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LA4RS ALIDE

Preface

Flow and sediment transport are important in relation to several engineering topics. e.g.
erosion around structures, backfilling of dredged channels and nearshore morphological

change.

The purpose of the present book is to describe both the basic hydrodynamics and the
basic sediment transport mechanism. The reader’s background should be a basic course

in wave theory and fluid mechanics.

Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress
by currents, while Chapter 3 focuses on bed shear stress by waves. They are both written
with a view to sediment transport.

Sediment transport in rivers, cross-shore and longshore are dealt with in Chapters 2, 4
and 3, respectively.

It is not the intention of the book to give a broad review of the literature on this very
wide topic. The book tries to pick up information which is of engineering importance.
An obstacle to the study of sedimentation is the scale effect in model tests. Whenever
small-scale tests, large-scale tests and field investigations are available, it is always the
result from field investigations which is referred to.
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1 Steady uniform flow in open channels

This chapter is written with a view to sediment transport. The main outcome is the
current friction coefficient.

The coordinate system applied in this chapter is shown in Fig.1.

Z, W

i<

T7777777777777 777'7‘;777777777777777. X o

Fig.1. Coordinate system for the flow in open channels.

1.1 Types of flow

Description of various types of flow are given in the following.

Laminar versus turbulent

Laminar flow occurs at relatively low fluid velocity. The flow is visualized as layers
which slide smoothly over each other without macroscopic mixing of fluid particles.
The shear stress in laminar flow i1s given by Newton’s law of viscosity

e = g (1)

where p is density of water and v kinematic viscosity ( » = 1076 m?/s at 20°C ).

Most flows in nature are turbulent. Turbulence is generated by instability in the
flow, which trigger vortices. However, a thin layer exists near the boundary where
the fluid motion is still laminar.

A typical phenomenon of turbulent flow is the fluctuation of velocity

~
[SV]

U=u+ W =w+ w (2)

IV instantaneous velocity, in x and z directions respectively

where U
u w  time-averaged velocity, in x and z directions respectively
w' w' Instantaneous velocity fluctuation, in x and z directions respectively

Turbulent flow is often given as the mean flow, described by w and w.



In turbulent flow the water particles move in very irregular paths, causing an ex-
change of momentum from one portion of fluid to another, and hence, the turbulent
shear stress (Reynolds stress). The turbulent shear stress, given by time-averaging
of the Navier-Stokes equation, is

= —pu w (3)

Note that u’ w’ is always negative. In turbulent flow both viscosity and turbulence
contribute to shear stress. The total shear stress is

1
T =T, 4+ 1= pu :ﬁ + (—pu' w') (4)
dz

Steady versus unsteady

A flow is steady when the flow properties (e.g. density, velocity, pressure etc.) at
any point are constant with respect to time. However, these properties may vary
from point to point. In mathematical language,

d (any flow property)
ot
In the case of turbulent flow, steady flow means that the statistical parameters
(mean and standard deviation) of the flow do not change with respect to time.

(4511
S—

=0 (:

If the flow is not steady, it is unsteady.

U niform versus non-uniform

A flow is uniform when the flow velocity does not change along the flow direction,

cf. Fig.2. Otherwise it is non-uniform flow.

S = surface slope = bottom slope = tanp

Fig.2. Steady uniform flow in a open channel.



Boundary layer flow
Prandtl developed the concept of the boundary layer. It provides an important link
between ideal-fluid flow and real-fluid flow.

Here is the original description. For fluids having small viscosity, the effect of in-
ternal friction in the flow is appreciable only in a thin layer surrounding the flow
boundaries. However, we will demonstrate that the boundary layver fulfil the whole
flow in open channels.

The boundary layer thickness (0) is defined as the distance from the boundary
surface to the point where u = 0.995 U. The boundary layer development can be

expressed as

. R S, P )
laminar flow % = 5 (bur) when Re, = Uur <5 x 10°
: g et 3 .
turbulent flow £ = 04 (cyx) when Re, = Uur =9 % 10°
laminar turbulent
0] - Re,<5°10% ' Re, »5*10°

Fig.3. Development of the boundary layer.

Example 1 Development of the boundary layer flow.

Given flow velocity I/ = lm/s and water depth h = 10m

Wanted 1) x value where the boundary layer flow starts to fulfil the whole depth
2) type of the boundary layer flow

Solution Based on the expression for turbulent boundary layer flow

(U/VJO'25 25 (1/10_6)0'25 A -
lllé:h = (W h! = T 0408 Y = TI7I m

5z 1 1171
Re, = R _ —x-_:_ = 1.171 x 10° > 5 x 10°  turbulent
v 10-®

Comment  The example demonstrates that the flow in open channels is always a
turbulent boundary layer flow.



1.2 Prandtl’s mixing length theory

Prandtl introduced the mixing length concept in order to calculate the turbulent
shear stress. He assumed that a fluid parcel travels over a length ( before its mo-
mentum is transferred.

1<

Fig.4. Prandtl’s mixing length theory.

['ig.4 shows the time-averaged velocity profile. The fluid parcel, locating in layer
I and having the velocity u;, moves to layer 2 due to eddy motion. There is no
momentum transfer during movement, i.e. the velocity of the fluid parcel is still u,
when it just arrives at layer 2, and decreases to u; some time later by the momentum
exchange with other fluid in laver 2. This action will speed up the fluid in layer 2.
which can be seen as a turbulent shear stress 7; acting on laver 2 trying to accelerate
layer 2. cf. Fig.4

The horizontal instantaneous velocity fluctuation of the fluid parcel in layer 2 is

du
i o=ty — wg = € — (6)
dz
Assuming the vertical instantaneous velocity fluctuation having the same magnitude
du .
w = —( — (7)
dz

where negative sign is due to the downward movement of the fluid parcel, the tur-
bulent shear stress now becomes

- 5 (du)2
7n=—puw = pl |—

dz

If we define kinematic eddy viscosity

¢ il
oo e (8)
dz
the turbulent shear stress can be expressed in a way similar to viscous shear stress
du
Ty = A g e (9)

T ds

=1



1.3 Fluid shear stress and friction velocity

Fluid shear stress

The forces on a fluid element with unit width is shown in Fig.5. Because the flow is
uniform (no acceleration), the force equilibrium in x-direction reads

7. Az = pg (h—2z) Az sinf

For small slope we have sin 8 = tan 3 = S. Therefore
= pg(h—z2)85
The bottom shear stress is

Ty = T = pYgNiS (10)

Fig.5. Fluid force and bottom shear stress.

Bottom shear stress

In the case of arbitrary cross section, the shear stress acting on the boundary changes
along the wetted perimeter, cf. I'ig.5. Then the bottom shear stress means actually
the average of the shear stress along the wetted perimeter. The force equilibrium

reads
n, O .Ax = pg A Az sinp

where O is the wetted perimeter and A the area of the cross section. By applying
the hydraulic radius (R = A/O) we get

n = pg RS (11)

In the case of wide and shallow channel, R is approximately equal to h, eq (11) is
identical to eq (10).



Friction velocity

The bottom shear stress is often represented by friction velocity, defined by

e = )= (12)

The term friction velocity comes from the fact that \/7,/p has the same unit as
velocity and it has something to do with friction force.

Inserting eq (11) into eq (12), we get

o, = g RE (13)

Viscous shear stress versus turbulent shear stress

Eq (10) states that the shear stress in flow increases linearly with water depth, cf.
I'ig.6.

z
b7
) Ty =TT, =Tl 1= %) T, shear stress
U 7, turbulent shear stress
S T T "
t v T, Viscous shear stress

777 A

1 I

I - 1

b

Fig.6. Shear stress components and distribution.

As the shear stress is consisted of viscosity and turbulence, we have
. =7, +7n=pgh—2)85 (14)

On the bottom surface, there is no turbulence (v = w = 0,u’ = v’ = 0), the
turbulent shear stress

= —pulw =1

Therefore, in a very thin layer above the hottom, viscous shear stress is dominant,
and hence the Aow is laminar. This thin layer is called viscous sublayer. Above the
viscous sublayer, i.e. in the major part of flow, the turbulent shear stress dominates,
cf. fig.6.

The measurement shows the shear stress in the viscous sublayer is constant and

equal to the bottom shear stress, not increasing linearly with depth as indicated by
Fig.6.



1.4 Classification of flow layer

Scientific classification

Fig.

7 shows the classification of flow layers. Starting from the bottom we have

1) Viscous sublayer: a thin layer just above the bottom. In this layver there

is almost no turbulence. Measurement shows that the viscous shear stress
in this layer is constant. The flow is laminar. Above this layer the flow

is turbulent.

2) Transition layer: also called buffer layver. viscosity and turbulence are

equally important.

3) Turbulent logarithmic layer: viscous shear stress can be neglected in this

laver. Based on measurement. it is assumed that the turbulent shear
stress is constant and equal to bottom shear stress. It is in this layer
where Prandtl introduced the mixing length concept and derived the
logarithmic velocity profile.

1) Turbulent outer layer: velocities are almost constant because of the

presence of large eddies which produce strong mixing of the flow.

T total shear stress
T, viscous shear stress

T,  turbulent sheor stress . classification shear stress : flow type :
7 / .
/ turbulent outer layer : T=m :

e e e e e e e e e —— —— - turbulent -

turbulent logarithmic layer T =T, =const. :

transition layer T tideT; 4

viscous sublayer T = T, = const. : laminar

4

Fig.7.  Scientific classification of flow region (Layer thickness is not to scale,

turbulent outer layer accounts for 80% - 90% of the region).
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Engineering classification

[n the turbulent logarithmic layer the measurements show that the turbulent shear
stress is constant and equal to the bottom shear stress. By assuming that the mixing
length is proportional to the distance to the bottom (¢ = xz), Prandtl obtained the
logarithmic velocity profile.

Various expressions have been proposed for the velocity distribution in the tran-
sitional layer and the turbulent outer layer. None of them are widely accepted.
However, By the modification of the mixing length assumption, cf. next section, the
logarithmic velocity profile applies also to the transitional layer and the turbulent
outer layer. Measurement and computed velocities show reasonable agreement.

Therefore in engineering point of view, a turbulent layer with the logarithmic velocity
profile covers the transitional layer. the turbulent logarithmic layer and the turbulent
outer layer, cf. Fig.8S.

As to the viscous sublayer. The effect of the bottom (or wall) roughness on the
velocity distribution was first investigated for pipe flow by Nikurase. He introduced
the concept of equivalent grain roughness k, (Nikurase roughness, bed roughness).
Based on experimental data, it was found

1) Hydraulically smooth flow for “‘v"" & 5

Bed roughness is much smaller than the thickness of viscous sublayer.
Therefore, the bed roughness will not affect the velocity distribution.

Hydraulically rough flow for 2=k > 70

Bed roughness is so large that it produces eddies close to the bottom. A
viscous sublayer does not exist and the flow velocity is not dependent on

{E)
—

viscosity.

