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Abstract -- A coordinated secondary control approach based 

on an autonomous current-sharing control strategy for 
balancing the discharge rates of energy storage systems (ESSs) 
in islanded AC microgrids is proposed in this paper. The 
coordinated secondary controller can regulate the power 
outputs of distributed generation (DG) units according to their 
states-of-charge (SoCs) and ESS capacities by adjusting the 
virtual resistances of the paralleled voltage-controlled inverters. 
Compared with existing controllers, the proposed control 
strategy not only effectively prevents operation failure caused 
by overcurrent incidents and unintentional outages in DG units, 
but also aims to provide a fast transient response and an 
accurate output-current-sharing performance. A complete root 
locus analysis is given in order to achieve system stability and 
parameter sensitivity. Experimental results are presented to 
show the performance of the whole system and to verify the 
effectiveness of the proposed controller.  
 

Index Terms— Coordinated secondary control, energy 
storage system, balanced discharge rate, autonomous current-
sharing control, microgrids 

I.   INTRODUCTION 

Nowadays, environmental issues, uncertainty in prices of 
fossil fuels, concerns about power supply security, and 
liberalization of electricity markets, have resulted in 
significant changes in power systems. Compared to 
traditional central power plants, small-scale distributed 
generation (DG) systems are receiving more considerable 
interest because of several renewable energy use case 
scenarios and applications [1]-[3].  

Microgrids (MGs) have been proposed as an emerging for 
generating electricity thanks to their renewable energy 
sources (RESs) on-site integration [4]-[13]. According to the 
definition of the Consortium for Electric Reliability 
Technology Solutions (CERTS), MGs should be able to 
supply local sensitive loads without the support of a main 
grid [14]. Therefore, energy storage systems (ESSs) play an 
important role for MGs as they should be charged either by a 
utility grid or by RESs. Furthermore, the ESSs should be able 
to overcome the intermittent nature of RESs and also, to 
support local loads during grid failure and electrical shortage. 
ESSs should be used and therefore, discharged for peak 
shaving purposes, enhancing both system stability and 
reliability [15]-[17]. However, a trade-off is depicted 

between cost and system reliability because an ESS is usually 
one of the most expensive components in an MG [18]. 
Optimal sizing methodologies for ESSs have been proposed 
to avoid over-charge and deep-discharge which may lead to 
permanent damages [19], [20]. Finally, a control strategy for 
balancing the discharge rates is necessary, especially when 
the ESS capacities in an MG are different.  

The ESS controllability is limited by the energy capacity 
of its storage device. If the ESSs are the only mechanisms 
involved in controlling the stability and reliability of the MG, 
then an operation failure may occur. This setback may occur 
because the available electrical energy from ESSs is affected 
by various factors, such as charging and discharging 
conditions, ambient temperature, current charge and 
discharge cycles, and aging [21]-[25]. The conventional 
power-sharing control strategies mainly focus on the 
equalization of power-sharing among DG units [8]-[13]. 
However, the ESSs in different DG units could have different 
discharge rates according to their states-of-charge (SoCs) and 
capacities. A powerless DG unit can be shut down first when 
its SoC is below the threshold, and the remaining DG units 
have to supply more power to the total loads. This situation 
would probably cause overcurrent and unintentional outages. 
Furthermore, it could degrade the stability and reliability of 
the MG. All aspects of the coordinated power output control 
strategy, such as the SoC and ESS capacities, should be 
considered. The unit with the highest SoC should supply 
more power to the common load to ensure a balanced 
discharge rate. This coordinated control strategy can be 
integrated into a hierarchical structure with a central 
controller and a local controller [26]-[29]. The primary 
control can regulate the output voltage of each DG unit based 
on the commands sent from a high-level controller. Several 
coordinated control strategies for SoC balancing in an MG 
have been established by combining communication 
technology and hierarchical control [30]-[36]. A coordinated 
SoC control for distributed ESSs by using adaptive droop 
control in DC MGs has been proposed in [30]. In [31], an 
adaptive virtual resistance (VR) based droop controller was 
proposed to achieve stored-energy balancing. Further, a 
voltage scheduling droop method was proposed to maintain 
the SoC balance for the ESSs in [32]. Another research 
direction was taken by using fuzzy logic-based control 



 

strategy as presented in [33]-[35] for a DC MG by modifying 
the droop gains. Alternatively, a distributed multi-agent-
based algorithm was proposed in [36] to achieve SoC 
balancing by using voltage scheduling.  

