Supporting Information: An Averaged Polarizable Potential for Multiscale Modeling in Phospholipid Membranes

Sarah Witzke,[†] Nanna Holmgaard List,[‡] Jógvan Magnus Haugaard Olsen,[†] Casper Steinmann,[¶] Michael Petersen,[†] Maarten T. P. Beerepoot,[§] and Jacob Kongsted^{*,†}

†Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark

‡Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden

¶Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

§Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø, Norway

E-mail: kongsted@sdu.dk

Lipid Structures

Figure S1: Chemical structure of the phosphatidylchole (PC) and phosphatidylserine (PS) headgroups as well as the myristoyl, palmitoyl and oleyl chains with CHARMM36 atom names indicated.

Initial Bilayer Structures, Equilibration and Simulation Protocol

Starting structures of the membranes were built with the CHARMM-GUI Membrane Builder¹

with compositions shown in Table S1. The Amber tool $CHAMBER^2$ was used to create in-

put files in Amber format. The POPC membrane was simulated both in a 150 mM NaCl solution and in pure water to see whether a salt concentration has an effect on the average lipid conformation. The simulations were run with Amber 12³ using the CHARMM36⁴ force field, water molecules are of the TIP3P⁵ model.

lipid type	DMPC	POPC	POPC	POPS
NaCl concentration (mM)	150	0	150	150
# lipids per leaflet	100	100	100	100
# waters	10343	10343	10474	10744
$\# Na^+$	28	0	28	28
# Cl ⁻	28	0	28	28
simulation time (ns)	118	111	108	115

Table S1: System composition and simulation time of the four membranes.

The initial structures were minimized first with the steepest descent method and then conjugated gradient until either a total of ten thousand steps were reached or the gradient was less than $1 \cdot 10^{-4}$ kcal/(mol·Å). The systems were then heated gradually from 0 K to 100 K over 5 ps at a constant volume. A second step of heating over 100 ps raised the temperature from 100 K to 310 K as well as changing from constant volume to constant pressure (1.0 bar) with the Berendsen barostat⁶ using anisotropic pressure scaling and a relaxation time of 2.0 ps. Afterwards the systems were simulated between 108 and 118 ns (Table S1) with a time step of 2 fs, constant temperature at 310 K and an anisotropic pressure scaling set at 1.0 bar (relaxation time of 1.0 ps). For all simulations the temperature was controlled with the Langevin thermostat⁷ (collision frequency of 1.0 ps⁻¹), bonds to hydrogens were constrained with SHAKE,⁸ the real space cutoff was 10 Å, periodic boundary conditions were used in all three dimensions and the electrostatic interactions were treated with the Particle Mesh Ewald (PME)⁹ method beyond 10 Å.

Simulation of Prodan in a lipid bilayer

Atomic charges for Prodan were derived using the RESP¹⁰ procedure at the $HF/6-31+G^{*11-14}$ level through the program Antechamber¹⁵ from AmberTools12.³ The remainder of the force

Figure S2: Chemical structure of Prodan.

field parameters for Prodan were taken from the Generalized Amber Force Field (GAFF).¹⁶ The CHARMM-GUI Membrane Builder¹ was used to generate a pure DMPC and a pure POPC bilayer, each having 50 lipids per leaflet, see system composition in Table S2. The obtained pdb files were converted to the format used in Lipid 14¹⁷ with the program 'char-mmlipid2amber' included in Amber 14.¹⁸ The lipids were described by the Lipid 14 force field,¹⁷ water by the TIP3P⁵ model and the ion parameters are from the work of Joung and Cheatham.¹⁹

Table S2: System composition and simulation time for Prodan in two lipid bilayers.

lipid type	DMPC	POPC
# lipids per leaflet	50	50
# waters	6425	6475
$\# \mathrm{K}^+$	19	20
# Cl ⁻	19	20
simulation time (ns)	160	75

Prodan was placed in the water phase around the membrane using VMD 1.9.1.²⁰ The initial structures were minimized in two steps, each using the same classical minimization protocol as described for the lipid bilayer above. The lipid molecules and Prodan were restrained with a force constant of 500 kcal/mol in this first minimization. A second energy minimization was carried out on the whole system, *i.e.* without restraints. The equilibration protocol was carried out in the same way as described for the lipid bilayer above. The DMPC system was simulated for 160 ns and the POPC system for 75 ns, using the same simulation protocol as described for the lipid bilayer above.

