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Abstract

Modern programming languages and operating
systems provide software mechanisms to sup-
port the execution of multithreaded applica-
tions. These multithreaded applications are ex-
ecuted, commonly, on high speed superscalar
processors that in general do not provide spe-
cial support to manage multiple contexts. In
this paper the effect that multithreading has
on the performance of modern superscalar pro-
cessors is studied. A simulation environment,
designed specifically, to trace the execution of
multithreaded programs is described. Simula-
tion results that show the dynamic behavior of
software multithreading and its impact on the
performance of a superscalar processor are pre-
sented.

1 Introduction

Multithreading is being used extensively as a software
technique to improve the performance and response time
of client-server applications. Additionally, modern pro-
gramming languages like Java [Flanagan, 1997] have in-
cluded support for multithreading as part of the lan-
guage. In applications such as user interfaces, multi-
threading is being used to improve user response time.
This is done by context switching when long I/0O opera-
tions are issued.

However, despite all these advantageous aspects of soft-
ware multithreading, it is important to note, that real
speedup improvement will be obtained for a multi-
threaded application by executing multiple threads at
the same time, in parallel, on multiple processors.
Support for software multithreading is provided at sev-
eral levels: the wuser or the system-level. In the user-
level approach to multithreading, a thread is a light
weight process whose dynamic behavior is controlled by
a specialized run-time system. At the system-level, the
OS kernel provides support to assign multiple user-level
threads to one or more system-level kernel threads. In
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general, context switching is less expensive at user-level,
compared to context switching at system-level.

The standard POSIX-1c also known as Pthreads spec-
ifies a set of function calls to create, schedule and syn-
chronize multiple threads at the user or system level. An
example of a POSIX compliant multithreading library is
the MIT version of Pthreads ( MIT-Pthreads ) [Proven-
zano, 1996]. This version of Pthreads is a user level
library that provides the basic functionality contained
in the standard through a runtime system that manage
threads in a transparent way.

Another important aspect of multithreading is its sup-
port in hardware. Recent research on support for multi-
threading in hardware, has been focused in studying new
architectural strategies [Ortiz et al., 1997] targeted to
improve the performance of shared memory computers.
In such specialized multithreaded processors, a context
switch operation is triggered by long latency operations
such as remote memory references and synchronization.
Context switching in this case, is used to hide latency
at the cost of a small overhead, the context switching
time. Shared memory computers are being designed
using, general purpose, high speed, superscalar proces-
sors. Such processors, are designed to being able to ex-
ecute multiple instructions per clock cycle. To achieve
this goal, the processor relies on effective mechanisms
to detect instruction level parallelism (ILP) at run-time.
Once parallel instructions are detected, their execution
is overlapped on highly parallel cores containing special-
ized, functional units.

The effect of multithreading on data cache has been
modeled analytically in [Agarwal, 1992], but few studies
are known about how instruction cache and fetch rate
are affected by multithreading [Tullsen et al., 1996].

Another important aspect for both, single and multi-
threaded architectures is the instruction fetch rate. Since
more aggressive forms of ILP are foreseen to be used in
modern superscalar architectures the fetch rate can be-
come soon a performance bottleneck [Conte et al., 1995].
Herein, its importance for single and multithreaded su-
perscalar processor performance.

The research presented in this paper is part of the



research currently being developed at the Electrical and
Computer Engineering Department of Oregon State Uni-
versity to study different aspects of multithreading. One
goal of this research, is to propose novel architectural
mechanisms in superscalar cores, targeted to provide, ef-
ficient support for multithreading [Ortiz et al., 1997]. In
this paper a preliminary study on the effect of software
multithreading in the performance of superscalar proces-
sors is presented. This effect is studied by tracing mul-
tithreaded applications in a specially designed simula-
tion environment built around the SimpleScalar simula-
tor (SS) [Burger, 1996]. Emphasis is placed on studying
the effect of multiple thread execution on branch predic-
tion mechanisms that rely on the past history of branches
to generate future predictions. Other important issues
such as, the instruction cache locality, instruction fetch
rate and total execution time of multithreaded applica-
tions are also studied in this paper. Section 2 discusses
briefly the MIT-Pthreads library used in this research to
create the multithreaded programs traced. Next, in sec-
tion 3 the simulation environment is described. Section 4
discusses, briefly, the results obtained during simulation.
Finally, in section 5 the future research on this area and
the conclusions are presented.

