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Abstract: The traditional repetitive controller has relatively worse stability and poor transient 
performance due to the facts that it generates infinite gain at all the integer multiples of the 
fundamental frequency, and its control action is postponed by one fundamental period (T0). To 
improve these disadvantages, many repetitive controllers with reduced delay time have been 
proposed, which can selectively compensate the odd harmonics or 6k±1 harmonics with delay 
time reduced to T0/2 and T0/3,repectively. To further study in this area, this paper proposes an 
improved repetitive scheme implemented in stationary reference frame, which only compensates 
the 6k+1 harmonics (e.g. -5, +7, -11, +13) in three-phase systems and reduces the time delay to T0/6 . 
So compared with the earlier reduced delay time repetitive controllers, the robustness and 
transient performance is further improved, the waste of control effort is reduced, and the 
possibility of amplifying and even injecting any harmonic noises into system is avoided to the 
greatest extent. Moreover, the proposed repetitive scheme is used in the control of a three-phase 
hybrid active power filter. The experimental results validate the effectiveness of the proposed 
repetitive control scheme. 

Keywords: repetitive control; hybrid active power filter; power quality; harmonic compensation;  

PACS: J0101 
 

1. Introduction 

Recently, due to the widespread applications of distributed generations, adjustable speed 
drives，uncontrolled AC/DC rectifiers, and other nonlinear loads, the harmonic pollution in power 
systems is getting more and more serious. The passive power filter (PPF) and active power filter 
(APF) are the two common solutions applied to mitigate these harmonics [1-2]. PPFs have the 
advantages of low-cost and high-efficiency. However, they also have some inherent drawbacks. 
Their compensation characteristics are strongly influenced by supply impedance and  they are 
highly  susceptible to series and parallel resonances with the supply and load impedance. The 
APFs，which are based on the power electronics, can overcome above drawbacks of PPFs [3-4]. 
Additionally, APFs are more flexible and efficient compared with PPFs. But, pure APFs usually 
require a PWM inverter with large kilovoltampere (KVA) rating. Thus, they do not constitute a 
cost-effective harmonic filtering solution for nonlinear loads above 500-1000 kW[5-6]. To address 
this issue, hybrid active power filter (HAPF) have been developed, which are composed of small 
rated APF and PPF in different configurations. Among the various viable hybrid active filter 
topologies, parallel hybrid active filters present a cost-effective solution for harmonic filtering and 
reactive power compensation of high power nonlinear industrial loads, due to small rating of the 
active filter—2%–3% of load KVA rating [6]. Thus, they have attracted increasing attention [7-11]. 
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Among various control strategies, the repetitive control, as a kind of control method based on 

internal model principle, can accurately track the periodic signal or reject periodic interference. 

Hence it is widely used in harmonic compensation scheme for active filters [12-15]. The traditional 

repetitive control technique can generate infinite gains at all the integer multiples of the 

fundamental frequency, including the odd, even harmonics and dc component. However, in most 

cases, the introduction of high gain for all frequencies is not necessary, as it could waste control 

effort and reduce the system robustness without improving system performance, even amplify 

irrelevant signal and reinject distortions to systems [16]. Moreover, the control action of traditional 

repetitive controller is postponed by one fundamental period (T0), hence the transient performance 

is poorer. To improve the drawbacks above, and considering the fact that even harmonic 

components do not regularly appear in power systems, literatures [16-17] propose a repetitive 

control scheme aiming at compensating only the odd harmonics. It uses a negative feedback array 

instead of the usual positive feedback in the traditional repetitive controller. Meanwhile, the delay 

time of control action is reduced to T0/2. As a sequence, the control performance is improved and 

the convergence rate is enhanced. Furthermore, among the odd harmonics, the group of 
6 1 ( 0, 1, 2 )k k± = ± ± ⋅ ⋅⋅  harmonic components in electric industry are dominated due to the wide 

use of uncontrolled rectifiers and six-pulse converters. Thus, many improved repetitive control 

schemes aiming at compensating 6 1k ±  harmonics have been developed [18-20]. For instance, in 

[18] a repetitive control scheme based on the feedback array of two delay lines plus a feedforward 

path is presented, which can only compensate 6 1k ±  harmonics and reduce delay time to T0/3; In 

[19], the authors propose a 6 1k ± repetitive control scheme in there-phase synchronous reference 

frame (SRF). It has an advantage of T0/6 delay time. However, it needs complex coordinate 

transformation and much more calculation in both positive-rotating and negative-rotating SRFs. 