The Prodan molecule inserted into the membrane after ~10 ns and ~30 ns in the DMPC and the POPC membrane, respectively. During the course of the simulation the Prodan molecule occupied several positions and orientations in the membranes, both parallel with the lipid tails and horizontal in the interface. From each simulation we chose a snapshot with a close-to-vertical orientation of Prodan with the amino group pointing towards the interface and the carbonyl group pointing towards the hydrophobic core. This choice is based on a wish to probe the electrostatic potential (ESP) as deep into the membrane as possible. We note that a thorough sampling would be needed if a comparison to experimental results was wanted.

From this snapshot the Prodan structure was replaced with the original geometry-optimized version. The lipids were allowed to adapt to the slightly altered conformation of Prodan through a round of classical energy minimization as described above with the geometry of the Prodan molecule constrained. Snapshots of the minimized systems were used in the subsequent analysis.

Fragmentation Procedure

Table S3: RMSD values $[kJ mol^{-1}]$ for the ESP from classical parameters (calculated with different fragmentation procedures) with respect to a full QM reference ESP on three conformations of DMPC (1, 2 and 3). Classical conformation-specific parameters and the QM reference were calculated with B3LYP/aug-cc-pVDZ. The classical ESPs are based on LoProp multipoles up to quadrupoles (denoted M2), or by LoProp multipoles up to quadrupoles and LoProp anisotropic dipole–dipole polarizabilities (denoted M2P2). The right column gives averaged RMSD values over the three conformations.

	DM	PC 1	DMPC 2		DMPC 3		Average	
	M2	M2P2	M2	M2P2	M2	M2P2	M2	M2P2
F1C2	2.26	2.36	2.85	2.57	2.31	2.38	2.47	2.43
F1C3	2.18	2.54	2.60	3.31	2.30	3.13	2.36	2.99
F2C2	2.19	3.08	2.61	3.43	2.28	3.22	2.36	3.24
F2C3	2.19	2.27	2.51	2.55	2.31	2.36	2.34	2.39
F3C1	2.27	2.16	2.72	2.71	2.56	2.52	2.52	2.46
F3C3	2.18	2.70	2.50	2.91	2.33	2.76	2.33	2.79

Averaged Lipid Embedding Parameters

Below we present the classical parameters for each of the three lipids used in this study. We refer to the exclusion lists presented in ref. 21 for each lipid to correctly avoid double-counting intramolecular polarization effects.

Table S4: Averaged embedding parameters for 1,2-dimyristoyl-*sn*-glycero-3-phosphocholine (DMPC). The list gives the lipid name in three-letter code (DMC), atom name (see Figure S1 for the chemical structure and atom names), averaged RESP charge and averaged isotropic polarizability, both in atomic units. The numbers are averages over 200 lipid conformations and have been calculated with B3LYP/aug-cc-pVDZ. Average parameters and exclusion lists are also given as separate supporting files. See the main text for details.