However, the aforementioned control strategies were all 
developed for implementation in DC MGs. Furthermore, 
most of these methods rely on droop control, which has a 
relatively slow transient response in AC MGs caused by the 
averaged active and reactive power calculation when using 
low-pass filters as shown in [37]. In addition, both adaptive 
droop coefficients and variable voltage references seriously 
affect system stability in droop-controlled systems [38], [39]. 

In view of these issues, a novel coordinated secondary 
control strategy for balancing the discharge rates of ESSs in 
islanded AC MGs is proposed in this paper. The coordinated 
controller can prevent overcurrent incidents and unintentional 
outages in DG units by regulating the power outputs of the 
DG units according to their SoCs. The control strategy aims 
to adjust the VRs of the voltage controlled inverters (VCIs) at 
the secondary level in terms of SoC and ESS capacities. An 
autonomous current-sharing controller is integrated in 
primary control to ensure a fast and accurate load sharing 
performance of paralleled VCIs. The proposed coordinated 
secondary controller can provide a larger stability margin 
than the conventional droop controller. Root locus analysis is 
presented to analyze stability and parameter sensitivity.  

The rest of the paper is organized as follows: Section II 
introduces the islanded AC MG configuration and ESS 
characteristics. Section III presents the proposed discharge 
rate balancing control and the primary control strategy. 
Section IV illustrates the linearized state-space model and 
stability analysis. Section V presents the simulation and 
experimental results. Section VI concludes the paper.  

II.   ISLANDED AC MG AND ESS CHARACTERISTICS 

A.   Islanded MG Configuration 

A photovoltaic (PV)-ESS-based islanded AC MG case-
study scenario is shown in Fig. 1. The MG consists of DG 
units, local loads, ESSs, and control loops. Each DG unit 
includes a DC/DC converter and a three-phase VCI 
connected to the AC bus. The DG units are powered by PV 
panels and ESSs. The coordinated secondary control for SoC 
balancing requires an MG central controller (MGCC) which 
consists of slow control loops and low-bandwidth 
communication links, to collect measurements and relay the 
control signals to each DG unit.  

In daylight, the ESS can operate in either charging or 
discharging mode according to the power outputs of PV 
panels and consumption. The main function of the ESS 
during the day is to balance the power between the RESs and 
local loads. At night, the ESS is a grid-forming unit because 
of the lack of solar energy. In this scenario, only ESSs are 
needed to provide the stability and reliability of the islanded 
MG. The power outputs of the DG units should be   
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Fig. 1.  A PV-ESS based MG case-study scenario. 
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Fig. 2.  Relationship between DOD and life cycles. 
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Fig. 3.  Relationship between the discharge current and nominal capacity. 

 
coordinated in order to share the load in accordance with 
their SoC and ESS capacities and consequently to prevent 
operation failure of MGs. 

B.   ESS Characteristics 

In this paper, valve-regulated lead acid (VRLA) batteries 
are considered as a power source for the ESSs because 
VRLA battery allows for a considerable number of charge-
discharge cycles, deep-discharge capability and low cost. 

However, one of the most important issues on VRLA 
batteries is the contradiction between the depth of discharge 
(DOD) and cycle life, as shown in Fig. 2. The number of 
cycles yielded by a VRLA battery increases exponentially the 
shallow DOD. Therefore, there is a limitation for SoC to 
prevent of deep-discharge in practice. However, according to 
the nonlinear and immeasurable nature of SoC, some  
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Fig. 4.  The autonomous current-sharing control strategy. 
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complex models and advanced algorithms have been 
proposed to increase the accuracy of SoC prediction.  

