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Study on the e�ect of Multithreading in the performance ofSuperscalar ProcessorsDaniel Ortiz-ArroyoECE DepartmentOregon State UniversityCorvallis OR, 97331-3211, USAdortiz@ece.orst.edu Jorge Martinez-CarballidoINAOEAP 51, Puebla, Pue.72000 MEXICOjmc@gisc1.inaoep.mxAbstractModern programming languages and operatingsystems provide software mechanisms to sup-port the execution of multithreaded applica-tions. These multithreaded applications are ex-ecuted, commonly, on high speed superscalarprocessors that in general do not provide spe-cial support to manage multiple contexts. Inthis paper the e�ect that multithreading hason the performance of modern superscalar pro-cessors is studied. A simulation environment,designed speci�cally, to trace the execution ofmultithreaded programs is described. Simula-tion results that show the dynamic behavior ofsoftware multithreading and its impact on theperformance of a superscalar processor are pre-sented.1 IntroductionMultithreading is being used extensively as a softwaretechnique to improve the performance and response timeof client-server applications. Additionally, modern pro-gramming languages like Java [Flanagan, 1997] have in-cluded support for multithreading as part of the lan-guage. In applications such as user interfaces, multi-threading is being used to improve user response time.This is done by context switching when long I/O opera-tions are issued.However, despite all these advantageous aspects of soft-ware multithreading, it is important to note, that realspeedup improvement will be obtained for a multi-threaded application by executing multiple threads atthe same time, in parallel, on multiple processors.Support for software multithreading is provided at sev-eral levels: the user or the system-level. In the user-level approach to multithreading, a thread is a lightweight process whose dynamic behavior is controlled bya specialized run-time system. At the system-level, theOS kernel provides support to assign multiple user-levelthreads to one or more system-level kernel threads. In

general, context switching is less expensive at user-level,compared to context switching at system-level.The standard POSIX-1c also known as Pthreads spec-i�es a set of function calls to create, schedule and syn-chronize multiple threads at the user or system level. Anexample of a POSIX compliant multithreading library isthe MIT version of Pthreads ( MIT-Pthreads ) [Proven-zano, 1996]. This version of Pthreads is a user levellibrary that provides the basic functionality containedin the standard through a runtime system that managethreads in a transparent way.Another important aspect of multithreading is its sup-port in hardware. Recent research on support for multi-threading in hardware, has been focused in studying newarchitectural strategies [Ortiz et al., 1997] targeted toimprove the performance of shared memory computers.In such specialized multithreaded processors, a contextswitch operation is triggered by long latency operationssuch as remote memory references and synchronization.Context switching in this case, is used to hide latencyat the cost of a small overhead, the context switchingtime. Shared memory computers are being designedusing, general purpose, high speed, superscalar proces-sors. Such processors, are designed to being able to ex-ecute multiple instructions per clock cycle. To achievethis goal, the processor relies on e�ective mechanismsto detect instruction level parallelism (ILP) at run-time.Once parallel instructions are detected, their executionis overlapped on highly parallel cores containing special-ized, functional units.The e�ect of multithreading on data cache has beenmodeled analytically in [Agarwal, 1992], but few studiesare known about how instruction cache and fetch rateare a�ected by multithreading [Tullsen et al., 1996].Another important aspect for both, single and multi-threaded architectures is the instruction fetch rate. Sincemore aggressive forms of ILP are foreseen to be used inmodern superscalar architectures the fetch rate can be-come soon a performance bottleneck [Conte et al., 1995].Herein, its importance for single and multithreaded su-perscalar processor performance.The research presented in this paper is part of the



research currently being developed at the Electrical andComputer Engineering Department of Oregon State Uni-versity to study di�erent aspects of multithreading. Onegoal of this research, is to propose novel architecturalmechanisms in superscalar cores, targeted to provide, ef-�cient support for multithreading [Ortiz et al., 1997]. Inthis paper a preliminary study on the e�ect of softwaremultithreading in the performance of superscalar proces-sors is presented. This e�ect is studied by tracing mul-tithreaded applications in a specially designed simula-tion environment built around the SimpleScalar simula-tor (SS) [Burger, 1996]. Emphasis is placed on studyingthe e�ect of multiple thread execution on branch predic-tion mechanisms that rely on the past history of branchesto generate future predictions. Other important issuessuch as, the instruction cache locality, instruction