DMC,	C1, 0.03716, 7.97663	DMC, H11A, -0.03088	3, 2.33148	DMC, H4S, -0.00328, 2.48796
DMC,	C11, 0.39593, 8.06069	DMC, H11B, -0.03088	3, 2.33148	DMC, H4X, -0.00558, 2.52976
DMC,	C12, -0.10528, 7.70902	DMC, H11R, 0.01010,	2.53968	DMC, H4Y, -0.00558, 2.52976
DMC,	C13, -0.32653, 5.89853	DMC, H11S, 0.01010,	2.53968	DMC, H5R, 0.01570, 2.53233
DMC,	C14, -0.32653, 5.89853	DMC, H11X, 0.00903,	2.53706	DMC, H5S, 0.01570, 2.53233
DMC,	C15, -0.32653, 5.89853	DMC, H11Y, 0.00903,	2.53706	DMC, H5X, 0.01979, 2.52459
DMC,	C2, 0.24835, 8.38848	DMC, H12A, 0.09095,	2.01348	DMC, H5Y, 0.01979, 2.52459
DMC,	C21, 0.74569, 7.42465	DMC, H12B, 0.09095,	2.01348	DMC, H6R, 0.00008, 2.53056
DMC,	C210, -0.01464, 7.78764	DMC, H12R, 0.01472,	2.57612	DMC, H6S, 0.00008, 2.53056
DMC,	C211, -0.02749, 7.73344	DMC, H12S, 0.01472,	2.57612	DMC, H6X, 0.00302, 2.53784
DMC,	C212, -0.06066, 7.62789	DMC, H12X, 0.01586,	2.57520	DMC, H6Y, 0.00302, 2.53784
DMC,	C213, 0.18563, 7.46784	DMC, H12Y, 0.01586,	2.57520	DMC, H7R, 0.00339, 2.52610
DMC,	C214, -0.28337, 7.34751	DMC, H13A, 0.15844,	2.03057	DMC, H7S, 0.00339, 2.52610
DMC,	C22, -0.29618, 8.02618	DMC, H13B, 0.15844,	2.03057	DMC, H7X, 0.00030, 2.54944
DMC,	C23, 0.04668, 7.82164	DMC, H13C, 0.15844,	2.03057	DMC, H7Y, 0.00030, 2.54944
DMC,	C24, 0.04863, 7.80341	DMC, H13R, -0.02827	, 2.60327	DMC, H8R, 0.00541, 2.53908
DMC,	C25, -0.07811, 7.85417	DMC, H13S, -0.02827	, 2.60327	DMC, H8S, 0.00542, 2.53908
DMC,	C26, 0.01701, 7.82394	DMC, H13X, -0.02360	, 2.59025	DMC, H8X, 0.01085, 2.53717
DMC,	C27, -0.00203, 7.82818	DMC, H13Y, -0.02360	, 2.59025	DMC, H8Y, 0.01085, 2.53717
DMC,	C28, -0.01820, 7.85395	DMC, H14A, 0.15844,	2.03057	DMC, H9R, 0.00325, 2.54421
DMC,	C29, -0.00072, 7.83648	DMC, H14B, 0.15844,	2.03057	DMC, H9S, 0.00326, 2.54421
DMC,	C3, 0.03364, 7.65611	DMC, H14C, 0.15844,	2.03057	DMC, H9X, 0.00336, 2.52570
DMC,	C31, 0.77165, 7.68888	DMC, H14R, 0.06209,	2.67523	DMC, H9Y, 0.00336, 2.52570
DMC,	C310, -0.01669, 7.81386	DMC, H14S, 0.06209,	2.67523	DMC, HA, 0.05278, 2.39463
DMC,	C311, -0.02420, 7.69955	DMC, H14T, 0.06209,	2.67523	DMC, HB, 0.05278, 2.39463
DMC,	C312, -0.05716, 7.60080	DMC, H14X, 0.06108,	2.67907	DMC, HS, 0.07028, 2.04722
DMC,	C313, 0.17025, 7.47198	DMC, H14Y, 0.06108,	2.67907	DMC, HX, 0.07533, 2.29822
DMC,	C314, -0.27852, 7.37405	DMC, H14Z, 0.06108,	2.67907	DMC, HY, 0.07533, 2.29822
DMC,	C32, -0.33302, 8.18846	DMC, H15A, 0.15844,	2.03057	DMC, N, 0.18522, 7.14440
DMC,	C33, 0.06837, 7.87963	DMC, H15B, 0.15844,	2.03057	DMC, 011, -0.43447, 6.88496
DMC,	C34, 0.05825, 7.88149	DMC, H15C, 0.15844,	2.03057	DMC, 012, -0.49265, 6.93574
DMC,	C35, -0.07883, 7.85694	DMC, H2R, 0.08355,	2.43699	DMC, 013, -0.78864, 6.83184
DMC,	C36, -0.00254, 7.85594	DMC, H2S, 0.08355,	2.43699	DMC, 014, -0.78864, 6.83184
DMC,	C37, 0.01224, 7.88044	DMC, H2X, 0.09061,	2.41733	DMC, 021, -0.39427, 6.19316
DMC,	C38, -0.03737, 7.86703	DMC, H2Y, 0.09061,	2.41733	DMC, 022, -0.55969, 5.15933
DMC,	C39, 0.01077, 7.81587	DMC, H3R, 0.00964,	2.47074	DMC, 031, -0.38908, 6.52443
DMC,	H10R, 0.00945, 2.53177	DMC, H3S, 0.00964,	2.47075	DMC, 032, -0.56415, 5.35035
DMC,	H10S, 0.00945, 2.53177	DMC, H3X, 0.00267,	2.44185	DMC, P, 1.31453, 11.77389
DMC,	H10X, 0.00696, 2.55007	DMC, H3Y, 0.00267,	2.44184	
DMC,	H10Y, 0.00696, 2.55007	DMC, H4R, -0.00328,	2.48796	