Another issue with VRLA batteries is the relationship 
between nominal capacity and discharge current, as depicted 
in Fig. 3. The capacity in the battery declines exponentially 
with an increase of discharge current. This phenomenon 
shows that the total available electrical energy in a VRLA 
battery may vary according to the discharge condition even if 
the batteries have the same initial SoC. Therefore, the ESS 
with a smaller discharge current and balanced discharge rate 
may work for a longer time than an ESS with the equal 
power-sharing control. 

III.   PROPOSED DISCHARGE RATE BALANCING CONTROL 

A.   Primary Control for Current- and Power-sharing 

The autonomous current-sharing control strategy used at 
the primary level is depicted in Fig. 4 [40]. The controller 
includes a VR loop (Rvird and Rvirq), a synchronous-reference-
frame phase-locked-loop (SRF-PLL), a DC link voltage feed-
forward loop, and proportional + resonant (PR) inner voltage 
and current controllers (Gv and Gi). Inductive currents and 
capacitor voltages are transformed to the stationary reference 
frame (iLαβ and vcαβ). Output currents are transformed to the 
SRF (iodq). The direct and quadrature current outputs are 
independently controlled by the VR loop in dq axis. The 
inner voltage and current loops are implemented in αβ frame. 
The power circuit consists of a three-leg three-phase inverter 
connected to a DC link, loaded by an Lf-Cf filter, and 
connected to the AC bus through a power line (Zline). 

The proposed controller provides a voltage reference to 
the inner loop. The voltage reference Vref is generated by 
combining the amplitude reference (|Vref|) and the phase 
generated (θ) by the SRF-PLL. 

In the case of supplying active loads, the direct current 

flowing through the VR will drop the direct voltage, causing 
a decrease in the output voltage amplitude. Hence, a droop 
characteristic is also imposed by the VR adapting the 
amplitude of output voltage, which endows to the system an 
Iod–V droop characteristic.  

Even though the PLL is trying to synchronize the inverter 
with common AC bus, in the case of supplying reactive loads, 
the quadrature current flowing through the VR will produce 
an unavoidable quadrature voltage drop, which will cause an 
increase in PLL frequency. Thus, the mechanism inherently 
endows an Ioq-ω droop characteristic in each inverter. 

The Ioq-ω and Iod–V droop characteristics in each inverter 
are used instead of adopting power droop controller. The 
relationship of Iod, Ioq, Rvird, and Rvirq can be generalized and 
expressed for a number N of converters as follows [40]: 

1 1 2 2od vird od vird odN virdNI R I R I R         (1a) 

1 1 2 2oq virq oq virq oqN virqNI R I R I R         (1b) 

The d- and q-axis current outputs Iod and Ioq of the 
paralleled inverters are inversely proportional to the 
corresponding VRs. Therefore, the direct and quadrature 
current outputs of each inverter can be regulated 
independently by adjusting the VRs based on different power 
rates, commands from energy management system (EMS) or 
other higher level control loops.  

Furthermore, the active and reactive power outputs 
sharing strategy among the paralleled inverters can be 
obtained from (1) by multiplying the voltage reference. 
Considering that the voltage references (Vref) of each inverter 
are equal, the active and reactive power outputs will also be 
properly shared based on the VRs, as shown in the following 
relationships: 

1 1 2 2o vird o vird oN virdNP R P R P R        (2a) 

1 1 2 2o virq o virq oN virqNQ R Q R Q R      (2b) 

where Pon and Qon are the active and reactive power outputs 
of inverter #n, n = 1, 2, …, N. 