Considering in three-phase power systems, harmonic of the same frequency can be 

decomposed into positive sequence, negative sequence and zero sequence. Generally speaking, a 

normal balanced three-phase system mainly contains 6k+1  harmonics (such as -5, +7, -11, +13), and 

rarely contains 6k-1 harmonics (such as +5, -7, +11, -13). For this reason, this paper proposes a 

repetitive control scheme aiming at compensating the 6k+1 harmonics implemented in three-phase 

stationary reference frame with T0/6 delay time. So that the transient performance is further 

improved. The 6k+1 repetitive controller is expressed with complex-vector notation, so that the 
dual-input/dual-output control system (in the αβ reference frame) can be simplified into one 

single-input/single-output system. Meanwhile, the general design method of Lk+M repetitive 

controller is also introduced, with which a repetitive controller aiming at compensating Lk+M 

harmonics can be easily deduced. Moreover, taking the transformerless parallel hybrid active filter 

as controlled object, a harmonic compensating control system based on the proposed 6 1k +  

repetitive control scheme is presented. Finally, the experimental results validate the effectiveness of 

the 6 1k +  repetitive control scheme. 

 2. System structure and mathematical modeling of HAPF 

2.1. Topological structure analysis 
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The topology of the transformerless parallel hybrid active filter is shown in Figure 1. It consists 

of a LC passive filter and a three-phase voltage source inverter (VSI). The purposes of installing the 

LC filter are: 1) to provide reactive power compensating and absorb some harmonics; 2) to sustain 

fundamental voltage at the point of common coupling (PCC). And the active filter (VSI) is 

responsible for improving the filtering characteristics of passive filter and avoiding the undesirable 

resonances with the grid. To minimize its own KVA rating, VSI doesn't participate in reactive 

compensation, and the grid voltage is almost fully dropped on the capacitor in LC filter. Thus the 

fundamental voltage sustained by VSI is small. So that the dc bus voltage rating of VSI can be set 

very low, the KVA rating and power losses are reduced greatly. Due to the presence of VSI, LC 

filter is not necessary to be accurately tuned at a certain harmonic frequency. The design objective 

of LC filter is to offer a lowest possible impedance path for injecting harmonic currents, on the 

premise of ensuring reactive power compensating. 

Nonlinear load
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Figure 1. Topology of parallel hybrid active power filter 

2.2. Mathematical modeling 

According to Figure 1, the mathematical model in state-space representation for the system is 

formulated as 

a
sa Ca a a

b
sb Cb b b

c
sc Cc c c

diL v v Ri v
dt
diL v v Ri v
dt
diL v v Ri v
dt

 = − + − +

 = − + − +



= − + − +


                          (1) 

Ca
a

Cb
b

Cc
c

dvC i
dt

dvC i
dt

dvC i
dt

 = −

 = −



= −
   

                                     (2) 

( )dc
dc dc a a b b a a

dvC i S i S i S i
dt

= = − + +

  

                    (3) 
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where aS , bS  and cS are switching functions defined by 

1, ( on, )
( , , )

0, ( off, )
x x

x
x x

when S S off
S x a b c

when S S on

= =
                   

(4) 

 
 

2. System control 

According to (1-2), it can be inferred that the state equation of output current  ( , , )xi x a b c= is a 
second-order differential equation. If the output current control is implemented in dq synchronous 
reference frame, it needs to sample and feed back the AC capacitor voltage  ( , , )Cxv x a b c= to 
achieve decoupling control between d-axis and q-axis. Therefore, in this paper, the output current 
control is implemented in αβ  stationary frame, which has the advantages of no need of complex 
decoupling control and AC capacitor voltage sampling. The overall system control diagram is 
shown in Figure 2, it is mainly composed of dc-link voltage control and harmonic current tacking 
control. In this figure, Bpf(s) is a band-pass filter to extract the fundamental frequency component of 
input signal, and its expression is given by 

0
2 2

0 0

( )
sBpf s

s s
γω
γω ω

=
+ +                                

(5) 

where 0ω  is the grid frequency； γ is the control coefficient of passband width and 0γ > . 