3) Hydraulically transitional flow for 5 < %k« < 70

v

The velocity distribution is affected by bed roughness and viscosity.

1itel

1114

turbulent loyer

_______ k
6, wviscous sublayer SI %J

ke =f(height and length of sand ripples)

turbulent layer

Ks ={ (sediment diameter)

Hydraulically smooth flow Hydraulically rough flow

Iig.8. Engineering classtfication of flow region (Layer thickness is not to scale).
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1.5 Velocity distribution

Turbulent layer

In the turbulent layer the total shear stress contains only the turbulent shear stress.
The total shear stress increases linearly with depth (eq (10) or Fig.6), i.e.

(z) = n (1 s %)

By prandtl’s mixing length theory

, [du 2
v =0t ()

and assuming the mixing length
2\ 0.5
{ = g3 (1 - !—>
where Von Karman constant x = 0.4 ', we get

du B ™/ p .

de R Kz

Integration of the equation gives the famous logarithmic velocity profile

u f2) = = i (—:—) (15)

K 20

where the integration constant zo is the elevation corresponding to zero velocity
(t:=-, = 0), given by Nikurase by the study of the pipe flows.

B:11 = Hydrauhcally smooth flow “‘Vk" <3
Zy = ¢ 04088 & Hydraulically rough flow teaks > 70 (16)

0.11 = + 0.033 &, Hydraulically transition flow 5 < 1‘7“* < 70

[t is interesting to note that the friction velocity w., which, by definition, has nothing
to do with velocity, is the flow velocity at the elevation z = zge”, i.e.
Uz=zper = Ux

In the study of sediment transport, it is important to know that the friction velocity
is the fluid velocity very close to the bottom, cf. Fig.9.

L = 0.4 is obtained experimentally in pipe flow

12



Viscous sublayer
In the case of hydraulically smooth flow there is a viscous sublayer. Viscous shear
stress is constant in this layer and equal to the bottom shear stress, i.e.

du
T, = pV— = Ty
dz
[ntegrating and applying u|.—¢ = 0 gives
Iy “'2
2 = Ly &
i LBy = = = =g L7
() = £z =5 (17

Thus, there is a linear velocity distribution in the viscous sublayer.

The linear velocity distribution intersect with the logarithmic velocity distribution
at the elevation z = 11.6v/u., yvielding a theoretical viscous sublayer thickness

R o= 1EE
(%

The velocity profile is illustrated in Fig.9, with the detailed description of the fluid

velocity near the bottom.

1<

U@ =L (%) @) =4 in(3)

2 Zz
U(z) ==e 2
. i L
Zy

N

z,e"

/ viscous sublayer L
ré =11.6-% s
6, =116

1 - L x

——

ks =f(sediment diometer) ks =f (height ond length of sand ripples)

Hydraulically smooth flow Hydraulically rough flow

Fig.9. Ilustration of the velocity profile in hydraulically smooth and rough flows.

13



Bed roughness

The bed roughness k; is also called the equivalent Nikurase grain roughness, because
it was originally introduced by Nikurase in his pipe flow experiments, where grains
are glued to the smooth wall of the pipes.

The only situation where we can directly obtain the bed roughness is a flat bed
consisting of uniform spheres, where k&, = diameter of sphere.

But in nature the bed is composed of grains with different size. Moreover, the bed
is not flat, various bed forms, e.g. sand ripples or dunes, will appear depending on
grain size and current. In that case the bed roughness can be obtained indirectly
by the velocity measurement, as demonstrated by the following example.

Example 2 Find the bed roughness from velocity measurement.

Given Flume tests with water depth h = Im, the measured velocities at the elevation
of 0.1, 0.2, 0.4 and 0.6 m are 0.53, 0.58, 0.64 and 0.67 m/s, respectively.

Wanted bed roughness &,

Solution The fitting of the measured velocities to the logarithmic velocity profile by the
least square method gives u. = 0.03 m/sand z3 = 0.0000825 m. Hence,

ke = 2/0.033 = 0.0025m n = pu’ = 0.9 N/m?

we can confirm that it is hydraulically rough flow by u.k./v =75 > 70

Z (m)
1i5

Uz =L in(f)

- 234
L3

0.1 4
(logz—log)

U, =003 n/s

0.01 4
Z, = 0.0000825

0.001 s L A 11 (m/s)
0.0 05 10

Fig.10. Fitting of the measured velocities to logarithmic velocily profile.

Comment  The logarithmic velocity profile suggests that the maximum velocity occurs
at the flow surface. However, the measurements reveal that the maximum
velocity occurs some distance under the flow surface due to the surface shear
from the air. Moreover, the logarithmic velocity is basically developed for the
logarithmic turbulent layer which is close to the bottom. Therefore, the velocity
measurement in connection with the determination of 7, and &; is preferred to
take place at the elevation k; < 2 < 0.2 A

The following k&, values have been suggested based on flume tests

Concrete bottom ks = 0.001 — 0.01m
Flat sand bed ks = (1 — 10) x dso
Bed with sand ripples &k, = (0.5 — 1) x (height of sand ripple)

14



1.6 Chézy coefficient

(C'hézy proposed an empirical formula for the average velocity of steady uniform

channel flow
U= G VA § (18)
where R Hydraulic radius, i.e. area of cross section divided by wetted parameter

S Bed slope

C  Empirical coefficient called Chézy coefficient. (' was originally
thought to be constant. Various formulas for C' have been pro-
posed

Here we will see that C' can be theoretically determined by averaging the logarithmic
velocity profile.

Recalling that the friction velocity is (eq (13))

Wy = 45/g B 5

and applying it into eq (18), we get the expression of C'

¢ = %\/_(7 (19)

t

Averaging the logarithmic velocity profile gives

fu h -~
[ = l/ w(z) dz = - / In (;—) dz
h Jz £ h Jz 20
& h # u h
y fﬂ_(ln(_?)_u_e)w_-m(_?) (20)
P 2 h K Zp €

Inserting the above equation into eq (19) gives

¢ - VI 111( h ) (21)

I Zg €

18 log (3.;2‘/?%) Hydraulically smooth flow % <5
- (22)
18 log (l-ii) Hydraulically rough flow %‘— > 70

where the expression for zg has been used and Ln has been converted to Log. More-
over the inclusion of ¢ = 9.8 m/s* means that C has the unit \/m/s.

15



Example 3

Given

Wanted

Solution

Comment

Chézy coefficient and bottom shear stress.

A project 1s to be located at the water depth h=5 m in Kattegat strait. The
measured tidal current velocity is U=1 m/s (Havnecon a/s). The sediment size
is dgp=0.15 mm (Danish Geotechnic Institute). It is estimated that the height
of sand ripples is app. 10 em.

1) Bottom shear stress 7, when there are sand ripples with height of app. 10
cm on the bed

2) Bottom shear stress 7, if the flow is hydraulically smooth.
1) When there are sand ripples on the bed

Bed roughness ke = 0.75 x (height of sand ripple) = 0.075 m

Chézy coefficient €' = 18 log (IT’-) = 18 log ($33) =52.3 /m/s

Friction velocity i = % VI = 35 VI8 = 0.06 m/s
Bed shear stress 7 = pud = 1000 x0.06® = 3.6 N/m?

The flow is hydraulically rough as

e s -~ 0.06 x 0.075

- S = 4500 > 70

2) If we assume that the flow is hydraulically smooth (not the case in reality),
we have

12 h
& = i lanf —a
e (3.3 u/u.)

By inserting w. = U ,/g/C into the above equation, we get
| . 114U h . 114%x1x5

The solution of the equation is C' = 103 /m/s
Friction velocity — u. = g» Vi = 1tz V98 = 0.03 m/s

Bed shear stress 7 = pu? = 1000 x 0.03% = 0.9 N/m?

The example shows that if we know only the average velocity, which is often
the case, it is easier working on C.

For turbulent flow over ripple bed, The bottom shear stress obtained in the
above example is consisted of skin friction shear stress 7} and form pressure of
ripples 7', It is 7 which drives grains as bed-load transport. More details will
be given in the next chapter.

16



1.7 Drag coeflicient, lift coefficient and friction coefficient

Drag and lift coefficients

A real fluid moving past a body will exert a drag force on the body, cf. Fig.11.

u ¢ Dboundary layer thickness

[ ] S seperation point

=

7
4
@ Flow pattern
N

b S <

A Normal and shear stress
U/ (Form pressure and skin friction)

liftt F =}pc A
drag Drog and lift force
Fp= 3PCoAU®

Fig.11. Drag force and lift force.
Drag force is consisted of friction drag and form drag, the former comes from the

projection of skin friction force in the flow direction, and the latter from the pro-
jection of the form pressure force in the flow direction. The total drag is written

as
1 1 v r2 ?
Fy = 3[)69%{0‘ (23)
The lift force is written in the same way
1 ;
Fp = 5pCL AU (24)
where A Projected area of the body to the plane perpendicular to the

flow direction.

Cp. Cp Drag and lift coefficients, depend on the shape and surface
roughness of the body and the Reynolds number. They are
usually determined by experiments

L



Friction coefficient

Fig.12 illustrates fluid forces acting on a grain resting on the bed. The drag force

1

FD = 5 pCD A (a- U)2

where a is included because we do not know the fluid velocity past the grain, but
we can reasonably assume that it is the function of the average velocity and other

parameters.
liftt Fy
avearge
velocity
=
T x

Fig.12.

drag Fp

Fluid forces acting on a grain resting on the bed.

We can also say that the grain exerts a resistant force Fp on the flow. If A’ is the
projected area of the grain to the horizontal plane, the bottom shear stress is

2 ( O A

4!

Fp 1
AT 2

™ =

) % = %pr?

where f is the [riction coefficient of the bed. which is

By applyving the Chézy coefficient we get

0.06
12 A

(log(=%2=) )

]

0.06

43 2
( log(%2) )
Example 4
The bed friction coefficient is

0.06

Solution

Hydraulically

Hydraulically

(25)

a dimensionless parameter.

smooth flow “;UL £ 5

rough flow

Calculate the bed friction coefficient in Example 3.

0.0071

Il

f =

B o=

7

Cemment

(oe(22))"

Therefore, the bed shear stress is

g fU* = % 1000 x 0.0071 x 12 =

3.6 N/m?

f is preferred over C' because f is non-dimensional.

_ 84

Darcy-Weisbach friction coefficient obtained in pipe flow is f,,, = =4



1.8

(S

Exercise

A bridge across a river is supported by piers with a square cross section
(length=width=B=1 m). The water depth is h=10 m. The velocity distri-
bution in the river can be expressed by

6 U. fz\Ve
tifg] = . (};)

where the friction velocity is U. = 0.05 m/s.
The square piers can be placed in two ways with different drag coefficients,

see the figure.

