION

Atomic force microscopy (AFM) is an advanced tool
for investigating and manipulating the surface of nanoscale
matter [1], [2], [3], [4]. In particular, AFM is used for
high-resolution imaging resulting in 3D surface maps with,
potentially, sub-nanometer resolution [5]. In order to do so, a
sharp probe is brought close to the surface, and the probe and
surface are moved relative to each other while the force on
the surface affects the probe which, loosely speaking, “feels”
the surface [6]. Unfortunately, image acquisition takes on the
order of minutes to hours using standard AFM imaging [7].

To reduce the data acquisition time of AFM, one ap-
proach is to reduce the number of samples using compressive
sensing (CS) [8]. This recent signal acquisition paradigm
enables certain signals to be accurately reconstructed from
fewer samples than dictated by the Nyquist rate [9], [10].
This acquisition does, however, entail solving a non-convex
optimisation problem which, in the noiseless case, takes the
form [11]:

minimise ||α̂||0
subject to y = ΦΨα̂

(1)

where y ∈ Rm×1 is the sampled vector, Φ ∈ Rm×p

is a so-called measurement matrix, Ψ ∈ Cp×n is a so-

called dictionary matrix, and α̂ ∈ Cn×1 is the reconstructed
coefficent vector. That is, α is the signal using Ψ as a base,
and the reconstructed signal is thus Ψα̂ = x̂ ∈ Rp×1. In the
context of AFM, x contains the pixel values of the image,
and y contains the sampled pixel values.

In order to acquire an image with AFM using CS, the
user must choose Φ and Ψ in (1) as well as an algorithm
capable of solving the reconstruction problem. It would be
advantageous to know in advance which choices result in
consistently high-quality reconstructions across images. This
prompts for an image-independent method for predicting the
obtainable reconstrution quality. Furthermore, since different
use cases benefit from different reconstruction algorithms,
the prediction should be independent of the algorithm used.
Consequently, the present paper is concerned with predicting
reconstruction quality from properties of the measurement
matrix and the dictionary matrix, and we refer to these
properties as performance indicators.

The literature states two fundamental premises of CS:
sparsity and incoherence [12]. The premise of sparsity
requires a signal to have a concise representation in a
convenient basis. For example, a frequency sparse signal is
sparse in the Fourier basis. The premise of incoherence, on
the other hand, requires a low maximum correlation between
the columns of Ψ, known as atoms, and the rows of Φ. For
example, the identity matrix is incoherent with the Fourier
basis. In terms of mutual coherence, µmut(Φ,Ψ), the premise
states that, generally [12]:

µmut(Φ,Ψ)� 1 (2)

for normalised Φ and Ψ where µmut(Φ,Ψ) is defined as:

µmut(Φ,Ψ) = max
1≤i≤m,1≤j≤n

|Φi,:Ψ:,j | (3)

Partly due to CS being a mathematically well-defined
paradigm, theoretical guarantees exist which could conceiv-
ably be used for predicting reconstruction quality. Most of
these guarantees relate to the restricted isometry property
(RIP) [13], which cannot be computed without solving yet
another non-convex optimisation problem in the general case
[13]. Alternatively, bounds on RIP can be established which



rely on, for example, the coherence, µcoh(A) with A = ΦΨ
[13]:

µcoh(A) = max
1≤i6=j≤n

|AT
:,iA:,j |

||A:,i||2||A:,j ||2
(4)

However, a theoretical guarantee is concerned with
worst-case reconstruction problems, whereas the predic-
tions of interest should represent the average reconstruction
problems. As expected, the theoretical guarantees result in
unnecessarily pessimistic predictions for such problems [14].

For a more accurate prediction model, performance indi-
cators are of interest. As the quantity behind a premise of CS
which depends only on Φ and Ψ, µmut(Φ,Ψ) is considered
a performance indicator candidate. Another candidate is
µcoh(A). Finally, we propose a third candidate, the coherence
2-norm, inspired by coherence but using an alternative norm.