fetchrate and total execution time of multithreaded applica-tions are also studied in this paper. Section 2 discussesbriey the MIT-Pthreads library used in this research tocreate the multithreaded programs traced. Next, in sec-tion 3 the simulation environment is described. Section 4discusses, briey, the results obtained during simulation.Finally, in section 5 the future research on this area andthe conclusions are presented.2 The MIT-Pthreads libraryMIT-Pthreads [Provenzano, 1996], is a user-level libraryof function calls that supports the execution of multiplethreads. This library implements a subset of the POSIXstandard on support for multithreading. Current MIT-Pthreads version 1:60�6, provides the basic functionalityof Pthreads. That is to say, the synchronization prim-itives, thread-speci�c data, and thread attributes rou-tines. To create a multithreaded application the usershould �rst allocate space for threads and assign a func-tion to each thread by calling the pthread create function.Next, the programmer needs to start the threads run-ning by calling the pthread join function. Once called,Pthreads takes over the running of the threads until allare �nished and returns control back to the main pro-gram. Pthread runs one thread at a time in a round-robin fashion and switches between threads in the fol-lowing ways:� When the current thread ends its execution, itcalls the function pthread exit. This functiondeletes the thread from operation and turnscontrol to the Pthreads scheduler whereby ei-ther a di�erent thread is started or control isreturned to the main program if there exists nomore threads to run.� As each thread is executed, Pthreads starts anOS timer. If the timer activates before thethread �nish its execution, an interrupt is gen-erated. At this time the state of the thread issaved, the Pthreads scheduler called, and a dif-

ferent thread is executed (providing, of course,that there are more threads to run).� Since Pthreads was created to hide I/O latency,it also switches threads when detects that athread is making a long I/O request. Thethread switching process works the same as atimer switch described above.The implementation of MIT-Pthreads relies heavilyon OS support. Therefore, in order to run on di�erentoperating systems MIT-Pthreads makes use of machinedependency �les to con�gure and generate the library.Using this library, multithreaded applications are gen-erally designed following di�erent models of execution.One of such models, is the so called peer-to-peer orMaster-Slave model [Lewis and J.Berg, 1996]. Figure1 shows the layout of the Master-Slave model. In thismodel, a master thread (the main procedure) is in chargeof tasks such as data initialization, thread creation (ofslave threads), and synchronization. On the other hand,the slave threads are responsible of performing the re-quired computations and synchronizing with the masterthread in a coordinated way. Thread access to shareddata is controlled by mutual exclusion mechanisms pro-vided by Pthreads. The simulation results presented insection 4, were obtained by writing and executing andtracing two multithreaded programs designed around theMaster-Slave model.MIT-Pthreads was not designed to run in a simulationenvironment. Neither, SS was designed with capabilitiesto run multithreaded applications. In general what SSrequired in order to run Pthreads applications, was thefollowing modules:� A OS stack to save and restore states of thethreads.� A OS timer to generate an interrupt to switchbetween threads.� Precise timer interrupts to allow the correctinterfacing between the hardware, OS, andPthread.By writing all these modules and including them inSS the integration of MIT-Pthreads with SS was possi-ble. Both, MIT-Pthreads and SS were used to create thesimulation environment described in next section.3 Simulation EnvironmentThe SimpleScalar simulator [Burger, 1996] is the basicmodule of the simulation environment1 used in this re-search. This simulation environment provides capabili-ties to trace the execution of instruction in multithreadedapplications created using the MIT-Pthreads user-levellibrary. SS is a small collection of execution based simu-lators where each one models a di�erent type or level of1The simulation environment was designed by the MVPgroup [Lee et al., 1997] at ECE-OSU
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Figure 2: The SimpleScalar Simulator Architecturedetail within a processor. One of such simulators calledsim-outorder, was used to generate results presented insection 4. Sim-outorder simulates an out-of-order pro-cessor based upon Gurindar Sohi's RUU design [Smithand Soh, 1995]. This sim-outorder processor model isshown in Figure 2.However, SS is in fact an in-order execution basedsimulator followed by a trace-based out-of-order timingsimulator. In other words, the instructions are decodedand instantaneously executed (the register �les and mainmemory are modi�ed). After that, the instructions areplaced into the timing simulator where the instructionsare moved into execution units and hazards are resolvedsimilarly to execution in a super-scalar processor. It isimportant to note that no data is handled by the timingsimulator, all data and actual execution is taken care ofby the earlier execution simulator. Another way to lookat this is that sim-outorder models an on the y tracegenerator that runs the program and passes the instruc-tions (as each is decoded and executed) to a trace-driventiming simulator. In order to correctly model wrongpath execution, the in-order execution portion produceswrong path instructions called spec mode instructions forthe timing simulator that do not a�ect the state of themachine (i.e. except for cache valid/dirty bits, when theexecution simulator enters spec mode (speculative mode),