Table S5: Averaged embedding parameters for 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). The list gives the lipid name in three-letter code (POC), atom name (see Figure S1 for the chemical structure and atom names), averaged RESP charge and averaged isotropic polarizability, both in atomic units. The numbers are averages over 200 lipid conformations and have been calculated with B3LYP/aug-cc-pVDZ. Average parameters and exclusion lists are also given as separate supporting files. See the main text for details.

POC,	C1, 0.02133, 7.96015	POC,	H11A,	-0.02945, 2.34288	POC,	H2X, 0.07476, 2.41125
POC,	C11, 0.39131, 8.03405	POC,	H11B,	-0.02945, 2.34288	POC,	H2Y, 0.07476, 2.41125
POC,	C12, -0.14027, 7.68164	POC,	H11R,	0.00413, 2.51099	POC,	H3R, 0.01692, 2.48118
POC,	C13, -0.32324, 5.89373	POC,	H11S,	0.00413, 2.51099	POC,	H3S, 0.01692, 2.48118
POC,	C14, -0.32324, 5.89373	POC,	H11X,	0.00618, 2.54017	POC,	H3X, 0.00561, 2.47656
POC,	C15, -0.32324, 5.89373	POC,	H11Y,	0.00618, 2.54017	POC,	H3Y, 0.00561, 2.47656
POC,	C2, 0.36325, 8.40321	POC,	H12A,	0.10144, 2.01459	POC,	H4R, 0.00007, 2.48803
POC,	C21, 0.73033, 7.46244	POC,	H12B,	0.10144, 2.01459	POC,	H4S, 0.00007, 2.48803
POC,	C210, -0.23365, 10.50043	POC,	H12R,	0.01958, 2.57419	POC,	H4X, 0.00564, 2.51095
POC,	C211, 0.12881, 8.00110	POC,	H12S,	0.01958, 2.57419	POC,	H4Y, 0.00564, 2.51095
POC,	C212, -0.05812, 8.06332	POC,	H12X,	0.00966, 2.54186	POC,	H5R, 0.02210, 2.52296
POC,	C213, -0.01578, 7.89216	POC,	H12Y,	0.00966, 2.54186	POC,	H5S, 0.02210, 2.52296
POC,	C214, -0.00536, 7.84086	POC,	H13A,	0.15725, 2.02965	POC,	H5X, 0.01733, 2.51567
POC,	C215, -0.03499, 7.74208	POC,	H13B,	0.15725, 2.02965	POC,	H5Y, 0.01733, 2.51567
POC,	C216, -0.03720, 7.66999	POC,	H13C,	0.15725, 2.02965	POC,	H6R, 0.01158, 2.52653
POC,	C217, 0.15843, 7.50917	POC,	H13R,	0.00977, 2.52208	POC,	H6S, 0.01158, 2.52653
POC,	C218, -0.21225, 7.36512	POC,	H13S,	0.00977, 2.52208	POC,	H6X, 0.01411, 2.54123
POC,	C22, -0.19668, 8.02223	POC,	H13X,	0.01140, 2.53725	POC,	H6Y, 0.01411, 2.54123
POC,	C23, -0.00377, 7.86563	POC,	H13Y,	0.01140, 2.53725	POC,	H7R, 0.02310, 2.57246
POC,	C24, 0.03579, 7.82671	POC,	H14A,	0.15725, 2.02965	POC,	H7S, 0.02310, 2.57246
POC,	C25, -0.06876, 7.86703	POC,	H14B,	0.15725, 2.02965	POC,	H7X, 0.01014, 2.54503
POC,	C26, -0.01298, 7.89255	POC,	H14C,	0.15725, 2.02965	POC,	H7Y, 0.01014, 2.54503
