MODULE FAILURE IDENTIFICATION BY ANALYSIS OF THE LIGHT AND DARK I-V CHARACTERISTICS

S. SPATARU¹, D. SERA¹, P. HACKE², T. KEREKES¹, AND R. TEODORESCU¹

¹AALBORG UNIVERSITY ²NATIONAL RENEWABLE ENERGY LABORATORY

Outline

- I. Introduction
- II. Methodology
- III. Experimental results
 - Optical losses
 - Degradation of the electrical circuit (increased series-resistance only)
 - Mechanical degradation of the solar cells (mixed losses)
 - Potential-induced degradation (shunting and recombination losses)
- IV. Summary and conclusions

Introduction

- Failure identification in PV modules requires specialized hardware and diagnostic process depending on the type of failure.
- We aim to develop an I-V based diagnostic method for identifying degradation modes such as:
 - 1. Optical losses: shading, soiling, encapsulation discoloration, delamination.
 - 2. Degradation of the external circuit of the PV module: degraded cell-interconnect ribbons, wiring, junction box and connectors.
 - 3. Mechanical degradation of the solar cells: cell cracks and fractures.
 - 4. Potential-induced degradation (PID) of the solar cells.
- Combines the strengths of both light I-V and dark I-V characterization.
- Machine-analysis friendly. The method can be used as a laboratory diagnostic tool for PV modules.
- It has potential for field applications (I-V tracers, module integrated converters) for long-term reliability monitoring of PV modules.

Methodology – Identifying optical and electrical losses

- Measure the light (LIV) and dark I-V (DIV) characteristics of the PV module before and after the degradation
- 2. Calculate LIV parameters that are sensitive to both optical and electrical losses (FF, I_{sc} , V_{oc})
- 3. Calculate DIV parameters that are sensitive **only** to electrical losses $(FF_{dark}, V_{d-max}, V_p)$
- 4. Calculate the R_{s-ld} parameter which is able to identify increased **module series-resistance** losses.

$$R_{s-ld} = \frac{V_{d-mp} - V_{mp}}{I_{mp}} \bigg|_{I_{dark} = I_{sc} - I_{mp}}$$

Methodology – Identifying shunting and recombination losses

Usual approach:

- Curve fit the I-V characteristic to a solar cell model (ex. Two-diode model)
- Analyse the model parameters to identify the defects/failures

Pros:

 Model parameters have a well-known correlation with physical properties of the PV device

Cons:

- The model identification/curve fitting is resource intensive, and usually must be assisted
- The model may fail in case of PV modules with inhomogeneous distributed failures/cell mismatch (example PID)

Simulated DIVs of a c-Si solar cell with different degradation modes

Methodology – Identifying shunting and recombination losses

Proposed method:

4. Calculate the $J_{Loss}(V)$ curve from the DIV

$$\ln(J) = \frac{q}{nkT}V + \ln(J_0)$$

$$J_{Loss}(V_k) = J_0(V_k) = \exp\left[\frac{\ln(J_{k-1})V_k - \ln(J_k)V_{k-1}}{V_k - V_{k-1}}\right]$$

5. Calculate the J_{Loss-A} ($R_{sh} + J_{02}$) and J_{Loss-B} ($J_{01} + J_{02}$) to identify **shunting** and **recombination losses**.

$$\begin{split} &J_{Loss-A} = \max \left[J_{Loss} \left(V \right) \right], for \, 0.1 < V < 0.4 - \text{Region A} \\ &J_{Loss-B} = \min \left[J_{Loss} \left(V \right) \right], for \, 0.4 < V < 0.66 - \text{Region B} \end{split}$$

- 6. Analyse the LIV and DIV parameters to **identify the dominant degradation modes**:
 - Degradation of the electrical circuit: increased series-resistance
 - PID: shunting + recombination losses
 - Mechanically degraded cells: shunting + recombination losses + increased series-resistance

Experimental results – Optical losses

- PV modules are affected by partial and uniform type shading differently
- Optical losses/shading only affects the LIV curve and parameters, not the DIV
- This is most relevant for field applications, and can help optimize the maintenance actions, for e.g.: clean modules, remove shading vs. replace module, wiring, etc.

LIV curves affected by shading uniform shaded $\Delta P_{max} = 0.0\%$ $\Delta P_{max} = 29.1\%$ $\Delta P_{max} = 29.8\%$ $\Delta P_{max} = 19.8\%$ $\Delta P_{max} = 19.8\%$ $\Delta P_{max} = 19.8\%$ Voltage [V]

- PV modules with open-circuited cell interconnects
- Four standard 60 cell multi-crystalline PV modules were tested (R1 to R4) with increasing degradation levels

Module	R1	R2	R3	R4
ΔP _{max} [%]	-1.7	-3.1	-5.5	-6.4
ΔFF[%]	-1.84	-2.74	-5.18	-6.1

Module R1

Module R4

AALBORG UNIVERSITY
DENMARK

10

- Only the series resistance of the modules increases.
- R_{s-ld} and V_{d-max} can be used to identify this degradation mode.
- Changes in J_{Loss-A} and J_{Loss-B} are negligible compared to the other degradation modes.
- High ilumination efficiency decreases most.