the RF and memory are not modi�ed). This spec modelasts until the timing simulator indicates that a branchinstruction should have been executed by now, turns o�spec mode, and forces the execution simulator to restartexecution down the correct branch. Since the Regis-ter File and memory have not been modi�ed since thebranch instruction (when spec mode was initiated), thestate of the simulated processor was preserved. Thissystem allows sim-outorder to execute along speculativebranch paths and have it not a�ect the correctness ofthe in-order simulation. Additionally to those issues, SSallows to change some architectural parameters by spec-ifying them in the command line. Such parameters arefor example: instruction bu�er size and width, decodebu�er size and width, instruction and data cache sizeand organization, type of branch prediction mechanismsetc.MIT-Pthreads and the SS simulator were combined totrace the dynamic behavior of multithreaded programs.In order to do it, a number of features were added toSS like, Timers, support for Precise interrupts and a OSstack as was mentioned previously in section 2.To implement timers in SS, the module syscall.c wasmodi�ed to detect a SETITIMER syscall. Upon detec-tion of the syscall the timer value is removed and storedin a global timer variable. To decrement the timer, codewas modi�ed in the sim main function to decrement thetimer every clock cycle.Since Timer interrupts are those that are asyn-chronous to the currently executing instruction stream,it was easy to modify SS to handle them. The timerinterrupts are checked at the beginning of ruu fetch inmodule sim-outorder.c. This check is just a compari-son with the global timer variable. It is important tonote that interrupts cannot occur while the processor isin speculative mode because the entire interrupt handlerwould be run in speculative mode. To start executing theinterrupt handler, ruu fetch calls the SS interrupt han-dler (interrupt fetch) which switches the current PC tothat of the interrupt vector. This PC swapping methodis acceptable since the RUU does not need to be drainedbefore servicing the interrupt. This is mostly because theprocessor does not have a supervisor mode with multiplelevels of memory protection.To implement a OS stack into SS, a separate �le, sig-nal.c, was created. Signal.c creates and then maintainsthe OS stack. When interrupt fetch is called, (to pro-cess a detected interrupt), it interfaces with the OS stackcode to save the current state of the machine, incrementsthe stack pointer and returns the interrupt handler PC.Upon a return from an interrupt, the code drops backinto interrupt fetch, which decrements the stack pointerand returns the state of the machine. Last, the interruptfetch routine returns the saved PC back into the normalSS program.
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Figure 4: Trace of instructions executed in a multi-threaded Matrix MultiplicationEach thread was in charge of decompressing one imageat time. Notice that in the matrix multiplication case,the workload is �xed and the number of threads is varied.However, in the JPEG decompressor case, the workloadvaries according to the number of threads.Figure 4, shows the e�ect of thread number on to-tal number of executed instructions and branches in themultithreaded matrix multiplication. As is shown in this�gure, the total number of instructions and branches in-creases linearly with the number of threads. This is dueto the fact, that the number of context switch operationsperformed by the run-time system of MIT-Pthreads in-creases with an increase in the number of threads. Thise�ect is caused mainly by the timer interrupt used bythe library. With more threads available in the threadpool, the run-time system will allocate to each one anexecution time slice. This is done by context switchingin round-robin.Figure 5 shows that the same behavior is obtained forthe multithreaded JPEG image decompressor.Branches limit the number of instructions that canbe fetched from instruction cache without penalty. Theaverage basic block (BB ) size, that is the number ofinstructions between branches, for multithreaded matrixmultiplication, is obtained using the equation:BB size = Total Number of InstructionsTotal Number of BranchesUsing previous equation the following results were ob-tained for a variable number of threads.1 Thread 5 Threads 10 Threads 20 Threads5.87 5.87 5.85 5.79The average basic block size for multithreaded JPEGdecompressor is shown in the following table varying thenumber of threads.