U
— Cp=2
_i.., Cp=15

1) Which placement of the pier gives minimum fluid force ?

2) Calculate this minimum force.
A project is to be located at the water depth h=5 m in Kattegat strait. The

measured tidal current velocity is U=1.5 m/s (Havnecon a/s). The sediment
size is dgp=0.15 mm (Danish Geotechnic Institute). It is estimated that the

height of sand ripples is app. 10 cm.

1) Chézy coefficient C'.
2) friction coefficient f.

3) bottom shear stress 7.

19



2 Sediment transport in open channels

2.1 Sediment properties

Density
The density of natural sediments is ps = 2650 kg/m?3. Therefore, the relative density
15 3= p,/p=2.65,

Size and shape of a grain

Generally grains are triaxial ellipsoids, having a long diameter d,, intermediate di-
ameter d; and short diameter d.. Corel shape factor gives the most useful description
of the shape of a grain

Ct (ln‘.‘

SCerel = T (1)

vV (la (lb

For natural grains typically Scsre = 0.7.

The diameter of a grain can be presented as

ds; Sieve diameter, obtained by sieve analysis
d, Nominal diameter, which is the diameter of the sphere having the same
volume and weight as the grain. d, = d; and d, is slightly larger than d,.

dy Tall diameter, which is the diameter of the smooth sphere having the same
fall velocity in still water at 24°C as the grain. Fall diameter is the best
description of the grain size, because it takes into account the grain shape.

Grain size distribution

The most useful and convenient method for the analysis of the grain size distribution
is the sieve analysis, cf Fig.l. The median diameter of the sample is dso. i.e. 50% of
the grains by weight pass through.

7% by weight being finer

100 —
a5

50

15

d(mm)

Fig.1. Grain size distribution.
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Settling velocity

When a grain falls down in still water, it obtains a constant velocity when the
upward fluid drag force on the grain is equal to the downward submerged weight of
the grain. This constant velocity is defined as the settling velocity (fall velocity) of

the grain.

Considering now the settling of a sphere with diameter d, cf. Fig.2

Drag force
1 2
FD= EPCDAU =

DT

Submerged weight
3
(A-P)a Tt

1 2
tocafu

[

Fig.2. Settling of a sphere in still water.

The force balance between the drag force and the submerged weight gives
1 nd T d
gl ——ws = g = P9
Therefore the settling velocity of the sphere is
1(s —1)gd
Gy == \/ . (2)
3Cp

The drag coefficient of a sphere depends on the Reynolds number (Pe = w; d/v)

% e o1 7 3
Laminar (Re < 0.5) Gip= % {by theory) s %3 (s—1) gu—d

Turbulent (Re > 103) Cp =~ 0.4 (by experiment) w,=/3(s—-1)gd

As to natural grains, Fredsge et al.(1992) gives the empirical expression for the drag

coefficient

36
Cp = 14 + 5 (3)

Inserting the equation into eq (2) and solving for w; give

\/(337»)2 + T5(s—1)gd, — B2

Wy = 23
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2.2 Threshold of sediment

Let us consider the steady flow over the bed composed of cohesionless grains. The
forces acting on the grain is shown in Fig.3.

ey
1 2
d Fp=3z0CpAU
u, . 2 2
'EPCD%(‘:“ )

il e it et sZl
AL fuil St
f(w'-R)
{: friction coefficient

w'=(p,-p)gl'éf
Fig.3. [Forces acting on a grain resting on the bed.

The driving force is the flow drag force on the grain
1 . ord? '
FD — pCD —_— (O.' ll.)g
2 i
where the friction velocity u. is the flow velocity close to the bed. a is a coefficient,
used to modity u. so that au. forms the characteristic flow velocity past the grain.
The stabilizing force can be modelled as the friction force acting on the grain.

If w. ., critical friction velocity, denotes the situation where the grain is about to
move. then the drag force is equal to the friction force, i.e.

1 . i . x d® 1 . md? -

g # o= wgl” = § ( (ps ~P)g —— — 5200 — (@) )
which can be re-arranged into

e ¥ 4

(s—=1)gd - a?Cp + [ a?Cp 3 a?

Shields parameter is defined as
u? "

SRR o

We say that sediment starts to move if
Uy > U critical friction velocity . .
or 6 = Thi critical bottom shear stress Ty . = p U,
or g 5 8. critical Shields parameter ), = (;%

o
o



Fig.4 shows Shields experimental results which relate 6. to the grain Reynolds num-

ber defined as

U dn
Py = — (6)

7

The figure has 3 distinct zones corresponding to 3 flow situations

1) Hydraulically smooth flow for Pe = I‘TJL <2

d, is much smaller than the thickness of viscous sublayer. Grains are em-
bedded in the viscous sublayer and hence, 8. is independent of the grain
diameter. By experiments it is found 0. = 0.1/ Pe

Hydraulically rough flow for Pe > 500

o
~—

The viscous sublayer does not exist and hence, 0. is independent of the fluid
viscosity. @. has a constant value of 0.06.

3) Hydraulically transitional flow for 2 < Pe < 500

(irain size is the same order as the thickness of the viscous sublayer. There
is a minimum value of @, of 0.032 corresponding to Pe = 10.

Note that the flow classification is similar to that of the Nikurase pipe flow (I"ig.8
of Chapter 1), where the bed roughness k; is applied in stead of d,.

v=_ U=
(s—1)gd
A
02
N
044 \‘N
0061
RN I T
O'an Laminar * \'\iil_‘:—r/' Turbulent
002 llow at b-.-d\“ o= T flow at bed
0.01 T T L v T T T reyr T _rl'_‘T'H R--&_d
10 2 4 6 10 2 40 100 400 1000 v

Fig.f. The Shields diagram giving 0. as a function of Pe (uniform and cohesionless grain).!

'The critical Shields parameter of sand in air is 0.01 < 0, < 0.02.
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It is not convenient to apply the Shields diagram because the friction velocity wu.
appears in both axes. Madsen et al. (1976) converted the Shields diagram into
the diagram showing the relation between the critical Shields parameter . and the
so-called sediment-fluid parameter S.

d(s—=1)gd
4 v

I_IY =3 L e s T Lo o |

Ser 7y /ls-Nad
Fig.5. The Shields diagram giving 8. as a function of S..

Example 1 Threshold of sediment

Given Sediment is quartz sand with p, = 2650 kg/m® and d = 0.2mm.
Fluid is sea water with p = 1025 kg/m> and v = 107 m?/s.

Wanted Critical shear stress 7 .

Solution The relative density is s = p;/p = 2.59

The sediment-fluid parameter is

s _ 4V-Dgd _ 00002/(259-1)x98x00002 _ ,
e iy = 4 x 10-8 -

From Fig.5 it is found 8. = 0.052, therefore,
Mg = B: (s—1)gd = 0.0127 m/s

e = pui, = 0.1658 N/m®



2.3 Bedforms, bed roughness and effective shear stress

Bedforms

Once sediment starts to move, various bedforms occur. In laboratory flumes the
sequence of bedforms with increasing flow intensity is

Ripples

Dunes

Antidunes

Flat bed = Ripples = Dunes = High stage flat bed = Antidunes

Ripples are formed at relatively weak flow intensity and are linked with
fine materials, with dsq less than 0.7 mm.

The size of ripples 1s mainly controlled by grain size. By observations
the typical height and length of ripples are

H, = 100dsq L, =~ 1000dso

At low flow intensity the ripples have a fairly regular form with an up-
stream slope 6° and downstream slope 32°. With the increase of flow
intensity, ripples become three dimensional.

The shape of dunes is very similar to that of ripples, but it is much larger.
The size of dunes is mainly controlled by flow depth. Dunes are linked
with coarse grains, with dso bigger than 0.6 mm.

With the increase of flow intensity, dunes grow up, and the water depth
at the crest of dunes becomes smaller. It means a fairly high velocity at
the crest, dunes will be washed-out and the high stage flat bed is formed.
When Froude number exceeds unity antidunes occur. The wave height on
the water surface is the same order as the antidune height. The surface
wave is unstable and can grow and break in an upstream direction, which
moves the antidunes upstream.

lowering of surface rising of surface
== = L — \_/\
- = - _/_/—\‘/ \_/\
erosion srosion
eposition 7, WM
T T e Py et T P S

d t i
ripple movement une movemen antidune movement

Ripples Dunes Antidunes

Fig.6. Illustration of flow over ripples, dunes and antidunes, and their movement.
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If we know the average velocity of the current, water depth and sediment size, the
bed forms can be predicted by empirical diagrams, e.g. the one by Znamenskaya
(1969), cf. Fig.7, where the sediment size is represented by the fall velocity of the
sediment (w;). The ripples speed (c) is also given so that the figure can be used to

estimate the bed-load transport.

I - Flat dunes
I~ . 2- Ripples
3- Dunes twisted in planes
A= H ; Steepdunes
- Area of i
008 0I2 0.0 ] T . Sm:c:h %{:;e destruction

T- Antidunes

3as ¢, m/doy

‘ 4 3 85 B6 o 30
- : ~7 0oa
G 002 o

004 c.08 L
| S WA 1111l I R L el u
5 0 20 50 100 200 500 1000 %000 10000 1,

Fig.7. Bed forms given by Znamenskaya (taken from Raudkivi, 1976).

Bed roughness

The bed roughness k; is also called the equivalent Nikurase grain roughness, because
it was originally introduced by Nikurase in his pipe flow experiments, where grains
are glued to the smooth wall of the pipes.

The only situation where we can directly obtain the bed roughness is a flat bed
consisting of uniform spheres, where k, = diameter of sphere.

Generally the bed roughness can be obtained indirectly by the velocity measurement,
as demonstrated by Example 2 in Section 1.5.

The large collection of bed roughness values, obtained by velocity measurement and
fitting, covering various flow regions with different sediment size, shows

(1 - 10)(150 flat bed
(8)

ks 22

100(150 = f’f,- ripp]ed bed



Effective shear stress

In the presence of ripples, the resistance to the flow consists of two parts, one
originating from the skin friction, another due to the form pressure of the ripples,

l.e.
no= )

where 7, is also called effective shear stress, because it is 7, which is acting on single

sediment.

Total shear stress
(flow resistance)

Ty 'rb‘ + Ty

Skin friction shear stress T
(Effective shear stress)

Sheor stress from form pressure
Tl Form drag fy
Heorizontal area of ripple

Fig.8. The resistance to flow over a rippled bed.

In the case of flat bed, 7/ = 0, and the bed roughness is usually taken as 2.5dsq. the

effective shear stress is?
’ 1 o 1 0.06 ’
n=n=5pfU" = sp U’ (10)

( log (?-15211;:0) )2

where h is water depth and U current average velocity. In the case of a rippled bed,
7y 1s the same as above, but the total stress is larger due to form pressure.

1 0.06 2
2"\ (1og (22) )

where the bed roughness is assumed equal to the height of ripples ().