POC,	C27, -0.07270, 8.06196	POC,	H14R,	0.00793, 2.54965	POC,	H8R, -0.00122, 2.48623
POC,	C28, 0.16450, 7.99647	POC,	H14S,	0.00793, 2.54965	POC,	H8S, -0.00122, 2.48623
POC,	C29, -0.25728, 10.51216	POC,	H14X,	0.01499, 2.57044	POC,	H8X, 0.00689, 2.53802
POC,	C3, 0.13278, 7.63313	POC,	H14Y,	0.01499, 2.57044	POC,	H8Y, 0.00689, 2.53802
POC,	C31, 0.74848, 7.62857	POC,	H15A,	0.15725, 2.02965	POC,	H91, 0.11320, 2.71434
POC,	C310, -0.01684, 7.86142	POC,	H15B,	0.15725, 2.02965	POC,	H9X, 0.00735, 2.55353
POC,	C311, -0.00772, 7.83251	POC,	H15C,	0.15725, 2.02965	POC,	H9Y, 0.00735, 2.55353
POC,	C312, -0.01829, 7.81978	POC,	H15R,	0.01259, 2.53323	POC,	HA, 0.04814, 2.39094
POC,	C313, -0.02620, 7.74269	POC,	H15S,	0.01259, 2.53323	POC,	HB, 0.04814, 2.39094
POC,	C314, -0.05398, 7.64231	POC,	H15X,	-0.02288, 2.60051	POC,	HS, 0.03116, 2.05077
POC,	C315, 0.14926, 7.52222	POC,	H15Y,	-0.02288, 2.60051	POC,	HX, 0.03915, 2.29614
POC,	C316, -0.21467, 7.39704	POC,	H16R,	0.00930, 2.57487	POC,	HY, 0.03915, 2.29614
POC,	C32, -0.25147, 8.15964	POC,	H16S,	0.00930, 2.57487	POC,	N, 0.19407, 7.12680
POC,	C33, 0.05067, 7.89383	POC,	H16X,	0.04464, 2.67429	POC,	011, -0.43738, 6.83209
POC,	C34, 0.00950, 7.86137	POC,	H16Y,	0.04464, 2.67429	POC,	012, -0.48398, 6.97184
POC,	C35, -0.04604, 7.86562	POC,	H16Z,	0.04464, 2.67429	POC,	013, -0.78682, 6.79459
POC,	C36, -0.03203, 7.88114	POC,	H17R,	-0.02751, 2.60709	POC,	014, -0.78682, 6.79459
POC,	C37, -0.01920, 7.87902	POC,	H17S,	-0.02751, 2.60709	POC,	021, -0.43933, 6.21300
POC,	C38, -0.00750, 7.87601	POC,	H18R,	0.04308, 2.66920	POC,	022, -0.56551, 5.20641
POC,	C39, -0.01628, 7.87441	POC,	H18S,	0.04308, 2.66920	POC,	031, -0.43271, 6.51932
POC,	H101, 0.11381, 2.71627	POC,	H18T,	0.04308, 2.66920	POC,	032, -0.55952, 5.28506
POC,	H10X, 0.00766, 2.55473	POC,	H2R,	0.06469, 2.42043	POC,	P, 1.30437, 11.72633
POC,	H10Y, 0.00766, 2.55473	POC,	H2S,	0.06469, 2.42043		

Table S6: Averaged embedding parameters for 1-palmitoyl-2-oleyl-*sn*-glycerol-3-phospho-Lserine (POS). The list gives the lipid name in three-letter code (POS), atom name (see Figure S1 for the chemical structure and atom names), averaged RESP charge and averaged isotropic polarizability, both in atomic units. The numbers are averages over 200 lipid conformations and have been calculated with B3LYP/aug-cc-pVDZ. Average parameters and exclusion lists are also given as separate supporting files. See the main text for details.