( )fv αβ

Dc-link voltage control

PI

d

q

0

/dqT αβ
fqV ∗

je q

*
dcV

dcv

(come from Phase-locked loop)

( )l abci
abc αβ

( )li αβ
1 ( )Bpf s−

( )hi αβ
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1 ( )Bpf s− ( )hi αβ

harmonic current reference 

injected harmonic current 

Repetitive
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aS
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cS


( )v αβ

 
Figure 2. Overall block diagram of system control 

 

2.1. DC-link voltage stabilisation method 

Assuming that the VSI doesn't provide reactive power compensation for the load and only 
absorbs active power from grid to maintain its power loss. According to the power conservation 
principle, there is 

dcdv
in dc dc lossdtP C v P= +                            (6) 
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where inP  is the active power absorbed from gird, dcdv
dc dc dtC v  is the power of the dc-link capacitor 

and lossP  is the power loss of inverter. It can be inferred from (6) that if lossP is regarded as a 
disturbance, dcv  could be controlled by adjusting inP . In the dq synchronous reference frame (grid 
voltage orientation), the active power inP  and reactive power inQ  absorbed by VSI can be given 
by 

2 2

sd fq
in

fd sd fd fq
in

V V
P

X
V V V V

Q
X


= −


− + =

                         (7) 

where X denotes the fundamental frequency impedance of LC filter; sdV  is the d-axis component 
of grid voltage ( 0sqV = ); fqV , fqV  are the d-axis and q-axis component of VSI output fundamental 

voltage, respectively. 
It can be inferred from (7) that inP  is only regulated by fqV . Generally, fqV  is small. Thus, 

0inQ ≈ could be achieved when fqV  is set to 0. Thus, the dc-link voltage regulator can be designed 

as (8), and the corresponding bode diagram is shown in Figure 2. 

( )( )

0
fq p i dc dc

fd

V k k s V v

V

∗ ∗

∗

 = + −


=
                       (8) 

where *
dcV  is the rated value of dc-link voltage; pk , ik  are the parameters of PI controller. 

2.2. Harmonic current tracking control 

Harmonic current tracking control is the important part of system control, which contributes 
directly to the performance of harmonic compensating. The block diagram of current control is 
shown in Figure 2. Considering the case that the three-phase load current mainly contains 6k+1 
harmonics, this paper presents a 6k+1 repetitive control scheme to compensate these harmonics. 
The detail theoretical derivation, analysis and design of proposed 6k+1 repetitive controller is given 
in the next section. 

3. 6k+1 repetitive control scheme 

3.1. internal model of 6k+1 repetitive controller 

Firstly, the internal model of the wellknown traditional repetitive controller is given by 

0

0
( )

1

sT

t sT
eRC s

e

−

−=
−

                               (9) 

where 0sTe− is the periodic time delay unit, and T0 is the fundamental period, i.e., 0 02T π ω= . 

By setting the denominator 01 sTe−−  in (9) equal to zero, it can be obtained that 

0    ( 0, 1, 2, , )pks jk kω= = ± ± ±∞2                        (10) 

where pks  is the pole of (9). Seen from (10), it is clear that the traditional repetitive controller has 

an infinite number of poles located at 0jkω , which is the reason traditional repetitive controller has 
resonant peaks at every integral multiple of fundermental frequency 0ω . 
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In order to make repetitive controller with poles only located at a selected group of harmonic 
frequencies, a new internal model is need to be structured. Assume the order h of these harmonics 
meets the rule: 

h Lk M= +                                     (11) 
where L, M are intergers, and L is not equal to zero. 

Then, the poles of the new internal model should be located at 

0( )    ( 0, 1, 2, , )pks j Lk M kω′ = + = ± ± ±∞2                        (12) 

Moreover, to enhance the frequency selectivity, an infinite number of zeros of the new internal 
model that located in the midpoints between two consecutive poles are introduced as  

0( 0.5 )    ( 0, 1, 2, , )zks j Lk M L kω′ = + + = ± ± ±∞2                   (13) 

These zeros bring another benefit that allowing bigger gains with improved performance. 
In order to satisfy (12-13) , the general internal model for Lk M+ harmonics can be structured 

as 
0

0

0
0

( ( 0.5 ))

( )
1( )

1

s j M L
T

L

g s j M
T

L

eRC s
e

ω

ω

− +
−

−
−

−
=

−                       
(14) 

 After the substitution of L=6 and M=1 in (14), the 6k+1 internal model is given by 
0

0

3 6

3 6

1( )
1

T
j s

T
j s

e eRC s
e e

π

π

−

−

+
=

−

                           (15) 

Comparing (15) with the traditional internal model given by (9), it can be found that the delay 
time of 6k+1 internal model is reduced to T0/6, which means a much faster dynamic response. 
what's more, it should be noted that the 6k+1 internal model is expressed using the complex-vector 

notation, as it contains the complex coefficient 3
j

e
π

. As a consequence, the input signal of RC (s) is 
required to be a complex vector. The block of the proposed 6k+1 internal model is shown in Figure 
3. 