(11)

T

b

The distinction between 7, and 7) explains the phenomenon that with the appearance
of rippled bed, and hence the increase of 7,, the bed-load transport does not increase.

?Assume the flow is always hydraulically rough.

o
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2.4 Transport modes
There are three sediment transport modes

Wash load very fine particles which are transported by the water, but these
particles do not exist on the bed. Therefore the knowledge of
bed material composition does not permit any prediction of wash
load transport. Hence, wash load will not be considered in this
book.

Bed-load the part of the total load which has more or less continuous
contact with the bed. Thus the bed load must be determined in
relation to the effective shear stress which acts directly on the
grain surface.

Suspended load the part of the total load which is moving without continuous
contact with the bed as the result of the agitation of the fluid
turbulence. The appearance of ripples will increase the bed shear
stress (flow resistance). On the other hand, more grains will
be suspended due to the flow separation on the lee side of the
ripples, cf. Fig.8. Thus the suspended load is related to the total
bed shear stress.

The basic idea of splitting the total sediment load into bed-load and suspended
load is that, as described above, two different mechanisms are effective during the
transport.

As to the boundary between the bed-load and the suspended load, argument is
still going on. Einstein (1950) suggests the boundary to be some grain diameters,
typically 2dso, above the bed. But this is not realistic when the bed is rippled,
which is almost always the case. Therefore Bijker (1971) proposed that the bed-
load transport takes place inside a layer with a thickness being equal to the bed
roughness (height of ripples).

The ST unit for sediment transport is mij.;’ readed cubic meter of sediment per meter
width per second.

Moreover, only cohesionless sediment will be treated in this book.



2.5 Bed-load transport formulae
Bed-load transport ¢, is often expressed in the dimensionless form

By = ——al (12)
dy/(s—1)gd

KNalinske-Frijlink formula

Kalinske-Frijlink (1952) formula is a curve fitted to all data available at that time

—027 (s =1 15
gy = 2dso \/ge.rp( Gt | 7 £ opg) (13)

where 7, and 7 are bottom shear stress and effective shear stress, respectively.

Meyer-Peter formula

The fitting of large amount of experimental data by Meyer-Peter (1948) gives
dp =3 (0 — 07 (14)

£ il ; 7!
where '  effective Shields parameter 8’ = (3—_}’%
7,  effective shear stress

0. critical Shields parameter

Einstein-Brown formula

The principle of Einstein's analysis is as follows: the number of deposited grains in
a unit area depends on the number of grains in motion and the probability that the
hydrodynamic forces permit the grains to deposit. The number of eroded grains in
the same unit area depends on the number of grains in that area and the probability
that the hydrodynamic forces are strong enough to move them. For equilibrium
conditions the number of grains deposited must be equal to the number of grains
eroded, which, together with experimental data fitting, gives

b = 40 K (0')° (15)

K = 2 3612 3612
| E R Py X (s=1) g d

Bagnold formula

Bagnold proposed a formula based on the work done by current. The formula has
the same form as the modified Meyer-Peter formula.
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Example 2  Bed-load transport
(iiven A river with
sea water  p=1025 kg/m® v =10"%m?/s

flow U =11nfs h=2m
sediment ps = 2650 kg/m?  dsp = 0.2mm.

Wanted Bed-load transport g,
Solution 1) critical Shields parameter
The relative density is s = ps/p = 2.59

The sediment-fluid parameter is

dso /(s —=1) g dsg 0.0002 \/('2.59 —1) x 9.8 x 0.0002 ~
= . = 270
4 v 4% 10-°

Sy =

From Fig.5 it is found the critical Shields parameter is 6. = 0.052.

2) Effective Shields parameter

The effective shear stress is

006 |
(1os(245) )

The effective Shields parameter is ¢’ = F{% = 0.44

~

= 140 N/m?

1

p

-
| —

As we do not have information on ripple height, we take If, = 100 d5¢ = 0.02 m,
the bottom shear stress is

1 0. 2 ry 8
o 2 __ 06 U= = 3.24 Nfwr-

* (e (2))

The coefficient in the Einstein-Brown formula is

2 3607 3607
[' = - = = "14
: \/3 't (s—1) g ddy \/(s—l)y d3y :

3) Calculate ¢, by formulae

formula Kalinske-Frijlink  Meyer-Peter  Einstein-Brown

1, (m3/(m*s)) 0.0000121 0.0000215 0.0000167

Comment  The total bed-load transport in the river depends on the width of the river.

When the accuracy of sediment transport formulae is concerned, experts say
that if a formula gives the correct order of magnitude, it is a good formula.

[t is not surprising that the formulae give more or less the same result, because
all formulae include parameters to be determined by the fitting of experimental
results.

30



2.6 Suspended load

Sediment concentration in a steady current

Consider a steady flow in a open channel. The sediment is kept in suspension
by turbulent fluctuations. Sediment concentration ¢ has the unit m®/m?, i.e. the
volume of sediments in 1 cubic meter water. The classical approach to calculate
the vertical distribution of suspended sediment is to apply Prandtl’s mixing length

theory, cf. Fig.9

i1l

c(z)

%
TFTTZ 77777777777 777777777 T 7% cfz)

Fig.9. Suspended sediment in steady turbulent flow.

Consider a uniform sand with a settling velocity w,. In a unit time, through a
unit area on the horizontal plan A-A, the volume of sediment travelling upward and

downward are
1 de
—_— !’ = '] — — —
2 = lu ws) (c '2((1:)

g = (v + w) (C = 5{5)
In a steady situation, ¢, and ¢; must be equal to each other, which gives

! le
cwy + sw'c"l—" = (16)

Z az

By assuming that

/| z
—wl = Ku.z (1 - —)

2 h
where & = 0.4 and u. is the friction velocity, we get
z\ de
cws + K u.z (] — —) — = { (17)
h/) d:
which is integrated with the integration constant given by ¢|,_, = ¢,
h—z a (%)
el#) = &y 18
(=) ; ( z h- a) (18)
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Reference elevation and reference sediment concentration

a and ¢, in eq (18) are called reference elevation and reference sediment concentra-
tion, respectively.

The reference elevation a is the boundary between the bed load and the suspended
load. Bijker (1992) suggests that a is taken as the bed roughness k; and relates ¢,
to the bed-load transport ¢,.

It is assumed that bed-load transport takes place in the bed-load layer from z = 0 to
z = a = k,, and in the bed-load layer there is a constant sediment concentration ¢,.
Iig.10 shows the velocity profile applied by Bijker. He argues that in hydraulically
rough flow there is still a viscous sublayer, which starts from z = 0 to z = zy € where
the linear velocity distribution is tangent with the logarithmic velocity distribution.
Note the thickness of the viscous sublayer is much smaller than that in hydraulically
smooth flow (Fig.9 in Chapter 1).

Z
suspended—load
transport
-~ a=ky—m8m8mf - -
u 2z
u{1)=?'- in(3,)
A e e
K 0
= ] 1 bed-load
viscous tronsport
sublayer
2o 7,
. i

ke =f (height and length of send ripples)

Fig.10. Viscous sublayer in hydraulically rough flow.

By the logarithmic velocity profile we get
W, = B

z=zIge

The averaged velocity in the bed-load layer is

[’fb == i i& ZU € + / u_= ln (_) dz = 634 U
By \2 & ze K Zo

therefore, the bed-load transport is
Gy = Us ¥y 6
hence we obtain the reference sediment concentration

9y 4p
=0 = Uy ks 6.34 u. kg (19)




Suspended sediment transport

Now we know the vertical distribution of both the suspended sediment concentration
and the fluid velocity, cf. Fig.11.

il

u(z)
c(z)

Y e

Il 77r7, ////////////////f/ v X

Fig.11. llustration of vertical distribution of ¢ and w.

the suspended sediment transport can be calculated as

h
e = f! u(z) e(z) d=

h ( U, > h=2 & (%)
= / — In (—) &, dz
@ I Zo : h—ua

h
= 110 %t a ([1 In (m) + ]?)

where [, and I, are Einstein integrals given by

Alze—1) 1 ] — B %
= 02 AT (___) 1B
o= 0216 f,; = g

g(ze—1) 1 | = i
L = 0216 4 f (—“ ) InB dB

(1—A)>= Ja B

k. z Js
where A= — B=- 3z = x

h h & Uy

By applying Bijker's recommendation on @ and ¢,, we get

h
= 1.8 0.033 k. I)
g = L83 q, (1] In (0.033 ks) + ]2) (20)
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Example 3 Suspended sediment transport

Given As in Example 2, i.e.)

sea water  p=1025 kg/m® v =10"° m?/s

flow =1 /s h=2 m

sediment ps = 2650 kg/m?®  dso = 0.2mm.
Wanted Suspended sediment transport g,

m 2

Solution In Example 2 by Meyer-Peter formula we get ¢, = 0.0000215 2,

and by assuming H, = k; = 100 dsp = 0.02 m, we obtain 7, = 3.24 N/m?

The fall velocity

wy = 53 = 0.02 m/s
The friction velocity u. =,/ =0.056 m/s
Therefore  A=%:=001 = =2 =089

and we get the Einstein integrals by numerical integration

Ab=-D gl 1 B \*
i 0216 ——— — 1B = 1.00
1 = J, ( 5 ) ‘

AG—1 b (1 — B
. 216 ———— —_— | dB = =25
9 0.216 = A /‘ ( B ) nBdnB 50

I

The suspended sediment transport is

/

. 2 & &

Is

??13

= 0.000217

* 5

The ratio between the bed-load and suspended transport is

s . h )
D = = =183 [ In| — 3} =
Q e 8 ( 1 In (0_033 T + I_) 10

:3 '{;I



2.7 Total sediment transport
There are numerous formulae, ¢f. Raudkivi (1976). Two of them are

Bijker 49r = 4y + 95 = ¢4 (1 + 1.83 (Il In (ﬁ) 1 12))

e = 00502 /T - T
Engelund ¢, = 0.05 U ot] g ({ps_p) 5 dao)

Example 4  Total sediment transport

Given As in Examples 2 & 3, i.e.)
sea water p=1025 kg/m* v =10"% m*/s
flow U=1m/s h=2 m
sediment ps = 2650 kg/m*®  dsq = 0.2mm.
Wanted Total sediment transport g
Solution In Examples 2 & 3 we obtained
T = D24 N/m?
¢s = 0.0000215 I
g = 0.000217 I

The total sediment transport

Bijker 9r = @5 + g = 0.0000215 + 0.000217

0.000239

mx=s

1.5
S = — = 2 dsn Th
Engelund ¢, = 0.05U vV =177 ((psﬂ,) = dm)
0.05 x 12 0.0002 3.24 e
= (259-1)x9.81 |\ (2650—1025)x9.81%0.0002

= 0.000179 =

m=s

Il



2.8

5

Exercise
A river with
sea water  p= 1025 kg/m®
flow U= 15 mfs
sediment  ps = 2650 kg/m?
1) threshold of sediment
2) bed roughness

bed-load transport

)
) suspended-load transport

) total transport

36
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h=3 m
dso = 0.2mm.