B.   Proposed Balanced Discharge Rate Control Strategy 

As discussed above in Section II, the conventional power-
sharing control strategy for MG focuses on ensuring the 
equal power-sharing among different DG units. Therefore, 
the same VR (Rvir) is usually employed in all the DG units. 
However, the nominal capacities and SoC values of ESSs in 
DG units are usually different. The discharge rate of DG #i 
(ηi) can be defined as:  

1i i i i
bati bati

d d k k
SoC Pdt P

dt dt C C


 
     

 
    (3) 

where k is the change ratio for a time scale and is equal to 
1/3600, Cbati is the nominal capacity of the ESSi, and Pi is the 
active power output of DG #i. Evidently, the discharge rate is 
influenced by the different nominal capacities of ESSs and 
the power output of DG #i. Thus, the discharge rate (ηi) can 
be adjusted to an equal value by regulating VRs (Rviri) based 
on their respective SoCs given that the load-sharing ratio 
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Fig. 6. The proposed coordinated control for balanced discharge rates of ESSs. 
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among DGs is dominated by the VR ratio. The control 
principle is illustrated in Fig. 5. 

The detailed control scheme for the proposed coordinated 
SoC control strategy is shown in Fig. 6 [41], where Δωres and 
ΔEres are used for restoring voltage and frequency deviations.  

Hypothetically, ESSs are fully charged at the beginning, 
i.e., their initial SoC values are equal to 1. An additional 
coordinating control loop is added at the secondary control 
level in order to balance the discharge rate among DGs. The 
output of the SoC estimation loop is fed back to the 
secondary controller through the communication links. One 
of the DG units is selected as the common reference (SoCcom), 
whereas the remaining DG units adjust their VRs based on 
the differences between SoCi and the common reference 
SoCcom with a PID controller expressed as follows: 

( ) ( )

( )

viri p com i i com i

com i
d

R k SoC SoC k SoC SoC dt

d SoC SoC
k

dt

     




 (4) 

 
where kp, ki, and kd are the parameters of the PID controller.  

The output of the PID controller is regarded as an 
incremental control component to reduce the power 
oscillation among DG units. Therefore, the adaptive VRs of 
each DG can be represented as follows: 

_ 2,3,4.....viri vir base viriR R R i N         (5) 

where Rviri is the VR of DG #i, Rvir_base is the preassigned VR, 
which is equal to 4 Ω according to [40], and ΔRviri is the 
incremental output from the PID controller. 

IV.   SMALL-SIGNAL MODEL AND STABILITY ANALYSIS 

The state-space small-signal model of the proposed 
coordinated secondary controller for balancing discharge rate 
was developed to analyze system stability and parameter 
sensitivity.  

The electrical energy consumption of ESSi can be 
represented by the integration of the active power output of 
DG #i (Pi), as shown in Fig. 7. The state-space small-signal 
model can be derived as follows: 

i iP


                      (6) 

where ^  denotes the derivative with respect to time. 
The output equation for SoCi can be written as: 

1i i
bati

k
SoC

C
                  (7) 

If two DG units are included in the MG and SoC1 is 
considered as the common reference, the coordinated 
secondary controller for discharge rate balancing purposes 
can be illustrated by Fig. 8. 

The small-signal models of variables β and δ are described 
in (8) according to Fig. 8. 
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Given that the basic values of the VRs of DG #1 and DG 

#2 are preset to 4 Ω, and the relationship between ΔP1 and 
ΔP2 can be represented as follows: 
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The complete state-space model of MG can be derived by 
(10) by combining (6)-(9). 
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Root locus plots of (10) are represented as a function of 
different parameter variations. Model parameters are listed in 
Table I.  

Fig. 9 shows the root locus when kp increases from 100 to 
1500 while kd changes from 1 to 100. The dynamic response 
and oscillation damping performance of the system are 
improved as kp increases. When kd increases, the complex 
poles move toward the real and imaginary axes, suppressing 
oscillation but at the same time slowing down the transient 
response.  