0

6
Ts

e
�

( )se

3
j

e
�

( )sy
 

(a) 



Energies 2016, 9, x 7 of 18 

 

( )e s� ( )s�y

0

6
Ts

e
�

3
2

( )e s� ( )s�y

0

6
Ts

e
�

1
2

1
2

1
2

1
2

3
2

 
(b) 

Figure 3. Block diagram of the 6k+1 repetitive controller internal model: (a) complex-vector notation；(b) scalar 

notation 

Assuming that the fundermental frequcny f0 = 50 Hz, i.e., T0 = 0.02 s, the bode plot of the 6k+1 
repetitive controller internal model is shown in Figure 4. As expected, the amplitude-frequency 
response curve shows that 6k+1 internal model has resonant peaks that located at frequency 
multiples 6k+1 of 50 Hz (50, -250, 350, -550, 650 Hz ...), and has notches that located at frequency 
multiples 6k+4 of 50 Hz (-100, 200, -400, 500 Hz ...). The phase-frequency response curve shows the 
phase shift is bounded between 90 and - 90 degree, and zero at the peaks and notches. 
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Figure 4. Bode plot of the proposed repetitive controller internal model. 

3.2. Fractional delay compensation 

In a practical application, the implementation of repetitive control scheme is usually performed 
in the digital form. Using the transformation ssTz e= , (15) can be discretized and its expression in 
discrete time domain is given by 

0

0

3 6

3 6

1( )
1

sTs

N
j

Nz e j

e zRC z
e z

π

π

−

= −

+
=

−

                                    (16) 
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where Ts is the sampling period, and 0 0 sN T T= (the number of samples per fundamental period ). 

In most cases, the sampling frequncy sf  ( 1s sf T= ) is a fixed rate(e.g. 10 kHz，12.8 kHz, 20 
kHz), and the grid frequecny detected by PLL is variabe in a certain range (e.g. 49~51Hz). Thus, 

0 6N  is usually non-interger.  
Let 

0
( )6

N
D d D dz z z z

− − + − −= = ⋅                                    (17) 

where D and d are the integral and fractional parts of 0 6N , repectively. 
In a common implementation, 60N

z
−  is approximately treated as Dz−  and performed by 

reserving D memory locations, with the fractional order part dz− neglected. But, this will cause the 
resonant peaks to deviate from the harmonic frequencies. As a consequence, the harmonic 
comperseation performance could be degraded.  

To address this problem, fractional delay (FD) filters have been usd as approximations of dz− . 
The magnitude-frequency and phase-frequency characteristics of dz− can be given by 

1d

d
s

z

z d Tω

−

−

 =

∠ = −

                                  (18) 

Thus, it requires that FD filters should have a unit gain and linear phase in the low-middle 
frequencies, and acheive a high attenuation rate in the high frequencies to enhance the system 
stablity. 

In the condition of 1 1 1z− − < (i.e. (3 ) (3 )s sT Tπ ω π− < < ), with the use of the Taylor 

expansion, dz− can be expressed as 

1 1 1( 1) ( 1)(1 1) 1 ( 1) ( 1)
!

d d nd d d nz z d z z
n

− − − −− − +
= + − = + − + + −

2
2

        

(19) 

Specifically, choose the first-order Taylor expansion of dz−  as a FD filter, that is 

1( ) 1Fd z d dz−= − +                                    (20) 

Figure 5 shows the bode plot of ( )Fd z , with 78.125 ssT µ= , d =0.2, 0.5 and 0.8, respectively. It 
can be seen that ( )Fd z has the low-pass filter nature. In low frequecnies, ( )Fd z has a well linear 
phase approximated to the ideal value. However, the main disadvantages of ( )Fd z  are that the 
cutoff frequecny is too high (greater than 3000 Hz), and it changes with the value of d. Only when 
d=0.5, ( )Fd z  achieves the lowest cutoff frequecny and best linear phase. 
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Figure 5. Bode plot of Fd(z) 