3 Wave boundary layer

This chapter is written with a view to coastal sediment transport. The main outcome
is the bottom shear stress of sea bed.

3.1 Concept of wave boundary layer

Linear wave theory gives the amplitude of water particle oscillation on the bottom
H 1
2 sinh (2—2 h)

and the horizontal velocity of water particle

A =

uy, = L-m Sin(wt) (2)

where U/, is the maximum horizontal velocity

[ ol ] 1 | (3)
by = : = Aw :
T sinh (2 ; h)

Z
n=gcnsut
v oW | o~ /\ v SWL
h
= r"‘/‘-’rl B ///////.r’ //////
T .

Fig.1. Horizontal velocity profile and water particle orbit by linear wave theory.

Linear wave theory assumes that the fluid is ideal (no viscosity), so there is water
particle movement on the bottom, which is not the case in reality. Unfortunately,
for the study of sediment transport, the flow pattern close to the bottom is of great
interest. To overcome this contradiction, the concept of wave boundary laver is
introduced.

Prandtl developed the concept of fluid boundary laver in general: For fluids having
small viscosity, the effect of internal friction in the flow is appreciable only in a thin
layer surrounding the flow boundaries. Under wave action, this thin layer is called
wave boundary layer.



3.2 Laminar wave boundary layer on smooth bed

First we will get some impression of wave boundary layer by looking at the laminar
wave boundary layer on smooth bed, which can be described theoretically.

Oscillating water tunnel

Lundgren and Serensen (1956) invented the oscillating tunnel to model the wave
boundary layer, cf. Fig.2. Note that the piston movement is the same as the water
particle on the sea bed given by linear wave theory.

The flow in the test section is horizontal and uniform. The thickness of the boundary
layer changes with time, but remains very thin due to oscillation. Outside the
boundary laver, the flow is undisturbed.

i piston
i U Unsin wt

= ]
1

x

é

test section |

2 — 10 meters

Fig.2. Oscillating water tunnel.

Formulation of equation of motion

We start from the Navier-Stokes equation in the horizontal direction

du 4 tau i du dp 4 I (4)
= — v—| = —— — .
S ¥ dx e Dz dz
The flow in the test section is horizontal (w = 0) and uniform (f}—; =0)
du dp ar
P ™ "5 T & (5)
QOutside the boundary layer we have u = 1y and 7 = 0, therefore
dup dp
. T 6
ot dz (6)
which, minus eq (5), gives
A1 — ug) ar
e T 2



Because the flow is laminar, shear stress can be expressed by Newton's law of vis-
cosity
du

(8)

F = P Y

=

we get the equation of motion

I(u — ug) d*u (9)

14 -
ot 9%z
The boundary condition is

ul,.g = 0 Uiy = U sinfwt) (10)

Velocity profile and bottom shear stress

The solution of eq (9) is

u = Uy sinfwt) — Uy exp (—;) sin (wi - ;) (11)
\V 2v[w 2v[w

The second term is a dampened wave, which decays quickly away from the bed, cf.
Fig.3.

— u(z)

Fig.3. The local velocity amplitude oscillating around U,,.

The bottom shear stress is given by

chu

= 2v0Un [5in(wt) + cos(wt)]

" = PVg, =0 £ 2v]e
= Thmaer Sin(wt + 45°)

where Thmar = 25 ?"

Viw

As the free stream velocity is up = U, sin(wt), we can see that the phase shift
between 7, and up is 452, i.e. Ty ma- will appear ahead of U, by 45°.
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3.3 Wave boundary layer thickness

With the inclusion of the wave boundary layer, the velocity profile corresponding to
wave crest 1s shown in Fig.4.

c z
vyslvj//ﬁw %

| 1

A
Ve AL

i
m

Fig.4. wave boundary layer (laminar flow on smooth bed).

The boundary layer thickness depends on how we define the top of the boundary
layer. Jonsson (1966) defined the top of the boundary layer as the minimum elevation
where the velocity amplitude is equal to U,,, which, by eq (11), gives

2w

3 (12)

W

§ =

&5 | =)

Sleath (1987) defined the top of the boundary layer as the elevation where the
velocity amplitude is 95% of U, i.e. 3% relative difference, which gives the boundary
layer thickness

2w

60.05 = 3 _" (13)

In reality, the flow type is turbulent flow on rippled bed, the boundary layer thickness
is affected by bed roughness, cf. Fig.5. Sleath (1987) gives the empirical formula

60.05 ANOT
5 _ g (4) y
k. I, (14)
where k, is the bed roughness and A the amplitude of water particle oscillation on
the bottom.

(]

—— -

FT T T Dt Ty T
Fig.5. wave boundary layer thickness over rippled bed.

40



Example |

Given

Wanted

Solution

Comment

Wave boundary layer thickness

Wave height H=2 m. wave length L= 80 m
Water depth h=5 m, sea bed ripple height H,=15 cm
Wave boundary layer thickness &p o3

By linear wave theory the amplitude of the water particle on the bottom

H

— ——— = 248
2 sinh ( zh) &

A=

(]

The bed roughness is taken as the ripple height k; = H, =0.15 m, then

4

0.70
k,) By = 028 m

do.0s = 0.26 (

Boundary layer thickness at one location varies with time. 8595 = 0.28 m
is the one when wave crest passes the location (maximum boundary layer
thickness).

In Section 1.1 we have shown that the boundary layer fulfils the whole
flow depth in channel flow. However, the wave boundary layer will re-
mains thin due to the oscillation of water particles. Let us imagine a
progressive wave with a period of 8 seconds. First water particles close
to the bottom move forward, wave houndary layer is developing, but
the development is stopped after 4 seconds, because the water particles
stop and start to move backward, and a new boundary layer starts to
develop.



3.4 'Wave friction coefficient

Definition of wave friction coefficient

The current friction coefficient f. is defined as

1 9 "
no=3pfhl’ (15)

As to sea bed, the bottom shear stress varies with time. Jonsson (1966) defined the
wave friction coefficient f, as

1 -
Thymaxr — }; 14 fw L;; (].6)

where U, is the maximum horizontal velocity of water particle on sea bed. given
by the Airy wave theory. f. is a fictional coefficient because 74 . and U,, do not
occur at the same time.

Wave friction velocity is defined as

Th,max . fu' - -
iy = ) P = 5 U (17)

f.: Laminar boundary layer and smooth bed

The theoretical expression of 7y 4, for laminar boundary layer on smooth bed is

prln
Th,mar — — 77—
Vv«

By comparison with eq (16), we get

f 2 v 2 v _)( v )0-5
YU Un 2 Aw v T T\A%w
W w

By observation it is found that laminar boundary layer on smooth bed corresponds
to A%w/fv <3 x10°

fw: Turbulent boundary layer and smooth bed

Justesen (1988) suggests

A w

17

4 g (18)

-0.123
fw == 0024 (Az ‘ .) fOl' ].06 e



fw: Turbulent boundary layer and rough bed

In reality the flow is always hydraulically turbulent over rough bed. Jonsson (1966)
gives an implicit empirical formula for f,., which is approximated by Swart (1974)
in an explicit form

A‘ 0.194
exp (5.213 (I) - 5.977)

Nielsen (1992) means that Swart formula tends to overpredict f, for small k;/A, cf.
Fig.6. The new fitting gives

fw == (19)

0.2
: kg ; ;
fu = ezp| 55| — - 6.3 (20)
A
T =
05 3
— Swart 3 o
wses Swaré-Nielsen A
o1 HY
005 "_.. 3
A
by A
g
001} P I
A ’;‘ 4
0005 == - - -
0.0a1 .01 48] 1

Fig.6. Observed wave friction coefficient.

Example 2

Given

Wanted

Solution

Comment

Wave friction coefficient f,

Wave height H=2 m, wave length L= 80 m
Water depth h=5 m, sea bed ripple height H,.=15 ¢m

Wave friction coefficient fy

By linear wave theory the amplitude of the water particle on the bottom

(] R

A= = 248 m

H
2 sinh (33%)

The bed roughness is taken as the ripple height ks = H, =0.15 m, then

£ 02
Fo = ezp (5.5 (—;) - 6.3) = 0.050

Current friction coefficient is

0.06
fi = m=——ary

(o5 (£2) )
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= 0.00886




3.5 Mechanism of sediment transport in coastal regions

The mechanism of coastal sediment transport is: Wave stirs up sediment and current
transports the sediment.

We have shown that wave boundary laver remains thin and current boundary layer
fulfils the whole flow depth. In the coexistence of wave and current, even if the
current velocity is much larger than the wave-induced velocity near the water surface,
the wave-induced velocity will dominate the situation close to the bottom, cf. Fig.7.

wave—induced velocity
— — Tidal current velocity

vg.u,/'w e

h /;/

o+ 3 1
Pl e e o

Fig.7. Comparison of current and wave velocity profiles.

However, because of the one step forwards and one step backwards nature of water
particle movement due to waves. current will usually be the main transporter of
the sediments stirred up by the waves, except for wave breaking zones, where a
longshore current is produced due to wave breaking.

Example 3 Bed shear stress by currents and waves respectively
Given As in Example 2, i.e.
Wave height H=2 m, wave length L= 80 m

Water depth h=5 m, sea bed ripple height H,=15 ¢m
Current velocity U= 1 m/s

Wanted Bottom shear stress by current and wave respectively.
Solution In Example 2 we have obtained f,, = 0.050, f. = 0.00886and A = 3.48m

By linear wave theory we get T &~ 12 s and Up, = Aw = 1.3 m/s

current = & p foU? = 448 Njm®

wave B = 2 ol U2 = 893 V'



3.6 Boundary layer of irregular waves

The preceding analysis of wave boundary layer mechanics is based on the assumption
of one periodic wave. In reality, wind waves are formed of the superposition of many
periodic waves with different frequency and amplitude.

Madsen et al. (1988) presented the wave boundary layer model described by the
spectrum of the near-bottom orbit velocity of water particles. The main effort is de-
voted to find a representative periodic wave which gives a boundary layer mechanics
close to that of irregular waves. It is found that the representative periodic wave
has the wave height equal to the root-mean-square of irregular wave heights H,,s
(= H,/V/?2). and the wave period equal to the significant wave period T.

3.7 Boundary layer of wave and current: Fredsge’s model

For the sediment transport, we need to know the bed shear stress and the current
velocity profile under combined waves and currents. The analysis in this section is
based on Iredsee (1981).

With wave alone, the wave boundary layer thickness is 8, and the flow is divided into
two zones, outside the wave boundary layer (z > ¢) where the flow is frictionless. and
inside the wave boundary layver (z < §). With the superposition of a weak current,
turbulence is produced outside the wave boundary layer by the current. Inside the
wave boundary layer both the wave and the current contribute to turbulence. But
the current is so weak that the wave boundary layer thickness is app. the same.