2 The MIT-Pthreads library

MIT-Pthreads [Provenzano, 1996, is a user-level library
of function calls that supports the execution of multiple
threads. This library implements a subset of the POSIX
standard on support for multithreading. Current MIT-
Pthreads version 1.6036, provides the basic functionality
of Pthreads. That is to say, the synchronization prim-
itives, thread-specific data, and thread attributes rou-
tines. To create a multithreaded application the user
should first allocate space for threads and assign a func-
tion to each thread by calling the pthread_create function.
Next, the programmer needs to start the threads run-
ning by calling the pthread_join function. Once called,
Pthreads takes over the running of the threads until all
are finished and returns control back to the main pro-
gram. Pthread runs one thread at a time in a round-
robin fashion and switches between threads in the fol-
lowing ways:

e When the current thread ends its execution, it
calls the function pthread_exit. This function
deletes the thread from operation and turns
control to the Pthreads scheduler whereby ei-
ther a different thread is started or control is
returned to the main program if there exists no
more threads to run.

e As each thread is executed, Pthreads starts an
OS timer. If the timer activates before the
thread finish its execution, an interrupt is gen-
erated. At this time the state of the thread is
saved, the Pthreads scheduler called, and a dif-

ferent thread is executed (providing, of course,
that there are more threads to run).

e Since Pthreads was created to hide I/0O latency,
it also switches threads when detects that a
thread is making a long I/O request. The
thread switching process works the same as a
timer switch described above.

The implementation of MIT-Pthreads relies heavily
on OS support. Therefore, in order to run on different
operating systems MIT-Pthreads makes use of machine
dependency files to configure and generate the library.

Using this library, multithreaded applications are gen-
erally designed following different models of execution.
One of such models, is the so called peer-to-peer or
Master-Slave model [Lewis and J.Berg, 1996]. Figure
1 shows the layout of the Master-Slave model. In this
model, a master thread (the main procedure) is in charge
of tasks such as data initialization, thread creation (of
slave threads), and synchronization. On the other hand,
the slave threads are responsible of performing the re-
quired computations and synchronizing with the master
thread in a coordinated way. Thread access to shared
data is controlled by mutual exclusion mechanisms pro-
vided by Pthreads. The simulation results presented in
section 4, were obtained by writing and executing and
tracing two multithreaded programs designed around the
Master-Slave model.

MIT-Pthreads was not designed to run in a simulation
environment. Neither, SS was designed with capabilities
to run multithreaded applications. In general what SS
required in order to run Pthreads applications, was the
following modules:

e A OS stack to save and restore states of the
threads.

e A OS timer to generate an interrupt to switch
between threads.

e Precise timer interrupts to allow the correct

interfacing between the hardware, OS, and
Pthread.

By writing all these modules and including them in
SS the integration of MIT-Pthreads with SS was possi-
ble. Both, MIT-Pthreads and SS were used to create the
simulation environment described in next section.

3 Simulation Environment

The SimpleScalar simulator [Burger, 1996] is the basic
module of the simulation environment! used in this re-
search. This simulation environment provides capabili-
ties to trace the execution of instruction in multithreaded
applications created using the MIT-Pthreads user-level
library. SS is a small collection of execution based simu-
lators where each one models a different type or level of

'The simulation environment was designed by the MVP
group [Lee et al., 1997] at ECE-OSU
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Figure 2: The SimpleScalar Simulator Architecture

detail within a processor. One of such simulators called
sim-outorder, was used to generate results presented in
section 4. Sim-outorder simulates an out-of-order pro-
cessor based upon Gurindar Sohi’s RUU design [Smith
and Soh, 1995]. This sim-outorder processor model is
shown in Figure 2.

However, SS is in fact an in-order execution based
simulator followed by a trace-based out-of-order timing
simulator. In other words, the instructions are decoded
and instantaneously executed (the register files and main
memory are modified). After that, the instructions are
placed into the timing simulator where the instructions
are moved into execution units and hazards are resolved
similarly to execution in a super-scalar processor. It is
important to note that no data is handled by the timing
simulator, all data and actual execution is taken care of
by the earlier execution simulator. Another way to look
at this is that sim-outorder models an on the fly trace
generator that runs the program and passes the instruc-
tions (as each is decoded and executed) to a trace-driven
timing simulator. In order to correctly model wrong
path execution, the in-order execution portion produces
wrong path instructions called spec_mode instructions for
the timing simulator that do not affect the state of the
machine (i.e. except for cache valid/dirty bits, when the
execution simulator enters spec_mode (speculative mode),

the RF and memory are not modified). This spec_mode
lasts until the timing simulator indicates that a branch
instruction should have been executed by now, turns off
spec_mode, and forces the execution simulator to restart
execution down the correct branch. Since the Regis-
ter File and memory have not been modified since the
branch instruction (when spec_mode was initiated), the
state of the simulated processor was preserved. This
system allows sim-outorder to execute along speculative
branch paths and have it not affect the correctness of
the in-order simulation. Additionally to those issues, SS
allows to change some architectural parameters by spec-
ifying them in the command line. Such parameters are
for example: instruction buffer size and width, decode
buffer size and width, instruction and data cache size
and organization, type of branch prediction mechanisms
etc.