To overcome above issue, this paper presents a FD filter ( )Q z  by cascading Fd(z) with a 
zero-phase digital low-pass filter, i.e.,    

( ) ( ) ( )Q z Fd z M z=                                    (21) 
where ( )M z is the zero-phase digital low-pass filter used to low the cut-off frequency and Increase 
the attenuation rate in high frequecnies. Its expression is given as 

1
1 0 1( ) ( )nM z a z a a z−= + +                               (22) 

where 0 1, 0a a > and 0 12 1a a+ = ; n is the order of filter.  
Although ( )Q z  is noncausal, the time delay term Dz−  makes it applicable. After the 

fractional delay compseation, (16) should be revised as  

3

3

1 ( )( )
1 ( )

j D

j D

e Q z zRC z
e Q z z

π

π

−

−

+
=

−

                           (23) 

3.3. Design of 6k+1 repetitive controller 

Figure 6 shows the block diagram of the harmonic current tracking control. This paper adopts a 
plug-in repetive controller structure in the control loop，where the PI controller is used to enhance 
the stability and improve dynamic response, and the repetive controller is used to eliminate the 
steady-state error.  

*
hi

ck ( )P z hihve

PI(z) ( )P z′

RC(z) ( )fG z

 

Figure 6. Block diagram of harmonic current tracking control 

In Figure 6, P(z) is the plant of current control. According to (1-2), its expression in continuous 
domain can be obtained as 
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1( )
1

P s
Ls R Cs

=
+ +                      

          (24) 

Obviously, P(s) is a second-order system. To modify the characteristic of P(s), a method of 

output current status feedback is used. Accoding to Figure 6, the modified plant expression is given 

by 
( ) 1( )

( ) 11 ( )
c

cc

c c c

k P sP s k RLk P s s
k k k Cs

′ = =
++ + +                    

  (25) 

Equation (25) reveals that ( )P s′  can be viewed as the R becomes to 1 ( ck R� ), while L, C 

become 1 ck  and ck  times of its original values in P(s), respectively. The bode plots of P(s) and 

( )P s′  are shown in Figure 7, with 3 mHL = , 90 FC µ= , 0.1 R = Ω . As seen, ( )P s′  has cancelled 

the resonant peak appeared in P(s), and presents the characteristics of a band-pass filter. The 

passband width depends on the value of ck . A larger ck  leads to bigger passband width and 

smaller phase lead/lag. 
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Figure 7. Bode plots of P(s) and ( )P s′  

In Figure 7, without the repetitive controller, the tracking error e  between the reference *
hi  

and output hi  is 

*
0

1( )
1 ( ) ( ) hz

PI z P z
=

′+
e i

                        
    (26) 

where ( )PI z should be designed to guarantee the stability of 0 ( )ze .   

With the proposed 6k+1 repetitive controller, the tracking error e  can be written as 
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0

3

0
3

1( ) ( )
1 ( ) ( ) ( )

1 (1 ( ) )( )
2

1 (1- ( ) ( )) (1 ( ) ) 2

f

j D

j D
f

z z
H z G z R z

e Q z zz
H z G z e Q z z

π

π

−

−

=
+

−
=

− +

e e

e             
     (27) 

where ( )fG z is the compensation function, and 

( )( )
1 ( ) ( )

P zH z
PI z P z

′
=

′+
                          

         (28) 

 

By the small gain theorem, the sufficient condition for ensuring (27) stable can be given as 

3(1- ( ) ( )) (1 ( ) ) 2 1
j D

fH z G z e Q z z
π

−+ <                      (29) 

Clearly, 3(1 ( ) ) 2 1
j De Q z z
π

−+ ≤  is true. To make (29) true, it only needs 1- ( ) ( ) 1fH z G z <  

being satisfied. Thus, ( )fG z can be chosen as 

1 1( )
( ) 1fG s

H s sτ
= ⋅

+
                                 (30) 

where ( )fG s  and ( )H s are the functions of ( )fG z and ( )H z in Laplace domain, respectively; 

1 ( 1)sτ + is a low-pass filter. 