First we will consider the case where waves and currents are propagating in the same
direction.

Mean bottom shear stress

With wave alone, the maximum bed shear stress and the wave friction velocity are

I 8 f « { T
Tw,maz‘ = 3- ij [}31 u-,w — % — f% Um

where U, is the maximum horizontal velocity on bed given by the linear wave theory.
Because the wave boundary layer is very thin, U,, can be taken as the velocity on the
top of the boundary. The instantaneous bottom velocity and bottom shear stress

are
1

iy = (f-m Si[l({.dt) Ty = 5 wa ufu

Now the current is superimposed. the current velocity on the top of the boundary
is Us, the combined instantaneous flow velocity on the top of the boundary is

w = uy + Us = U, sinfwt) + U;
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The combined bed shear stress is

1 2
Twe = 9 P fw u

The mean bed shear stress is

1 [T 2
Twe = _/ Twe di ~ —p .fw (jm ['TS
0 T

If we know the wave (H, T. h) and the current (average velocity U), then é, f.. and
[/, can be calculated from wave alone, but Us is unknown at the moment because
the velocity profile has been distorted by waves.

Velocity profile outside the wave boundary layer

Without the wave, the current velocity profile is

(e} = “-'Cl ( Z )
wiz) = == In{gmmm

where wu. . is the current friction velocity, &, bed roughness, Van Karmen constant
k= W4,

With the wave, Grant and Madsen (1979) suggest the velocity profile

U, e =
> — = s "2
da b (0.033 k) (21)

where the combined wave-current friction velocity is

Tuwe
Uy = ~
p
k, can be interpreted as the bed roughness under the combined wave and current

flow. Inserting u|._s = Us into eq (21), we get

ky = 308 exp (—H Ud) (23)

U e

The average velocity of the current is

) 1 rh L Uwgge [P 2 )
o= 17/5 u(z) dz = =% /a 111(kw) dz
L[
N Une (6.2 + —In (-i)) (24)
K fois

Combining eqs (22), (23) and (24) gives
Us =C - JOT =T

where C' = U + % f, Un (6-2 + %ln (ﬁ))z
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Velocity profile inside the wave boundary layer
Inside the wave boundary layer, turbulence comes from the wave and the current.

The combined eddy viscosity is
Bue = 8o + By = & (Meme F Bage) 2 (25)
Therefore the mean bottom shear stress is
_du
Twe = P Cwe (26)
dz
which can be rewritten into
2
du U e 1 (27)
g = 97
dz Bewe: + Maw 2
The integration of the above equation gives
9
il o 3
- we b (_) (28)
<0

u =
B Wess T e
where the integration constant zp is the elevation corresponding to zero velocity

(t].-., = 0). Nikurase gives zo = 0.033 k.
Fig.8 gives an example of the velocity profile with and without waves.

Z (m)
104
14
6 <
0.01 4
U (m/s)
0.001 . . z L . 5
05 10 1.5

Ig.8. Velocity profile with and without wave for the same water discharge



Example 4

Given

Wanted

Solution

Comment

Bed shear stress and velocity profile in combined wave and current

Average current velocity U=1 m/s

Wave height H=2 m, wave period 7= 8 s

Water depth h=10 m, sea bed ripple height H.=5 em
Wave and current propagate in the same direction

Bottom shear stress and velocity profile
By linear wave theory, we get

H

L=7lm A= — ————
2 sinh ( z )

ro""‘

The bed roughness is taken as the rvipple height k; = H, =0.05 m, then
0.70
6 =02 (&) k =010m

0.038

i 1/” maz \/'fgi Uy = 0.11:m/fs

O =84 LfUn B2+ 2ia(s5))" = 179 mys

s =@ —VE?2 — U7 = 0.31 m/s

Mean bottom shear stress 7, = %ﬂ B Uay. Uy .68 N/m?

b = \/? = 0.075 wifs

ko = 306 exp(-2%) = 059m

—~
g
[l
o
iy
=
—
(1]
o
—_
wlF
~—
[=}
]
|
(o)
o
Qe
Il

VAR
=098m, Un=4Aw=A4A— =
m T

0.77 m/s

Outside the boundary layer u (z) = *=2< |p (0_033 l'w) = 0.19 In(55s)

2
ul.ll'.lﬂ

Inside the boundary layer u (z) = & sttt — In (0 it k‘) = 0.076 In (555

Current alone, we have

= 0.08 . &
fo = [Togtamyy = 00053

My =5 ./I;- = '%“— U = 0.051 m/s

u(z) = == l“(ﬁﬁiza—k,) = 0.13 In (55m)

Comparison of velocity profile is shown in Fig.8.



Wave and current forms an angle 3
FFig.9 shows the horizontal velocity vector on the top of the wave boundary layer

(z =8}
Y
J — — Envelope of velocity vector
U
-~ 7 - Wave
=~ we &
-~
~ U
- = = Uy = Uy sin(wt) /<8
— _— X
\ Uy // Current
/ Uy current velocity
\ / U, wave orbit velocity z=0
\ y u combined velocity
v
—Up

Fig.9. Instantaneous velocity on the top of the wave boundary layer.

The combined velocity u is

u =

\/[3 + u? + 2 Us u, cosf
The bottom shear stress is

1 b
— i f_
5P fu

which acts in the same direction as u, cf. Fig.9. The bottom shear stress in the

Us + u, cos?

1 _ 1 5
fo u® cose = = p fo u*
2 u

Twe = 5 P

The mean bed shear stress in the current direction is
1 + cos?f
A e (30)

1T 2
[ rudt = = p fu Un U—
] L

current direction is

T

Twe = _T



3.8 Boundary layer of wave and current: Bijker’s model

Opposite to Fredspe, Bijker (1971) assumes that the wave is so weak that it will not
affect the thickness of the current viscous sublayer.

First we consider the current alone. Bijker assumes that there is a viscous sublayer,
starting from z = 0 to z = zp e where the linear velocity distribution is tangent with
the logarithmic velocity distribution, cf. Fig.10.

z ¥y
= — = Envelopas of velocity vector
s
/-f ¥ 2 Wavs
(=2 in(%) o
= =1
=l U, = Uy 8dn (wt) g
\ [ // = Current
Z; e — "
r \\ // Ur current welocity
viscous \ 7 Uy wave orbit velocity
subloyer \ /7 u combined valocity
Zy L/
7 i ~Ug
X

Fig.10. Viscous sublayer in hydraulically rough flow.

By the logarithmic velocity profile we get

Uy = = Webm

z=z2p€
and the bottom shear stress is

2 2 rr2
Te = Pl = pu U

<

Now the wave is superimposed, c¢f. I"ig.10, the combined instantaneous flow velocity
on the top of the viscous sublayer is

i = \/[f,? -4 ”‘12;,' + 2 U, uy, COS,B

The combined bed shear stress is

Ty = P f‘.“z u2

The mean bed shear stress is

1 T
Twc:_/; Tuc 9t &0 T +

Tw,maz (31)

(W

Bijker’'s mean bed shear stress is in the direction of the combined velocity u.
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Example 8  Bed shear stress in combined wave and current by Bijker's model
Given As in Example 4, i.e.

Average current velocity /=1 m/s

Wave height H=2 m, wave period 7= 8 s

Water depth h=10 m, sea bed ripple height H,=5 cm

Wave and current propagate in the same direction

Wanted Bottom shear stress
Solution By linear wave theory, we get
H 1 2a o
LaTlm, A=—o —F—e=098m Un=Aw=4 = = 0.77m/s
2 sinh (252) 7ig

The bed roughness is taken as the ripple height £, = H, =0.05 m, then
fo = 268 (;;. gt 03) = 0.038
Tw mar = %f) fw [‘-,’;)3 = 113 J\"'/m'"’

fe = w0 = S

oy = %;ﬁfc 2 = 285 Nhm*

: . 9
Twe = Th + = Timas = 8.3.N/m’

Lo

Comment Fredspe’s model gives (Example 4)

Tor = 0.68 N/m®



3.9

o
~—

Exercise

Wave height /=3 m, wave length L= 80 m
Water depth h=6 m, sea bed ripple height H,=15 cm

1) Calculate wave boundary layer thickness dp.0s
2) Calculate wave friction factor f,

3) Calculate max. wave-induced bottom shear stress

Average current velocity ['=1.5 m/s

Wave height H=3 m, wave period T= 8 s

Water depth A=8 m, sea bed ripple height H,=5 cm
Wave and current propagate in the same direction

1) bottom shear stress, current alone

2) bottom shear stress, wave alone

3) bottom shear stress, current+wave



4 Cross-shore sediment transport and beach pro-

file

4.1 Sediment size and its sorting on beaches

Sediments in coastal regions may be composed of any materials that are available
in significant quantity and is of a suitable grain size to remain on the beach.

Grain size is sometimes given as the ¢ scale. It relates to the diameter d in millimeter
by d = 1/2°.

Grain size in beach varies from more than 1 meter for boulders to less than 0.1 mm
for very fine sands. Generally grain size ranges from 0.1 to 2 mm.

There are three dominant factors controlling the mean grain size of beach sediment:
the sediment source, the wave energy level and the beach slope.

The sorting of sediments along a beach profile produces cross-shore variations in
sediment grain size. As shown in Fig.1, the mean grain size reflects the wave energy
loss. Note that the incoming waves first break over the offshore bar, without much
energy dissipation by turbulence. The waves then reform and break for a second
time, plunging at the base of the beach face where they expend most of their energy.

- MEAN GRAIN SIZE
L
a ¢
t —
e}
Fore
Bt whon TOPOGRAPHIC PROFILE
“
c Surf
‘5'4"#_ . g'g ur ==
= Dftshore Bor
-~ C
w2 i~ breakers breakers i
é : S A
ak g . 9 =]
|l
= | L
gg ] ; —
) RRELSSH F it
)
= . ¢t L 2 A1 1 P E X )
.40 =20 o 20 a0 60 80

DISTANCE FROM SHORELINE (meters)

Fig.1. Grain size across the Lake Michigan beach (scanned from Fox et al. 1966).



4.2 Threshold of sediment under wave actions

We have learned from channel flow that sediments start to move if the Shields
parameter is bigger than the critical Shields parameter. The Shields parameter is
defined as

0 — u? - T ,
“G-Dgd pl-Dgd 1)

and the critical Shields parameter is given in Fig.2.

'pu, i
(s—1)gd
|:.. ™ T T T T TTT L
SL_ -
2 Ry
107 P
& _-___—_-//
2= |
o o T T e B A R T o |
B g 1 =2 5 10° 2
d
Sf'&';‘ (s-1)qd

Fig.2. The Shields diagram giving 0. as a function of S..