POS,	C1, 0.02905, 8.20360	POS, H11A, 0.01219, 2	2.31733	POS, H4X, -0.00708, 2.56432
POS,	C11, 0.38499, 8.18597	POS, H11B, 0.01219, 2	2.31733	POS, H4Y, -0.00708, 2.56432
POS,	C12, -0.37578, 10.36373	POS, H11R, -0.00030,	2.50149	POS, H5R, 0.02300, 2.53082
POS,	C13, 0.83249, 10.10036	POS, H11S, -0.00030,	2.50149	POS, H5S, 0.02300, 2.53082
POS,	C2, 0.40685, 8.57176	POS, H11X, 0.00570, 2	2.53892	POS, H5X, 0.01965, 2.52319
POS,	C21, 0.75190, 7.52183	POS, H11Y, 0.00570, 2	2.53892	POS, H5Y, 0.01965, 2.52319
POS,	C210, -0.25591, 10.59231	POS, H12A, 0.18301, 2	2.25672	POS, H6R, 0.01040, 2.50584
POS,	C211, 0.15377, 8.05756	POS, H12R, 0.01577, 2	2.58087	POS, H6S, 0.01040, 2.50584
POS,	C212, -0.05179, 8.09573	POS, H12S, 0.01577, 2	2.58087	POS, H6X, 0.01073, 2.54305
POS,	C213, -0.01689, 7.95315	POS, H12X, 0.00824, 2	2.53508	POS, H6Y, 0.01073, 2.54305
POS,	C214, 0.00052, 7.86746	POS, H12Y, 0.00824, 2	2.53508	POS, H7R, 0.02282, 2.57966
POS,	C215, -0.03305, 7.77252	POS, H13R, 0.00860, 2	2.52965	POS, H7S, 0.02282, 2.57966
POS,	C216, -0.04554, 7.70116	POS, H13S, 0.00860, 2	2.52965	POS, H7X, 0.00790, 2.53536
POS,	C217, 0.15302, 7.54384	POS, H13X, 0.01398, 2	2.55073	POS, H7Y, 0.00790, 2.53536
POS,	C218, -0.20491, 7.42258	POS, H13Y, 0.01398, 2	2.55073	POS, H8R, 0.00630, 2.50866
POS,	C22, -0.20878, 8.08187	POS, H14R, 0.00705, 2	2.53351	POS, H8S, 0.00630, 2.50866
POS,	C23, 0.01878, 7.92481	POS, H14S, 0.00705, 2	2.53351	POS, H8X, 0.01085, 2.55000
POS,	C24, 0.01470, 7.91490	POS, H14X, 0.01137, 2	2.56782	POS, H8Y, 0.01085, 2.55000
POS,	C25, -0.08313, 8.00164	POS, H14Y, 0.01137, 2	2.56782	POS, H91, 0.10845, 2.69356
POS,	C26, 0.00442, 7.93281	POS, H15R, 0.01122, 2	2.54155	POS, H9X, 0.00536, 2.54181
POS,	C27, -0.07187, 8.08784	POS, H15S, 0.01122, 2	2.54155	POS, H9Y, 0.00536, 2.54181
POS,	C28, 0.12331, 8.02497	POS, H15X, -0.02487,	2.59661	POS, HA, 0.02955, 2.45988
POS,	C29, -0.22400, 10.57213	POS, H15Y, -0.02487,	2.59661	POS, HB, 0.02955, 2.45988
POS,	C3, 0.12652, 7.68507	POS, H16R, 0.01152, 2	2.58498	POS, HN1, 0.28680, 1.93541
POS,	C31, 0.76625, 7.69454	POS, H16S, 0.01152, 2	2.58498	POS, HN2, 0.28680, 1.93541
POS,	C310, -0.01658, 7.90618	POS, H16X, 0.04630, 2	2.67933	POS, HN3, 0.28680, 1.93541
POS,	C311, -0.00602, 7.85945	POS, H16Y, 0.04630, 2	2.67933	POS, HS, 0.01277, 2.07789
POS,	C312, -0.01214, 7.81528	POS, H16Z, 0.04630, 2	2.67933	POS, HX, 0.04078, 2.29699
POS,	C313, -0.04092, 7.76514	POS, H17R, -0.02477,	2.58933	POS, HY, 0.04078, 2.29699
POS,	C314, -0.03863, 7.64523	POS, H17S, -0.02477,	2.58933	POS, N, -0.31375, 6.65416
POS,	C315, 0.15568, 7.52877	POS, H18R, 0.04127, 2	2.68430	POS, 011, -0.46250, 7.09856
POS,	C316, -0.22377, 7.40613	POS, H18S, 0.04127, 2	2.68430	POS, 012, -0.50502, 7.03264
POS,	C32, -0.26478, 8.20754	POS, H18T, 0.04127, 2	2.68430	POS, 013, -0.80572, 7.04161
POS,	C33, 0.06841, 7.93181	POS, H2R, 0.06646, 2.	. 42207	POS, 013A, -0.71884, 6.90879
POS,	C34, 0.03536, 7.96806	POS, H2S, 0.06646, 2.	. 42207	POS, 013B, -0.71884, 6.90879
POS,	C35, -0.07515, 7.91253	POS, H2X, 0.07249, 2.	. 43157	POS, 014, -0.80572, 7.04161
POS,	C36, -0.01736, 7.91498	POS, H2Y, 0.07249, 2.	.43157	POS, 021, -0.44614, 6.26548
POS,	C37, -0.00520, 7.88638	POS, H3R, 0.01076, 2.	49489	POS, 022, -0.57059, 5.22329
POS,	C38, -0.02825, 7.90459	POS, H3S, 0.01076, 2.	. 49489	POS, 031, -0.44644, 6.54700
POS,	C39, -0.00568, 7.90371	POS, H3X, -0.00092, 2	2.45826	POS, 032, -0.56420, 5.32514
POS,	H101, 0.11318, 2.70105	POS, H3Y, -0.00092, 2	2.45826	POS, P, 1.31175, 12.15811
POS,	H10X, 0.00662, 2.55274	POS, H4R, 0.00145, 2.	.50696	
POS,	H10Y, 0.00662, 2.55274	POS, H4S, 0.00145, 2.	.50696	