Moreover, on the premise of system stability, it can be derived that the numerator of (27) has 

such a steady-state relationship:  

0 0(6 1) (6 1)31 ( ) 0s s
j j k T j k DTe Q e e
π

ω ω+ − +− =                        (31) 

Equation (31) indicates that the 6k+1 repetitive control scheme can eliminate the steady-state 

error of 6k+1 harmonics tracking in D+d Ts (i.e., T0/6), which means the proposed repetitive control 

scheme could has a much faster transient state response than the traditional one. 

4. Experimental results 

To validate the correctness and effectiveness of the proposed 6k+1 repetitive control scheme, a 

prototype of three-phase parallel hybrid APF is built in lab, which is shown in Figure 8. The control 

system is realized by a combination of digital signal processor TMS320F28335 and field 

programmable gate array FPGA EP2C8T144C8N. The power switches use three Infineon IGBT 

modules and the drive circuit uses M57962L driver chips. The non-linear load used in the 

experiments is a three-phase diode rectifier bridge with resistive load. The overall experimental 

parameters are given in Table 1. 
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Figure 8. Photograph of the prototype 

Table 1. Experimental parameters 

Parameters Symbol Value Unit 
grid phase voltage sv  60 V (rms) 
grid frequency f  50 Hz 
Inductance L 3 mH 
capacitor C 90 Fµ  
dc bus voltage dcV  80 V 
load resistance LR  6.6 Ω  
switching period sT  78.125 sµ  

4.1. Controller parameters 

In the implementation of experiments, the parameters of controllers are given as follows. 

1) Dc-link voltage PI controller: 1 2pk = , 1 5ik = . 

2) In the harmonic current tacking loop: 

a. The zero-phase low-pass filter ( )M z  is given as 1 2( ) (0.25 0.5 0.25 )M z z z−= + + ; 

b. The number of delay sample is 42, and the FD filter is given as  

1 1( ) 1 0.333 0.667Fd z d dz z− −= − + = +                          (32) 

c. Output current state feedback gain 3ck = ; 

d. PI controller in the plug-in repetitive controller: 2 1pk = , 2 1ik = . 

e. The compensation function ( )fG z  is given as 

1 2

1 2
5 9.303 4.397( )
1 1.677 0.6766f

z zG z
z z

− −

− −

− +
=

− +
                           (33) 

4.2. LC filter parmaters  
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As the non-linear load used in this paper is a three-phase diode rectifier bridge with resistive 

load，the 5th, 7th, 11th, 13th harmonic currents are dominated in load current. Assume that the load 

harmonic currents are fully compensated by the hybrid APF, the voltage drop across the LC filter 

by the injected compensating harmonic current is  

1 1

1 1( ) ( )m m
h lh m lh m

m mm m

v i L I L
C C

ω ω
ω ω> >

= − ≤ −∑ ∑               (34) 

where m
lhi  is the m-th order harmonic component of load current, and m

lhI  is the amplitude of m
lhi . 

For the hybrid APF, the design objective of LC filter is to offer a lowest possible impedance 

path for injecting harmonic currents, in other words, to minimize the voltage drop hv . Thus, the 

dc-link voltage rating of VSI can be minimized. 

Then, an optimization function can be given as 

min
5,7,11,13 5,7,11,13

1 1( ) ( )m
h m f m m

m mm m

f I L I HD L
C C

ω ω
ω ω= =

= − = ⋅ −∑ ∑          (35) 

where mHD  is the individual m-th order harmonic distortion rate, and lfI  is the amplitude of 

fundamental component in load current. 

The capacitor C in LC filter can be chose by the rule as follow: 

2
13C sQ CVω=                           (36) 

where CQ  is the reactive power demanded by load, 1ω  is the grid frequency, sV  is the grid 

voltage amplitude. 

Assume the capacitor C has been determined, such as C=90uf. According to Fig.11(b), it can 

obtained that 5 22.4%HD = , 7 8%HD = , 11 5.7%HD = and 13 2.6%HD = . Substituting the above 

parameters into (32), the optimal inductor L can be obtained as L=2.8 mH. So we choose L=3 mH for 

the hybrid APF experimental prototype without loss of much performance, and the resonant 

frequency of LC filter is 306 Hz. 