Laboratory results have shown that the Shields diagram for currents can be used
directly for wave, with the current-induced bottom shear stress replaced by Jonsson’s
definition of wave-induced bottom shear stress

1 . .
Twmar — 9 P fw Dnzl (2)

where U, is the maximum horizontal velocity of water particle on sea bed, given by
the linear wave theory,

m H if

T sinh (%)

(3)

U
and f, is wave friction coefficient,

b 0.2
fu = eap (5.5 (q) - 6.3) (4)

where k; is the bed roughness and A the amplitude of oscillation of water particle
on sea bed, see Chapter 3.
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Example 1

Given

Wanted

Solution

Threshold of sediment under wave

Sediment is quartz sand with p, = 2650 kg/m? and d = 0.2mm.
Fluid is sea water with p = 1025 kg/m? and v = 107°% m?/s.
Wave height H=4 m, wave period T=7.2 s

Water depth h=50 m, bed ripple height H,=1 cm

Will sediments start to move ?

The relative density is s = p; /p = 2.59
The sediment-fluid parameter is

g _ 4VG-Tgd _ 0.0002/[Z50-1)x08x0.0002 _ , o
S. = . = 4% 10-% -

From Fig.2 it is found the critical Shields parameter 6, = 0.052

By linear wave theory

L = 80m

H l

— e = Q078 W
2 sinh (132) '

& =

U, = Aw = 4 ? = 0.068 m/s

The bed roughness is taken as the ripple height & = H, =0.01 m, then the
wave friction factor is

£\02
fov = E8R (5.5 (T‘) - 6.3) = 0.078

The wave-induced maximum bottom shear stress is
1 2 & XD
T ahas Ep fo Uz = D18 Nfm
The Shields parameter

TlU mazr -
0§ = ——— = 0.056
pls—=1)gd

Because 0 > 0., sediment movement takes place.

(1]
o



4.3 Depth of closure

Example 1 has shown that the sediments start to move at the water depth of 50
meters. However, because of the one step forwards and one step backwards nature
of water particle movement, the net movement of sediment in one wave period is
Zero.

We conceptualize that a beach profile responds to wave action between two limits,
one limit on the landward side where the wave run-up ends, the other limit in
relatively deep water where the waves can no longer produce a measurable change
in depth. This latter limit is called the depth of closure.

Obviously the depth closure is not the location where sediment ceases to move
(threshold depth), but that location of minimum depth where the profile surveys
hefore and after a storm overlap each other.

Laboratory measurement has shown that the net movement of sediment starts when
# > 2 x f.. In example 1 it can be calculated that the depth of closure is app. 20
meters, cf. Fig.3.

Threshold Depth of closure
g >0, f>28.

|

Fig.3. Depth of threshold and depth of closure.

The depth of closure is time dependent. Ve expect that average depth of closure
for the summer is smaller than that in winter. In engineering project, the depth of
closure is best determined through repeated accurate profile survey. If such data are
not available, an analytic method introduced by Hallermeier (1983) can be used to
estimate the limiting depth

B i,
. o Pow = Tgwm AR

H,p ' T (5)

where H,q is the deep-water significant wave height exceeded 12 hours per year and
L,q deep-water wave length corresponding to significant wave period.



4.4 Bed form and bed roughness

As in steady flow, a sequence of bed forms occurs above the threshold of sediment
movement as the magnitude of orbital amplitude increases:

Flat bed = rolling grain ripples = vortex ripples = High stage flat bed

Rolling grain ripples At the threshold of motion, grains start to move over
the surface by are not lifted.

Vortex ripples It occurs when 6 > 2 x 4.

High stage flat bed  Based on the laboratory data, Komar et al (1975) pro-
posed 6 > 0.413 d, where d is in cm.

Wave-induced ripples can be distinguished from current-induced ripples by their
shape. Wave-induced ripples have symmetrical profiles due to the oscillation of
water particle, cf. Fig.4.

Wave—induced

Current—induced

Fig.j. Wave-induced and current-induced ripples.

Wave generated ripple length is (Breker 1985)

Lw = R4 (6)
where A is the amplitude of water particle oscillation on the bottom, given by linear
wave theory.

The ripple steepness is (Nielsen 1979)
H;
L,

where @' is the effective Shields parameter due to skin friction, i.e. calculated by
setting the bed roughness to 2.5 x dsp.

= 0.182 — p2ajey*’® (7)

The bed roughness (equivalent Nikurase bed roughness) is

ko= (1—4) H, (8)



Example 2

Given

Wanted

Solution

Sea bed roughness

Sediment is quartz sand with p, = 2650 kg/m? and d = 0.2mm.
Fluid is sea water with p = 1025 kg/m?® and v = 107% m?/s.
Wave height H=4 m, wave period T=7.2 s

Water depth h=50 m

Sea bed roughness k,

By linear wave theory

L = 80m

) P Y
2 sinh (=2)

U i 127 = 0.068

m = A= am =l m/s

The wave friction factor corresponding to &y = 2.5 d = 0.0005 m

b\ 0:2
fu = exp ("’)3 (:‘) - 6.3) = 0.014

The effective bottom shear stress is

= : p Jw U2 = 0083 Njm™

L]

The relative density is s = ps/p = 2.59
The elfective Shields parameter

Tl

0’: e ——— = ':l
T Al

the wave generated ripple length is

Ly = 2 A = 158 m

o

The ripple steepness i

H, -
- = 0182 - 0.24(0')** = 0.182

The ripple height is
H: = 0.182 Ly = 0028 m

15

The sea bed roughness

ky = (1—4) H, = 0.028—0.11 m



4.5 Beach classification

The morphology of a beach profile depends on grain size and physical process of
waves, currents and tides. The pattern of beach profile response to wave intensity

is illustrated schematically in Fig.5.

In the summer, lower wave heights move sand shoreward along the beach profile and
deposit on the beach face, often to form a wide beach (summer profile or berm-type).

In the winter. longshore bars are formed as a result of a strong offshore transport
in the surf zone and a weak onshore transport outside the surf zone (winter profile

or bar-type).

=~ =— summer profile (berm—iype)
~—— winter profile {bar-type)

Fig.5. Hlustration of summer profile and winter profile.

With respect to type of wave breaking, and hence energy transformation on beach,
beaches can be classified as dissipative, intermediate and reflective, corresponding
to spilling breaker, plunging breaker and surging breaker, respectively, cf. Fig.6.

4. Dissipotive Beoch

spilling
bregker bores swosh

=i tan@ =001

T T i
B. Intermediate Beach
plunging reformed  secondary

bregker wove breaxing

= bt TS Tecugh B

C. Reflective Beach

SR

plunging 1o surging breakers 2

tanB=0.1-0.2
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Fig.6. Type of wave breaking.



4.6 Berms and longshore bars

Berms

Berms are formed by onshore movement of sediments. The onshore movement of
sediments takes place in two situations. In the summer, lower wave heights move
sand shoreward along the beach profile and deposit on the beach face, often to
form a wide beach (berm). At the end of a storm in the winter, when the wave
decreases in height while maintaining a long period, the sediment transport direction
reverses from offshore to onshore, and the material builds up on the foreshore to
form a berm. Successive storms are, therefore, usually separated by an interval of
onshore transport and berm formation, which means that storms would not have a
cumulative erosion impact on the coast owing to berm formation inbetween (storm
IecOVery process).

For the large wave tank experiment with regular waves, Larson et al.(19389) found a
fairly clear relation between the berm height and deep-water waves

% = 147 Q" (9)
where (o = tan 8(Ho/Lo)™/? is the deep-water surf similarity parameter and tan 3
the initial beach profile slope.

The beach face slope is normally very linear. Kriebel et al (1991) reanalyzed the
field data of Sunamura and obtained the following expression for the beach face

slope

W, i 1/2
my = 0.15 ( i, ) (10)

where w; is the fall velocity of sediment, 7" wave period and H, wave height at

breaking point.

Fig.7. Illustration of a berm.
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Longshore bars

A longshore bar is formed around the wave breaking point as a result of a strong
offshore transport in the surf zone and a weak onshore transport outside the surf
zone, cf. Fig.8

Point of wave breaxing

Fig.8. lllustration of formation of a longshore bar.

A break-point bar forms rapidly at first, and thereafter its volume increases more
slowly as the profile shape approaches equilibrium. At the same time the longshore
bar is moving seaward, in association with the seaward moving of wave breaking
point. The distance of the bar crest from the shoreline X', in large tank experiments
with monochromatic waves (IKraus 1992) is

A t
L_o = A, (1 — EXp (—a T)) (11)
where A, is the ultimate relative distance
H \?
;‘1 = .2
" 11000 (g Tg) (12)
and the decay coefficient
H, ~135
o -8
= 3.5 310 (g Tg) (13)

and Lg is deep-water wave length, H, wave height at breaking point, 7" wave period,
¢ gravitational acceleration and ¢ time.

The growth of a bar is ultimately limited by the maximum slope the sand grains can
maintain under the action of gravity and fluid motion. In the field, random waves
and varying water level exert a smoothing effect on the profile. The maximum slope
in the field is less than 10 degrees while in laboratories it can reach up to 25 degrees
with monochromatic waves. In the field and in the laboratory. the shoreward bar
slope is almost always steeper than the seaward slope.
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At equilibrium the geometry of a longshore bar is described by (Kraus 1992)

k. = 0885 (14)

’ f] 0.092

!—Zi = 2§ (L—z) (15)
0.59 0.73

7, = 0122 (wﬂ‘}) (—Eﬂ) (16)

where w; is the fall velocity of sediment.

breaking 1
l breaking 2
I wave height
envelop " beﬂch E
U SHL il - =2

—
—
—
—_
—

squalibrium beach

Fig.9. IHlustration of a longshore bar.

4.7 Equilibrium beach profile (+%/%)

I we become more abstract in characterizing the beach profile, the berms and bars
may be considered as small perturbations and hence omitted. Bruun (1954) and
Dean (1977) have shown that many beach profiles exhibit a concave shape such that
the depth varies as the two-thirds power of the distance from the shoreline, i.e.

h = A3 (17)

where A is the profile shape parameter, which controls the steepness of the profile.
The fitting of the field data gives (Moore 1982 and Kraus 1992)

A = 041 (dso)®  dsp <04
A = 0.23 (dso)*®® 0.4 <dsp <10
A = 023 (dso)*®® 10 < dsp < 40

A = 046 (dso)®" 40 < dso
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4.8 Erosion and accretion predictors

In this section, we describe some of the simple techniques that have been found
capable of predicting whether a beach will erode or accrete by cross-shore transport
ProCEsSes.

It is well known that winter storm waves and hurricanes tend to remove material
from the beach face and deposit it offshore as a bar, whereas summer swell and swell
generated during a decay of a storm tend to build the berm and widen the beach.

There have been numerous studies of erosion and accretion predictors with small-
scale wave tank tests, large-scale wave tank tests and field investigations (Larson et
al. 1989).