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Figure 5: Trace of instructions executed in a multi-threaded JPEG decompressor1 Thread 5 Threads 10 Threads 20 Threads5.60 5.56 5.56 5.56Previous tables indicate that in both cases, an increasein the number of threads, produces a small decrementon the average size of the basic blocks available, on theaverage. Also, it is easy to see that the size of instructionfetch bu�er in SS, should be increased up to six locationsto allow fetching and storing a complete basic block inone clock cycle. This small change in SS along with acorresponding increment in instruction decode size andwidth will increase the instruction fetch rate.Figure 6 shows the e�ect of the number of threads oninstruction cache miss and branch prediction rates formultithreaded matrix multiplication. Cache miss rate isde�ned as:Miss rate = Total Number of MissesTotal Number of Cache Referencesand branch prediction rate as:BP rate = Total Number of Hits in BTBTotal Number of BTB ReferencesFigure 6 for multithreaded matrix multiplication,shows that miss rate decreases with an increase in threadnumber in stepwise fashion. This behavior on miss rate isdue to the fact that by decreasing the run-time length ofa thread, (assigning it less workload) will allow to placemore threads in the instruction cache, increasing there-fore, thread cache locality. Since the pattern of branchesis very similar for each thread the branch prediction rateincreases accordingly. Looking at the results for multi-threaded JPEG decompressor in �gure 7 we can noticethat the behavior is very di�erent from the matrix mul-tiplication case. In this case, miss rate increases withthe number of threads because the workload is constant
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Figure 6: Trace of I-Cache miss and branch predictionrates for multithreaded Matrix Multiplicationand therefore, the run-length of a thread is also keptconstant. Branch prediction rate improves with an in-crease in the number of threads because the same type ofmathematical calculations are performed by all threads.Continuous repetition of same calculations increases theprobability that the branch target address will be foundin the BTB.5 Summary and ConclusionsThe e�ect of multithreaded applications on the perfor-mance of a superscalar processor was studied in this pa-per. For such purpose a simulation environment wasbuilt by theMultithreaded Virtual Processor (MVP) [Leeet al., 1997] group at the ECE Department in OregonState University.The simulation environment was described in detailand the obtained experimental results were briey ex-plained.Results showed that the number of threads impactsnegatively the total execution time of multithreaded ap-plications, increasing linearly the number of instructionsto be executed. At the same time, a large number ofthreads tends to decrease in a small portion the size ofthe basic block available to the fetch unit. In this case,SS will bene�t of including branch prediction mecha-nisms such as those proposed in [Chang et al., 1994], toimprove instruction branch prediction rate. On the otherhand, results showed that a small number of threads (4-6) help to augment instruction cache locality and there-fore instruction fetch rate. Moreover, the performanceof the branch prediction mechanism is improved too.This is because each thread reproduces closely the samebranch pattern, by performing similar calculations.Additionally, from a simple analysis on the behaviorof the multithreaded applications presented, it was con-
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Figure 7: Trace of I-Cache miss and branch predictionrates for multithreaded JPEG decompressorcluded, that the performance of SS will be improved ifthe instruction fetch bu�er size is increased up to six lo-cations. However, this small change will a�ect the designof the instruction cache.In modern pipelined superscalar processors the fetchrate is becoming increasingly important. Being the fetchunit, the �rst stage in the pipeline, any bottleneck inthis unit will drastically reduce the performance of thewhole processor. A study on how instruction fetch band-width mechanisms such as those described in [Wallaceand Bagherzadeh, 1996], [Rotenberg et al., 1996] improvethe performance of the fetch unit in the presence of mul-tiple threads is considered in near future.References[Agarwal, 1992] Anant Agarwal. Performance trade-o�s in multithreaded processors. IEEE Transactionson Parallel and Distributed Systems, 3(5):525{539,September 1992. Also as Tech report MIT/LCS/TR-501, Massachusets Institute of Technology, Labora-tory for Computer Science, April 1991.[Burger, 1996] Doug Burger. Simple scalar tools.http://www.cs.wisc.edu/~mscalar/simplescalar.html,1996.[Chang et al., 1994] P.-Y Chang, E. Hao, and Y. N.Patt. Branch classi�cation: a new mechanism for im-proving branch predictor performance. In Proceedingsof the 27th. ACM/IEEE International Symposium onMicroarchitecture, November 1994.[Conte et al., 1995] T. Conte, K. Menezes, Patrick M.Mills, and Burzin A. Patel. Optimization of instruc-tion fetch mechanisms for high issue rates. June 1995.
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