MIT-Pthreads and the SS simulator were combined to
trace the dynamic behavior of multithreaded programs.
In order to do it, a number of features were added to
SS like, Timers, support for Precise interrupts and a OS
stack as was mentioned previously in section 2.

To implement timers in SS, the module syscall.c was
modified to detect a SETITIMER syscall. Upon detec-
tion of the syscall the timer value is removed and stored
in a global timer variable. To decrement the timer, code
was modified in the sim_main function to decrement the
timer every clock cycle.

Since Timer interrupts are those that are asyn-
chronous to the currently executing instruction stream,
it was easy to modify SS to handle them. The timer
interrupts are checked at the beginning of ruu_fetch in
module sim-outorder.c. This check is just a compari-
son with the global timer variable. It is important to
note that interrupts cannot occur while the processor is
in speculative mode because the entire interrupt handler
would be run in speculative mode. To start executing the
interrupt handler, ruu_fetch calls the SS interrupt han-
dler (interrupt_fetch) which switches the current PC to
that of the interrupt vector. This PC swapping method
is acceptable since the RUU does not need to be drained
before servicing the interrupt. This is mostly because the
processor does not have a supervisor mode with multiple
levels of memory protection.

To implement a OS stack into SS, a separate file, sig-
nal.c, was created. Signal.c creates and then maintains
the OS stack. When interrupt_fetch is called, (to pro-
cess a detected interrupt), it interfaces with the OS stack
code to save the current state of the machine, increments
the stack pointer and returns the interrupt handler PC.
Upon a return from an interrupt, the code drops back
into interrupt fetch, which decrements the stack pointer
and returns the state of the machine. Last, the interrupt
fetch routine returns the saved PC back into the normal
SS program.
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4 Simulation Results

Figure 3 shows the procedure to create a multithreaded
application and execute it in SS. Two multithreaded
benchmark programs were traced using the simulation
environment: a matrix multiplication and a JPEG image
decompressor. Both programs were executed in SS vary-
ing the number of threads from one to twenty. The num-
ber of instructions traced was in the range of 4,000,000
to 4,800,000 for both cases. The values taken by default
in SS were used in the simulations. Some of those SS
default parameters are shown in the next table.

BTB size
4096

IFB size | ID width
4 4

Type of BP
Bimodal

As can be seen in previous table the instruction fetch
buffer size (IFB) and the instruction decode width have a
size of four. This means that up to four instructions can
be fetched, decoded and issued in one clock cycle. The
type of branch prediction (BP) mechanism was bimodal,
that is two bits are used to keep track of previous branch
results. Finally a Branch Target Buffer (BTB) with size
4096 was used to store the addresses of next instructions
to be fetched every cycle. These simulation parameters
are commonly used in modern superscalar processors.

In the multithreaded matrix multiplication case, two
matrices size 20 x 20 of floating point numbers were mul-
tiplied. The policy used to carry out such multiplication,
was assigning to each thread, the task of calculating the
elements of one block of rows in the resultant matrix.
The size of the input matrices was divided between the
number of threads and each thread assigned a block of
rows in the resultant matrix. If the number of threads
is less than the matrix size, then each thread will be in
charge o calculating the values corresponding to several
rows in the resultant matrix. In the case of the JPEG
decompressor several images size 240 x 60 pixels in for-
mat JPEG were decompressed by the pool of threads.
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Figure 4: Trace of instructions executed in a multi-
threaded Matrix Multiplication

Each thread was in charge of decompressing one image
at time. Notice that in the matrix multiplication case,
the workload is fixed and the number of threads is varied.
However, in the JPEG decompressor case, the workload
varies according to the number of threads.