References

- Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Dávila-Contreras, E. M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R. M.; Klauda, J. B.; Im, W. J. Comput. Chem. 2014, 35, 1997.
- (2) Crowley, M. F.; Williamson, M. J.; Walker, R. C. Int. J. Quantum Chem. 2009, 109, 3767.
- (3) Case, D. A. et al. AMBER 12. 2012; University of California, San Francisco.
- (4) Klauda, J. B.; Venable, R. M.; Freites, J. A.; O'Connor, J. W.; Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D.; Pastor, R. W. J. Phys. Chem. B 2010, 114, 7830.
- (5) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.
- (6) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684.
- (7) Pastor, R. W.; Brooks, B. R.; Szabo, A. Mol. Phys. 1988, 65, 1409.
- (8) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1977, 23, 327.
- (9) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.
- (10) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.
- (11) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
- (12) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
- (13) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.;
 Pople, J. A. J. Chem. Phys. 1982, 77, 3654.

- (14) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Von Ragué Schleyer, P. J. Comput. Chem. 1983, 4, 294.
- (15) Wang, B.; Merz, K. M. J. Chem. Theory Comput. 2006, 2, 209.
- (16) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem.
 2004, 25, 1157.
- (17) Dickson, C. J.; Madej, B. D.; Skjevik, Å.; Betz, R. M.; Teigen, K.; Gould, I. R.;
 Walker, R. C. J. Chem. Theory Comput. 2014, 10, 865.
- (18) Case, D. A. et al. AMBER 14. 2014; University of California, San Francisco.
- (19) Joung, I. S.; Cheatham III, T. E. J. Phys. Chem. B 2008, 112, 9020.
- (20) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33.
- (21) Witzke, S.; List, N. H.; Olsen, J. M. H.; Steinmann, C.; Petersen, M.; Beerepoot, M.; Kongsted, J. Supporting Information: Exclusion lists for single lipids, see https://dx.doi.org/10.6084/m9.figshare.4003794.v1, accessed November 21st 2016.