4.3. Experimental results 

Figure 9 shows the dynamic behaviour of dc-link capacitor voltage in start-up process. To 
avoid the inrush current caused by capacitors, the series-resistance soft-start mode is used in 
experiments. Specifically, when 60 Vdc setv V≤ = , the IGBTs are turned off, the capacitors are 
charged up with small current due to the series-resistance ; When dc setv V> , the series-resistance is 
bypassed and then the PWM pulses will be activated. dcv  reaches the setting value 80 V in the 
steady state, which verifies the correctness of the dc voltage control strategy. 
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Figure 9. Start-up process of dc-link voltage 

To validate the static and dynamic performances of the proposed 6k+1 repetitive control 
scheme, the related experimental results are shown in Figure 10-13. For the sake of simplicity, only 
the a-phase waveforms are displayed. 

Figure 10 shows the harmonic compensation results when nonlinear load is disconnected 
( 0lai = ). As seen, sa ai i= , and sai  is almost the reactive power current provided by LC filter. The 
waveform of ai  is sinusoidal with less distortion, which indicates that the proposed repetitive 
control scheme can well suppress the undesired harmonic components. 

sav

sai

ai

lai

 

Figure 10. Harmonic compensation results with nonlinear load disconnected 

Figure 11-12 show the steady-state harmonic compensation results with and without fractional 

delay compensation when the nonlinear load is connected, respectively. In Figure 11, the total 

harmonic distortion (THD) of the source current sai  is reduced to 3.8% from 24.8% (THD of the 

load current), and the distortion ratio of 5th, 7th, 11th and 13th harmonics in sai  are reduced to 2.3%, 

1.3%, 1.6% and 1.2%, respectively. As a contrast, the THD of sai  is 4.9% in Figure 12. These 

comparison experiment results demonstrate the good static performance of 6k+1 repetitive 

controller and effectiveness of the fractional delay compensation. 
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Figure 11. Harmonic compensation results with FD compensation: (a) source (L1), compensating 

(L2), load (L3) current waveforms ; (b) harmonic distortion rate graph. 
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(b)  

Figure 12. Harmonic compensation results without FD compensation: (a) source (L1), compensating 

(L2), load (L3) current waveforms ; (b) harmonic distortion rate graph. 

Also, to highlight the effectiveness of the 6k+1 repetitive control scheme, the harmonic 

compensation results by only the LC filter is shown in Figure 13. As seen, the source current is still 

highly distorted after the compensation of the LC filter, with a THD of 15.9%. The main reasons are 

that the resonant frequency of LC filter is not precisely tuned at a domain harmonic frequency, and 

the performance of LC filter seriously depends on the internal resistance of grid source. 

sai

lai

ai

 

(a) 

 

(b) 

Figure 13. Harmonic compensation results by only the LC filter: (a) source (L1), compensating (L2), 

load (L3) current waveforms ; (b) harmonic distortion rate graph. 

To verify the dynamic performance of the 6k+1 repetitive control scheme,  Figure 14 shows 

the comparison experimental results of the proposed and traditional repetitive control schemes in 

transient process. As seen, before the time 1t , the harmonic compensation function is not enabled, 

ai  is only the reactive power current provided by LC filter with sinusoidal waveform, and sai  is 

distorted by the load harmonics. At the time 1t , the harmonic compensation function is enabled. 
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The 6k+1 repetitive control scheme can take effect after T0/6 time, and eliminate the steady-state 

error of harmonic tracking quickly. As a contrast, the traditional repetitive control scheme takes 

effect after T0 time, and needs several T0 periods to eliminate the steady-state error. The 

experimental results demonstrates that the 6k+1 repetitive control scheme has a much better 

dynamic performance than the traditional repetitive control scheme, which is consistent with 

theoretical analysis. 
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ai
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6
T

1t

 

(a)  

sai

lai
ai

1t
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(b)  

Figure 14. Dynamic performance comparison: (a) 6k+1 repetitive control scheme; (b) traditional 

repetitive control scheme 

5. Conclusions  

In this paper, a 6k+1 repetitive control scheme for HAPF is proposed, which aims at 

compensating the 6k+1 harmonics in three-phase power systems. The internal model of the 6k+1 

repetitive controller is constructed by the general mathematical principles of traditional repetitive 

controller, and expressed using the complex-vector notation. A FD compensating method for 6k+1 

repetitive controller is also presented. Through theoretical analysis and experiments, it is 

demonstrated that the 6k+1 repetitive control scheme can achieve a fast transient response with 

delay time of T0/6, and good performance for compensating or suppressing the 6k+1 harmonics. 

Furthermore, due to the above features, the 6k+1 repetitive control scheme is also suitable to used in 

the current or voltage control for other three-phase grid-connected inverters. 
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