Based on the performance indicators of mutual coher-
ence, coherence, and coherence 2-norm, we have attempted
to establish a simple affine model to predict the recon-
struction quality within CS for AFM. A large number of
simulations were performed to estimate the parameters of the
model and evaluate both the model and the performance in-
dicators. The simulations include a number of images, recon-
struction algorithms, measurement matrices, and dictionary
matrices. The results show that, in terms of modified R2, the
proposed performance indicator yields a better model than
the other performance indicators do. Furthermore, the model
is improved when all three performance indicators are used
in combination.

The paper is organised as follows: In Section II, we
revisit coherence and mutual coherence as performance in-
dicators in the current context and define coherence 2-norm.
Section III describes the setup used for simulations whereas
Section IV presents the simulation results. We discuss these
results in Section V and finally draw conclusions and discuss
future work in Section VI.

II. INDICATORS

With the given application, certain constraints are put
on Φ because of the physical limitations of AFM. Since
the probe tip only measures a single point at a time,
each measurement pertains to a single pixel making the
measurement matrix extremely sparse. That is, each row of
Φ is a zero vector except from a single entry containing the
value, one. Furthermore, we assume that the same pixel is
not included more than once in y. That is, each column of
Φ contains at most one non-zero entry.

As mentioned in Section I, the mutual coherence de-
scribes the maximum correlation between the columns of
Ψ and the rows of Φ. With the constraints on Φ, the
mutual coherence is simply the maximum absolute value
of the entries in Ψ on the subset of rows dictated by Φ.
For consistency with the other performance indicators, the
definition is slightly rewritten:

µmut(Φ,Ψ) = max
1≤i≤m,1≤j≤n

|Φi,:Ψ:,j | (5)

The coherence describes the maximum correlation be-
tween two columns of A = ΦΨ. With the constraints on Φ,
the coherence is simply the maximum correlation between
two columns of Ψ with only the entries dictated by Φ.
For consistency with the other performance indicators, the
definition is slightly rewritten:

µcoh(Φ,Ψ) = max
1≤i6=j≤n

|ΨT
:,iΦ

TΦΨ:,j |
||ΦΨ:,i||2||ΦΨ:,j ||2

(6)

However, the infinity-norm used in (4) is introduced
to ensure a theoretical bound on RIP. In practise, other
coherence values might influence the reconstruction quality
than merely the maximum coherence value. Motivated by
this, we introduce the coherence 2-norm, µrms:

µrms(Φ,Ψ) =

√√√√√√ 1

n2 − n

n∑
i=1

n∑
j=1
j 6=i

(
|ΨT

:,iΦ
TΦΨ:,j |

||ΦΨ:,i||2||ΦΨ:,j ||2

)2

(7)

III. SIMULATIONS

In order to predict reconstruction quality, a model must
be established, and the parameters of this model must be
estimated. Therefore, we have conducted an extensive set
of experiments consisting of all combinations across a set
of images, X, a set of sampling patterns, PHI, a set of
dictionaries, PSI, and a set of reconstruction algorithms, R.
For each experiment, the reconstruction problem is solved,
the reconstruction quality is computed, and the values of the
set of performance indicators, C, are calculated.

The image material is based on seven images of biologi-
cal cells. These images have been acquired with a resolution
of 512 × 512 pixels on Keysight Technologies ILM6000
and ILM7500 AFM equipment. Using a square matrix for
dictionary matrix, this resolution results in Ψ ∈ C5122×5122

which takes up 1 TiB of memory, when represented with
64 bit floats. To make the involved computations feasi-
ble, the images have been subsequently down-sampled to
128× 128 pixels. In addition to these, the set of images, X,
consists of all non-overlapping 64× 64 pixel blocks and all
non-overlapping 32× 32 pixel blocks of the down-sampled
images. Thus, the resulting X contains 147 images.