Fig. 10 shows the trajectories of the modes when kd 
increases from 1 to 300 while ki also increases from 100 to 
2000. The complex poles become the dominant modes, 
resulting in a nearly second-order behavior. The imaginary 
parts of the modes increase and move toward the imaginary 
axis as kd and ki increase, causing the system becoming more 
oscillatory.  

Fig. 11 shows the trajectories of the modes in function of 
ki, which increases from 100 to 2000, while kp increases from 
100 to 1500. When those parameter values increase, the 
dominant eigenvalues move away from the imaginary axis 
and thus the system dynamic response is improved. 

As illustrated in Figs. 9 to 11, the paralleled DG units with 
the proposed control strategy remain stable within the 
parameter values region and present low sensitivity with the 
parameter variation at the secondary control level. The reason 
for this is the large stability margin provided by the 
autonomous current-sharing control at the primary level. 

TABLE I 
MODEL PARAMETERS 

Symbol value Symbol value Symbol value 

k 1/3600 pk   500 ik  1000 

dk  10 1batC  100 Wh 2batC 200 Wh 

_ 1/2vir baseR 4 Ω 1P 800 W 2P  1600 W 
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Fig. 9.  Trace of nodes as a function of 1 ≤ kd ≤ 100 and 100 ≤ kp ≤ 1500. 
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Fig. 10.  Trace of nodes as a function of 1 ≤ kd ≤ 300 and 100 ≤ ki ≤ 2000. 
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Fig. 11.  Trace of nodes as a function of 100≤ki≤2000 and 100≤kp≤1500. 
 
Therefore, the proposed control approach can achieve a more 
stable control performance than a coordinated secondary 
controller based on power droop control.  



 

V.   SIMULATION AND EXPERIMENTAL RESULTS 

Simulations using MATLAB/Simulink and experiments 
based on a scaled-down islanded AC MG setup are 
conducted to compare and evaluate the performance of the 
proposed coordinated secondary control for balancing 
discharge rates. The simulation model is composed of three 
DGs with different ESSs and two local loads. The 
experimental platform consists of three Danfoss 2.2 kW 
inverters, a real-time control and monitoring platform, LC 
filters and two resistive loads, as shown in Fig. 12. The 
parameters for simulation and experiments are listed in 
Tables I and II. 

The results are used to compare the control performance 
of the proposed control approach with that of the 
conventional power-sharing control. 

Several required assumptions need to be met before the 
simulation and experiment are conducted according to the 
case-study scenario. Firstly, each ESS should be fully 
charged; thus, each initial SoC is equal to 1. Secondly, the 
minimum threshold of SoC is preset to 0.3, that is, DG #i will 
be shut down once its SoC becomes lower than 0.3 to avoid 
deep-discharge. This setting point can be adjusted according 
to the technology of the batteries and the recommended 
practices of the manufacturer. 

Real time control platform

Danfoss Inverter

Load #2

Load #1

 
Fig. 12.  Experimental setup. 

 
TABLE II 

POWER CIRCUIT AND CONTROL SYSTEM PARAMETERS 
Parameters 

Value 
Symbol Description 

DG Inverter, Output Filter, Loads and Line Impedance 
Vdc/ VMG DC voltage/ MG output voltage 650/ 311 V 

f / fs MG frequency / Switching frequency 50 / 10k Hz 
Lf / Cf Filter inductance / capacitance 1.8 mH/ 25 µF 
Pmax_E Maximum power output (experiment) 1 kW 
Pmax_S Maximum power output (simulation) 4.5 kW 

Rload E 1/2 Common load #1/2 (experiment) 230/230 Ω 
Rload S 1/2 Common load #1/2 (simulation) 5000/3000 W 

Primary control Loops 
kpi Proportional term in current controller 0.07 
Kii Integral term in current controller 0 
Kpv Proportional term in voltage controller 0.04 
Kiv Integral term in voltage controller 94 