Figure 4, shows the effect of thread number on to-
tal number of executed instructions and branches in the
multithreaded matrix multiplication. As is shown in this
figure, the total number of instructions and branches in-
creases linearly with the number of threads. This is due
to the fact, that the number of context switch operations
performed by the run-time system of MIT-Pthreads in-
creases with an increase in the number of threads. This
effect is caused mainly by the timer interrupt used by
the library. With more threads available in the thread
pool, the run-time system will allocate to each one an
execution time slice. This is done by context switching
in round-robin.

Figure 5 shows that the same behavior is obtained for
the multithreaded JPEG image decompressor.

Branches limit the number of instructions that can
be fetched from instruction cache without penalty. The
average basic block (BB ) size, that is the number of
instructions between branches, for multithreaded matrix
multiplication, is obtained using the equation:

Total Number of Instructions

BB size =
swee Total Number of Branches

Using previous equation the following results were ob-
tained for a variable number of threads.

1 Thread | 5 Threads | 10 Threads | 20 Threads
5.87 5.87 5.85 5.79

The average basic block size for multithreaded JPEG
decompressor is shown in the following table varying the
number of threads.
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Figure 5: Trace of instructions executed in a multi-
threaded JPEG decompressor

1 Thread | 5 Threads | 10 Threads | 20 Threads
5.60 5.56 5.56 5.56

Previous tables indicate that in both cases, an increase
in the number of threads, produces a small decrement,
on the average size of the basic blocks available, on the
average. Also, it is easy to see that the size of instruction
fetch buffer in SS, should be increased up to six locations
to allow fetching and storing a complete basic block in
one clock cycle. This small change in SS along with a
corresponding increment in instruction decode size and
width will increase the instruction fetch rate.

Figure 6 shows the effect of the number of threads on
instruction cache miss and branch prediction rates for
multithreaded matrix multiplication. Cache miss rate is
defined as:

Total Number of Misses
Total Number of Cache References

Miss rate =

and branch prediction rate as:

Total Number of Hits in BTB
Total Number of BTB References

BP rate =

Figure 6 for multithreaded matrix multiplication,
shows that miss rate decreases with an increase in thread
number in stepwise fashion. This behavior on miss rate is
due to the fact that by decreasing the run-time length of
a thread, (assigning it less workload) will allow to place
more threads in the instruction cache, increasing there-
fore, thread cache locality. Since the pattern of branches
is very similar for each thread the branch prediction rate
increases accordingly. Looking at the results for multi-
threaded JPEG decompressor in figure 7 we can notice
that the behavior is very different from the matrix mul-
tiplication case. In this case, miss rate increases with
the number of threads because the workload is constant
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Figure 6: Trace of I-Cache miss and branch prediction
rates for multithreaded Matrix Multiplication

and therefore, the run-length of a thread is also kept
constant. Branch prediction rate improves with an in-
crease in the number of threads because the same type of
mathematical calculations are performed by all threads.
Continuous repetition of same calculations increases the
probability that the branch target address will be found
in the BTB.

5 Summary and Conclusions

The effect of multithreaded applications on the perfor-
mance of a superscalar processor was studied in this pa-
per. For such purpose a simulation environment was
built by the Multithreaded Virtual Processor (MVP) [Lee
et al., 1997] group at the ECE Department in Oregon
State University.

The simulation environment was described in detail
and the obtained experimental results were briefly ex-
plained.

Results showed that the number of threads impacts
negatively the total execution time of multithreaded ap-
plications, increasing linearly the number of instructions
to be executed. At the same time, a large number of
threads tends to decrease in a small portion the size of
the basic block available to the fetch unit. In this case,
SS will benefit of including branch prediction mecha-
nisms such as those proposed in [Chang et al., 1994], to
improve instruction branch prediction rate. On the other
hand, results showed that a small number of threads (4-
6) help to augment instruction cache locality and there-
fore instruction fetch rate. Moreover, the performance
of the branch prediction mechanism is improved too.
This is because each thread reproduces closely the same
branch pattern, by performing similar calculations.

Additionally, from a simple analysis on the behavior
of the multithreaded applications presented, it was con-
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cluded, that the performance of SS will be improved if
the instruction fetch buffer size is increased up to six lo-
cations. However, this small change will affect the design
of the instruction cache.

In modern pipelined superscalar processors the fetch
rate is becoming increasingly important. Being the fetch
unit, the first stage in the pipeline, any bottleneck in
this unit will drastically reduce the performance of the
whole processor. A study on how instruction fetch band-
width mechanisms such as those described in [Wallace
and Bagherzadeh, 1996], [Rotenberg et al., 1996] improve
the performance of the fetch unit in the presence of mul-
tiple threads is considered in near future.
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