The sampling patterns are based on raster-shaped,
square-spiral-shaped [2], spiral-shaped [4], and Lissajous-
shaped scanning paths [3]. The set of sampling patterns,
PHI, consists of matrix representations of these scanning
paths using varying undersampling ratios:

δ ∈ {0.1 + i · 0.025|i = 0, . . . , 8} (8)

The set of dictionaries, PSI, consists of the discrete
cosine transform (DCT) and the discrete Fourier transform
(DFT). The set of reconstruction algorithms, R, consists of
the iterative hard thresholding (IHT) algorithm [15], the
iterative soft thresholding (IST) algorithm [16], and an `1-
minimisation algorithm [17]. Finally, the set of performance



indicators, C, consists of the performance indicators pre-
sented in Section II.

Before performing the actual reconstruction, the given
image is sampled using the measurement matrix. The sam-
pled image is then detilted by least-squares-fitting and sub-
tracting a plane. This plane is also subtracted from the orig-
inal image before computing the reconstruction quality. For
the actual implementation, the Magni software package [18]
is used to read the AFM data files, generate the sampling
patterns, generate the measurement and dictionary matrices,
perform most of the image reconstructions, evaluate the
reconstruction quality, and visualise the results. For the
`1-minimisation image reconstructions, Douglas-Rachford
splitting is used as implemented in the PyUNLocBox pack-
age1. The metric used to asses the reconstruction quality is
the peak signal-to-noise-ratio (PSNR) where the peak value,
P is the maximum possible pixel value:

PSNR = 10 log10

(
P 2

||x− x̂||22

)
(9)

Based on the results, as presented in Section IV, we have
chosen to model the reconstruction quality affinely in terms
of the performance indicators. That is,

q̂i =
∑
k

(akck,i) + b (10)

where q̂i is the predicted reconstruction quality for the ith
combination of measurement matrix and dictionary matrix,
ak is the coefficient of the kth performance indicator, ck,i
is the value of the kth performance indicator for the ith

combination of measurement matrix and dictionary matrix,
and b is an offset.

The coefficients are estimated using a least-squares-fit,
and, in order to evaluate the usefulness of the established
model, the coefficient of determination, R2, is used:

R2 = 1− SSe

SSqq
(11)

where SSqq is the total sum of squares, and SSe is the sum
of squares of residuals:

SSqq =

s∑
i=1

ti∑
j=1

(qij − q̄)2 (12)

SSe =

s∑
i=1

ti∑
j=1

(qij − q̂i)2 (13)

q̄ =
1∑s
i=1 ti

s∑
i=1

ti∑
j=1

qij (14)

where qij is the reconstruction quality for the ith combination
of measurement matrix and dictionary matrix for the jth

combination of image and reconstruction algorithm, s is
the number of combinations of measurement matrices and

1Available at https://github.com/epfl-lts2/pyunlocbox.

dictionary matrices, and ti is the number of combinations of
images and reconstruction algorithms for the ith combination
of measurement matrix and dictionary matrix.

There are ti different PSNR values for the predicted
reconstruction quality, q̂i. Obviously, this causes a lower
coefficient of determination. This problem is approached
by the lack-of-fit sum of squares which divides the sum
of squares of residuals into pure error, SSpe, and lack-of-fit,
SSlof:

SSe = SSpe + SSlof (15)

SSpe =

s∑
i=1

ti∑
j=1

(qij − q̄i)2 (16)

SSlof =

s∑
i=1

ti(q̄i − q̂i)2 (17)

q̄i =
1

ti

ti∑
j=1

qij (18)

Inspired by this distinction, we define a modified R2

measure which compensates for the pure error that is due
to having many reconstruction quality values for the same
performance indicator values. We use this measure for
evaluating the established model:

R̃2 = 1− S̃Slof

S̃Sqq
(19)

S̃Slof =

s∑
i=1

(q̄i − q̂i)2 (20)

S̃Sqq =

s∑
i=1

(q̄i − q̄)2 (21)

IV. RESULTS

The simulated set of data is visualised in three subplots
in Figure 1: each subplot shows the obtained reconstruction
qualities, qij , the average reconstruction qualities, q̄i, and the
affine model which predicts the reconstruction qualities, q̂i,
plotted against the individual performance indicator values.