Kp PLL PLL proportional term 1.4 
Ki PLL PLL integral term 1000 

Coordinated secondary control loop 
kp/ ki/ kd  Proportional/ Integral/ Differential term  12/ 1000/ 10 

Rvir_base1/2/3 Basic values of VRs 4/4/4 Ω 
Cbat_E_1/2/3 Battery capacities (experiment) 10/20/30 Wh 
Cbat S 1/2/3 Battery capacities (simulation) 100/200/300 Wh 

A.   Simulation Results with the Conventional Power-sharing 
Control  

The simulation results with the conventional power-
sharing control strategy are shown in Fig. 13. The active 
power output of each DG unit is controlled in order to share 
the loads equally. The SoC of each DG unit decreases at 
different rates, given that the nominal capacities of the ESSs 
(Cbat_S_1/2/3) are different. Note that, in this test, DG #1 has the 
smallest ESS capacity. Therefore, the SoC of DG #1 
decreases faster. At 131 s, DG #1 is shut down when SoC1 
reaches 0.3 after a load step-up disturbance at 100 s, as 
shown in Fig. 13(a). The power outputs of DG #2 and DG #3 
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Fig. 13. Simulation results with the conventional power-sharing control. 
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Fig. 14.  Simulation results with the proposed coordinated controller. 
 
increase immediately to support the local loads, as shown in 
Figs. 13(b) and (c). At 193 s, DG #2 is shut down because 
SoC2 is less than 0.3. The power output of DG #3 increases 
to 8 kW, which is significantly higher than the maximum 
power limitation (Pmax_S), because DG #3 has to supply 
power to all the local loads after 193 s until it is disconnected 
from the common bus at 200 s. Obviously, a serious risk of 
operation failure because of overcurrent exists in real 
applications. Under this condition, the nominal capacities of 
all the DG units have to be increased for allowance to avoid 
affecting MG reliability. Moreover, in practice, the faster the 
ESSs discharge, the less the total electrical energy that can be 
obtained, as shown in Figs. 3 and 13(c). 
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Fig. 15.  Experimental results with the conventional power-sharing control. 

B.   Simulation Results with the Proposed Coordinated 
Secondary Controller 

The simulation results with the proposed coordinated 
secondary control for balancing ESS discharge rate are 
shown in Fig.14. The VRs of DG #2 and DG #3 are regulated 
based on the outputs of the proposed coordinated secondary 
controller. In this way, SoC1 to SoC3 decrease in the same 
gradient and reach the protection threshold simultaneously, 
as shown in Figs. 14(a) and (c). It can be seen that the active 
power outputs of the DG units are different according to their 
respective SoCs, as shown in Fig. 14(b). Notably, no over 
current occurs, as illustrated in Fig. 14(b). 
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(c)  Change rates of SoC. 

Fig. 16.  Experimental results with the proposed coordinated secondary 
controller. 

C.   Experimental Results with the Conventional Power-
sharing Control 

The experimental results with the conventional power-
sharing control strategy are illustrated in Fig. 15. At the 
beginning, three paralleled DG units operate with equal 
power outputs by the conventional power-sharing control, 
which uses a unique VR in the primary control to supply 
common load #1. In this condition, their SoC values decrease 
at different rates because the nominal capacities of the ESSs 
are different. At 50 s, another extra 230 Ω load is connected 
to the parallel-connected DG system, causing a real power 
step change in each DG unit. With the unified power output, 

SoC1 decreases the fastest because DG #1 has the lowest 
capacity. At 87 s, DG #1 is shut down as SoC1 reaches 0.3, as 
shown in Fig. 15(a). Meanwhile, the real power outputs of 
DG #2 and DG #3 increase by 200 W, to supply the needed 
load, as shown in Fig. 15(b). At 129 s, DG #2 has also been 
shut down as SoC2 reaches 0.3, leaving DG #3 to solely 
supply the total amount of needed power. As shown in Fig. 
15(b), the power output of DG #3 has to increase to 1160 W, 
which is higher than the maximum power output (Pmax_E) of 
each DG unit.  