DIV parameters

Module	R1	R2	R3	R4
ΔP _{max} [%]	-1.7	-3.1	-5.5	-6.3
ΔFF _{dark} [%]	-0.84	-1.06	-1.95	-2.77
ΔV _{d-max} [%]	1.04	1.76	2.88	3.84
ΔV _p [%]	0.02	-0.14	1.24	1.18
ΔR _{s-ld} [%]	22.4	38.2	65.8	76.2
ΔJ _{Loss-B} [%]	12.9	10.76	32.1	25.9
ΔJ _{Loss-A} [%]	-10.4	-30	-11.8	-27.8

- A standard 60 cell multi-crystalline PV module was stressed by mechanical loading and humidity freeze cycles.
- Three different levels of degradation were measured.

- Module experiences mixed degradation modes: series resistance increase, shunting, and recombination losses.
- I_{sc} , R_{s-Id} , J_{Loss-A} , J_{Loss-B} can be used to identify this degradation mode.
- Both one-sun and low-light efficiency decrease.

DIV parameters

Load. Seg.	b	С	d
ΔP _{max} [%]	-2.8	-6.3	-10.4
ΔFF _{dark} [%]	-0.8	-2.7	-4.3
ΔV _{d-max} [%]	0.3	1	2.9
ΔV _p [%]	-1.8	-1.8	-1.8
ΔR _{s-ld} [%]	17.8	37.9	87.6
ΔJ _{Loss-B} [%]	117.5	5141	4421
ΔJ _{Loss-A} [%]	10.3	207	201

- PID was reproduced by means of damp-heat stress testing (60 °C/85 %RH) with applied system voltage bias (-1000 V).
- Four standard 60 cell multi-crystalline PV modules (P1 to P4) were tested with sustained different levels of degradation

Module	P1	P2	P3	P4
ΔP _{max} [%]	-4.3	-4.6	-13.5	-22.9
ΔFF[%]	-3.82	-4.04	-12.25	-18.2
ΔV _{oc} [%]	-0.36	-0.34	-1.24	-6.05
ΔΙ _{ες} [%]	-0.17	-0.24	-0.17	0.4

EL image of module P3

STC P_{max} degradation

Module design P1 was sensitive to PID

21 October, 2014

18

Module design P2 was specified as high PID resistant in the datasheet.

- Module experiences shunting and recombination losses.
- J_{Loss-A} and J_{Loss-B} increase significantly.
- I_{sc} and R_{s-ld} does not change significantly.
- Low-light efficiency decreases most.

DIV parameters

Module	P1	P2	P3	P4
ΔP _{max} [%]	-4.3	-4.6	-13.5	-22.9
ΔFF _{dark} [%]	-4.05	-3.86	-11.6	-17.1
ΔV _{d-max} [%]	-0.6	0.45	-1.13	-5.3
ΔV _p [%]	-0.01	0.01	-3.84	-15.3
ΔR _{s-ld} [%]	-2.9	3	3.56	9.2
ΔJ _{Loss-B} [%]	4.1e4	5.2e3	5.2e5	9.9e5
ΔJ _{Loss-A} [%]	857	1.6e3	55	454

Summary and conclusions

- We proposed a set of new diagnostic parameters that are sensitive to the degradation of the DIV, as well as to shunting and recombination losses.
- These diagnostic parameters, combined with LIV performance and series resistance measurements can enhance the degradation mode identification possibilities compared to light or DIV measurements alone.
- These diagnostic parameters can be used to identify: optical losses, PID, cell cracks, and cell fractures.

	Light I-V*				Dark I-V*					
Degr. mode	FF	FF _{low-light}	I _{sc}	V _{oc}	ΔR_{s-ld}	FF _{dark}	V_{d-max}	V_p	J _{Loss-B}	J_{Loss-A}
Optical loss	$\downarrow \uparrow$	$\downarrow \uparrow$	\downarrow	\downarrow	$\downarrow \uparrow$	0	0	0	0	0
Electrical loss	$\downarrow\downarrow$	\downarrow	\downarrow	0	^	$\downarrow\downarrow$	↑	↑	0	0
Cell damage		\downarrow	\downarrow	\downarrow	$\uparrow \uparrow$	\downarrow	↑	\downarrow	$\uparrow \uparrow \uparrow$	↑ ↑
PID	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	0	\downarrow	0	$\downarrow\downarrow$	$\downarrow\downarrow$	\downarrow	$\uparrow\uparrow\uparrow\uparrow$	$\uparrow \uparrow \uparrow$

^{*}Legend: $\downarrow \uparrow$ - inconsistent variation; \downarrow - small decrease; $\downarrow \downarrow$ - substantial decrease; $\downarrow \downarrow \downarrow$ - large decrease; 0 - no significant change; \uparrow - small increase; $\uparrow \uparrow$ - substantial increase; $\uparrow \uparrow \uparrow$ - large increase; $\uparrow \uparrow \uparrow \uparrow$ - very large increase.

CONTACT INFO:

SERGIU SPATARU
AALBORG UNIVERSITY
DEPARTMENT OF ENERGY TECHNOLOGY
PONTOPPIDANSTRAEDE 101,
9220 AALBORG EAST, DENMARK
PHONE: (+45) 9940 9754, EMAIL: SSP@ET.AAU.DK

THANK YOU FOR YOUR ATTENTION