Using the set of data, five models of the form given
by (10) were analysed: three models using only the mutual
coherence, the coherence, and the coherence 2-norm, respec-
tively, one model using the coherence and the coherence 2-
norm, and one model using all three performance indicators.
For each model, the model parameters were found with a
least-squares-fit. Table I lists the resulting parameters along
with the R̃2 value for each model.

V. DISCUSSION

An affine model was chosen for identifying simple
relationships between the proposed performance indicators
and the reconstruction quality. With a maximum modified
coefficient of determination of 0.701 using only three terms,
the affine model is deemed reasonable.



Fig. 1. The obtained PSNR values, qij , the average obtained PSNR values, q̄i, and PSNR values predicted by the affine model, q̂i, versus the individual
performance indicator values for each of the three performance indicators.

TABLE I. MODEL PARAMETERS AND EVALUATION.

Model a1 a2 a3 b R̃2

mut -45.7 - - 20.5 0.063
coh - -6.15 - 22.0 0.266
rms - - -119 22.3 0.394
coh and rms - -4.67 -102 24.0 0.539
combined 107.2 -6.55 -170 23.8 0.701

As shown in Section IV, five models were analysed.
Clearly, the models based on the mutual coherence and the
coherence performance indicators, respectively, are unable to
account for most of the variation in average reconstruction
quality. However, the model based on the coherence 2-norm
performance indicator is able to account for roughly 40 % of
the variation in average reconstruction quality. Furthermore,
the model based on all three performance indicators outper-
forms the first three models and accounts for the majority
of the variation in average reconstruction quality.

With the poor performance of the model based on the
mutual coherence performance indicator, the inclusion of
this indicator in the final model might not be expected to
contribute to a significantly increased R̃2. For this reason,
the model based on the coherence and the coherence 2-norm
performance indicators is included. However, interestingly,
the model based on all three performance indicators also
outperforms the model based on the coherence and the
coherence 2-norm performance indicators by rougly 15 %.

From Table I, the values of the coefficients, a1, a2, a3,
and b suggest that reconstructions with PSNR values above
25 dB do not occur, at least according to the first four mod-
els. However, as indicated by the R̃2 values, the models do
not account for all of the observed variation in reconstruction
quality. Furthermore, as seen from Figure 1, the predictions
relate to the average PSNR values obtained across multiple
images and reconstruction algorithms. Indeed, PSNR values
greater than 40 dB were observed in the simulations.

As briefly mentioned in Section I, guarantees exist which

relate to RIP which is bounded by an expression relying
on the coherence: simply put, the lower the coherence, the
better the bound on RIP, and, ultimately, the the better
the guarantees on the reconstruction quality. This agrees
well with the the trend of the coherence and the coherence
2-norm. On the other hand, as stated in (3), one of the
two fundamental premises of CS requires a low mutual
coherence. Although the mutual coherence is indeed low,
a correlation between higher reconstruction qualities and
smaller mutual coherence values might be expected. This
expectation does, however, only poorly agree with the vague
trend of the mutual coherence.

VI. CONCLUSIONS AND FUTURE WORK

The purpose of the present paper is to predict reconstruc-
tion quality from properties of the measurement matrix and
the dictionary matrix, referred to as performance indicators.
We have suggested the well-known quantities of mutual
coherence and coherence as performance indicators and,
furthermore, proposed the coherence 2-norm performance
indicator. The results presented show that an affine model
based on these performance indicators is able to account for
the majority of the observed variation in average reconstruc-
tion quality.

In the present paper, the performance indicators have
been used for establishing a prediction model of the recon-
struction quality obtainable in CS problems within AFM.
However, the potential of the performance indicators extend
beyond this application. With the observed relations between
the coherence 2-norm, coherence, and mutual coherence, on
one hand, and reconstruction quality, on the other, perfor-
mance indicators could be used for optimising measurement
matrices and/or dictionary matrices. Indeed, coherence has
already been proposed in the context of learning algorithms
for CS. Potentially, the proposed coherence 2-norm perfor-
mance indicator could improve such learning algorithms.
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