D.   Experimental Results with the Proposed Coordinated 
Secondary Controller 

Fig. 16 shows the experimental results of the SoC values, 
power outputs, and SoC change rates for the parallel-
connected DG system with the proposed coordinated 
secondary controller. In this test, on the basis of the 
differences between the SoC of the common reference unit 
(DG #1) and the SoC values of the other DG units (DG #2 
and DG #3), the VRs of DG #2 and DG #3 are regulated 
through the communication links. Therefore, the power 
outputs of the paralleled DG units are adjusted in terms of the 
different VRs. Fig. 16(a) shows that, at the beginning, three 
DG units are operating in a parallel mode without any 
coordinated control. After approximately 3 s, the proposed 
coordinated secondary controller initiates. Then, the SoC 
values decrease in the same gradient as the original point and 
simultaneously reach the protection threshold after the load 
step-up disturbance at 50 s. By contrast, the active power 
outputs of the DG units differ according to their SoCs, as 
shown in Fig. 16(b). Given that the ESS capacities of these 
three DG units are preset to 10, 20, and 30 Wh (at a ratio of 
1:2:3), respectively, the load-power-sharing ratio among the 
parallel-connected DG units is also equal to 1:2:3. This 
control performance is guaranteed by the proposed 
coordinated secondary controller and the adaptive VRs in the 
primary control. Notably, overcurrent has never occurred 
during this test; thus, operation failure can be effectively 
prevented. Additionally, the redundant capacities and costs of 
the DG units can be reduced, and the reliability of the entire 
system can be improved. Furthermore, the lower discharge 
rates of the ESSs with the proposed coordinated secondary 
controller can help these ESSs provide higher available 
electrical energy, as shown in Fig. 16(c). 

In summary, the theoretical analysis, root locus analysis, 
and the experimental results presented several improvements 
in comparison to the conventional power-sharing control and 
the earlier droop-based coordinated SoC control strategies. 
Firstly, the proposed SoC-balancing control strategy is 
developed in AC MGs instead of DC MGs. Secondly, it 
effectively guarantees SoC balancing to prevent overcurrent 
incidents and DGs unintentional outages in an AC MG. 
Thirdly, it provides a faster transient response and decoupled 
output-current-sharing because of the autonomous current-
sharing control at the primary level. Fourth, it presents a 
lower sensitivity respect to secondary control level  



 

TABLE III 
PERFORMANCE COMPARISON 

 Implementation 
SoC rates balancing 

control capability 
Transient response Robustness Communication cost 

Power-sharing control AC/ DC MG No Slow/ Fast Good No 
Previous droop-based SoC rates 

balancing control 
DC MG Yes Slow Poor Yes 

Proposed SoC rates balancing control AC MG Yes Fast Good Yes 

 
parameters over the system dynamics due to the larger 
stability margin of the primary controller. The advantages 
and disadvantages of the proposed strategy compared with 
the conventional power-sharing control [8]-[13] and the 
previous droop-based coordinated SoC control [30]-[36] are 
summarized in Table III.  

VI.   CONCLUSIONS 

This paper proposed a novel coordinated secondary 
control based on an autonomous current sharing control 
strategy for balancing the discharge rates of ESSs in islanded 
AC MGs. The coordinated secondary control can effectively 
prevent over-currents in DG units by regulating the power 
outputs of DG units according to their SoC values. In 
addition, the autonomous currents-sharing control strategy 
which is employed at the primary control level provided a 
faster transient response, more accurate output-current-
sharing performance, and larger stability region than the 
earlier power droop control-based coordinated SoC control 
method. Simulation and experimental results obtained by 
using the conventional power-sharing control were compared 
with those obtained by using the proposed coordinated 
secondary control in order to verify the effectiveness of the 
proposed control approach. 
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