Fig.10 gives the results of field investigations. The dashed line were developed by
assigning a 10% variability in deep-water significant wave height H,, significant
wave period T and fall velocity of grains w; (Hp, T, w in the figure). Originally the
following simple predictor is proposed

oo & 3.2 accretion

e

(18)
2 B2 erosion

Later on the criterion is replaced by the diagonal line.
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Fig.10. FErosion and accretion predictor by field data (after Kraus 1992).
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4.9 Shoreline retreat due to sea level rise

The sea level rise is best recorded by tide gauges. Long-term tide gauge records
from a specific coastal site give the relative change of sea level S, the sum of the
global sea level change and local land level change.

On average the global sea level rise is about 2 mm/year. A local land level change
can be positive (subsidence of the land) or negative (uplift of the land)

The first and best-known of the models that relate shoreline retreat to an increase
of sea level is that proposed by Bruun (1962, 1938)

L.
R=3"5 (19)

where R is the shoreline retreat rate, S sea level rise, h, depth of closure (depth to
which nearshore sedimentation exists), cf. Fig.11.

— — after sea level rise
initial

e

Fig.11. Shoreline retreat due to sea level rise.

Eq (19) can also be expressed as
B = m,§ (20)

where m; is the average slope of the beach profile. With respect to the fact that an
average beach slope is 1:50 to 1:100 for many coastal sites, eq (20) yields R=50S to
1008, which is often used as rule of thumb to calculate the expected shoreline retreat
rate R from a sea level rise S.
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4.10 Exercise

1) Oil and gas are transported from the North Sea by pipeline. When the water
depth is lower than the depth of closure, a trench needs to be dredged so
that the pipeline can be buried.

In a beach along the Danish west coast, the deep-water significant wave
height distribution is given by extreme wave height analysis

-(252)

Gumbel F(H,) = ¢ (21)

with A=0.5 and B=1.T;
Estimate the depth from which the pipeline should be buried.



5 Longshore sediment transport

When waves approach the coast at an oblique angle, a longshore current will be
generated. Waves and currents may transport considerable amounts of sediment
along the coast. Longshore sediment transport will often be the dominant factor in
the sediment budget, and hence in the erosion or accretion of beach, cf. Fig.1.
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Fig.1. Longshore sediment transport and coastal line movement along the west
coast in Jutland, Denmark, Jubileumsskrifiet: Vandbygningsvasenet
1868-1968 (scanned from Burcharth 1984).
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5.1 CERC-formula

One of the oldest and still most useful formula for calculating the longshore sediment
transport is known as the CERC-formula, presented in the Shore Protection Manual

(CERC, 1934).
The CERC-formula states that the longshore sediment transport is proportional to
the longshore wave energy flux.
I .
3 E

b

ot

Wove breagking

Hsbh)

// /// e

Fig.2. Longshore wave energy flux within o unit width of beach.

Let Q; be the solid volume sediment transport (m®/s). The submerged weight of
the transported sediment is (ps — p) g Q¢ (N/s).

By linear wave theory, the wave energy flux at the breaking point is
1 c 4 = h»,
Epp = Bocop = = pyg HL ‘—)b 1 + + Joule/(mxs) = N/s
S - sinh (-‘-‘-—rb—-‘-")

where the subscript b denotes the parameters at the breaking point. Over a unit
width of beach, cf. Fig.2, the incoming wave energy at the breaking point is

Efpy B cosfly = Ef cos By
The longshore energy flux is
Iy = Ejgp cosfy sin s
The CERC-formula reads
(Ps—p) 9 Qe = K. T, 1)

The fitting to the field measurement gives A, = 0.41.
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Example 1  Application of the CERC-formula

Given A trench was dredged for the oil pipeline. Before the lay-down of the pipeline, there
was a storm with H,; 3 =3 m, T, = 8 5, 8, = 45°. The storm lasted 2 days.
Wanted Estimate the backfilling in the trench.
Solution The water depth where wave breaking takes place is estimated to be
Hs.b 5 B
hy = —= 5.5 m
0.55

By the linear wave theory

L
Ly = b5 m e =2~ 69 m/s
Ty
The longshore energy flux is
1'5 = E_f_b (‘.OSﬁb Sill,‘?b
1 e 4 Z hy
2 -
= =-pygH;, 3 1l + ——=—— | cos @y sinf
¢ sinh( = ")
b
= 33825 N/s
The longshore sediment transport is
T of
Qe = ———— = 0.86 m%/s
(P —p) g

The sediment which might deposit in the dredged trench is

Qe (2 x 24 x 60 x 60) = 143608 m?

Comment Note that @y is the solid volume of deposited sediment. If the porosity
of the sand is 0.3, the total volume to be re-dredged would be

(1 + %3—) x 148608 = 212297 m®
The CERC-formula has only the characteristics of the incoming waves as
input. This is not realistic, as the sediment transport must be expected
to depend on the sediment size and beach profile. Kamphuis (1990) have
made en extensive analysis of field and laboratory data and proposed a
longshore sediment transport formula:

tana H3}
,

Q¢ = 1.28 ———— sin(2 5y)
dso

where tan e is the beach slope. The formula is dimensional, I, and
ds0 in meter, Q; in kg/s.
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5.2 Bijker’s method: Wave + current

Bijker (1971) presented a method for the calculation of sediment transport in the
combined wave and current. The method has been extended to the calculation
of longshore sediment transport, where the longshore current is produced by wave
breaking.

In the chapter on wave boundary layer theory it has been shown that sediment trans-
port mechanism in coastal regions is: wave stirs up sediment and current transports
the sediment.

We have many formulae for calculating sediment transport by currents. These for-
mulae contain the current-induced bed shear stress in several places. Bijker divides
the formulae into stirring up part and transporting part. Under the combination of
wave and current, the wave action will only contribute to the stirring up part. This
contribution is expressed by replacing the current bed shear stress in the stirring up
part by the wave-current bed shear stress. In the transporting part the bed shear

stress remains current-induced.

Bed shear stress by wave and current

In the combined wave and current, the mean bed shear stress by Bijker is given in
Chapter 3, 1.e.

Twe = Te + Tw,maxr (2)

B | =

where 7. is the bed shear stress by current alone, and 7, .2 15 the maximum bed

shear stress by wave alone,

1 0.06 2
e = g P (]og(lf h) )‘ U
5\ 02
fe = exp|b5.5 (—/—;) - 6.3
where & water depth
ks bed roughness
U average velocity of current
A amplitude of the water particle on the bottom

U,  maximum horizontal velocity of the water particle on the bottom
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Bed-load by wave and current

KNalinske-Frijlink (1952) formula for bed-load transport by current reads

. Te —027(s—1)dsopyg
gy = 2dsg ; exp T
s L 4

S

transporting stirring up

Under combined wave and current, the current-induced bed shear stress in the stir-
ring up part is replaced by 7.,

—027(s=1)dsop g )

Hr Twe

fe

g = 2(150 ;‘ 6;1‘[)(

(3)

transporting stirring up

suspended load by wave and current

Einstein-Bijker formula for suspended sediment transport under current alone reads

: h
4 = 1.83 4y (f] In (60;7) 4 12) (k)

where [; and 1, are Linstein integrals given by

A=D1 ) gy
= 0216 o -
ho= 0316 2 /_4 ( B ) 5

%

y: (za—1) 1 1 . Ze
L = 0216 ] (——B ) In B dB
A

' (1—A)= B
ki ¥ Wy
where A= '3 B = R .

where u. . is the current friction velocity.

Under combined wave and current, w.. is replaced by w. .., wave-current friction
velocity, and ¢, is the bed-load under combined wave and current.



Example 2 Application of Bijker's method

Given In a coastal region

sea water p=1025 kg/m® v =10"° mi/s

flow U=1mjs h=32m

wave H =05 m T'=8§s5 (L =35mn)

sediment ps = 2650 kg/m>®  dso = 0.2 mm.

bed roughness &k, =2em
Wanted Sediment transport under current alone and under combined wave and current.
Solution We consider first current alone.

The effective bottom shear stress is

I . 2 2
=3P b0 | U° = 140 N/m~

(tos(s¥5) )

The total bottom shear stress is

(s (22) )

The ripple factor is

U? = 324 N/m?

= 043

al et

‘u,. =

The bed-load transport is

Te —0.27 (5 — 5 2
G = 2dso [ e.vp( e ”d"“’”) = 00000121 —
P Hr Te
The relative density of the sediment s = p,/p=2.59.
The fall velocity of the sediment
2 .
\/(?—f-ﬂ) + The—1) gdsy — 52
Wy = 58 = 0.02 m/s
The friction velocity wu. .= 1; = 0.056 m/s
Therefore A =% =0.01 g = ple =089



and we get the Einstein integrals by numerical integration

Alze=1) 1 . ta
Iy = 0216 —(l NE / (-—1 BB) dB = 1.00
i B
A(:.—l} 1 _ S
[g = 0216(1—4):/ (LB—B) inBdB = —2.50
=T

The suspended sediment transport is

h
1.83 s (I[ In (m) + I'_:)

= 1.83 x 0.0000215 (1.00 % In (—g———-—) - ‘2.50)

s

0.033 x 0.02

m?

0.000217

The total sediment transport under current alone is

3

¢ = 4 + q. = 0.000239 -2

mxs

Now we consider combined wave and current.

By linear wave theory the amplitude of the water particle on the bottom

H 1
A = T e B % R = 068 m
2 sinh (-2)

The maximum horizontal velocity of water particle on the bottom is

Up = dw = A %Tj-r- = 0.33 m/s

The wave friction coefficient is

b 0:2
[ . (5.5 (-4-) - 5.3) = 0.028

The maximum bottom shear stress by wave is

1 e J 7
Tw,mar = 5 P fw U:;: =4 "V/'"—

The mean bottom shear stress under combined wave and current

g 2
T = T+ 5 Twmar = 5.24 N/m

=J
Su]



The bed-load transport is

—0.97 (s — 1) ds 3
4, = 24ds Ee.-rp( d i "”) = 0.0000153 ——

P B Fiipg mx s

The friction velocity s e = /1:1 = 0.071 m/s

Therefore A = Lhi =.0.01 P = ﬁ’ﬁ =170

and we get the Einstein integrals by numerical integration

{s.=1) 1 . Ze
E = o:sz———j (Q) dB = 1.83
A

(1— A): B
Ab-1) b 1 BT o
I'_! = 0216(1_—4):_‘/:‘ (T) InBdB = -3.73

The suspended sediment transport is

f
1.83 q, (11 In (O 03?'3L‘ ) + f-_g)

)
e 18800000158 | 18 s el —t- Y} — #%3
i 4 ( = (0.033 X 0.02) 3”)

l’]s

m?

= 0.000306

m=*§

The total sediment transport under combined wave and current is

¢ = 4p + g5 = 0.000321 =

mxs
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