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Abstract

Three pigments, β-carotene, astaxanthin and phycocyanin are presently well-established microalgal products,
produced at large-scale in cultures of microalgae or cyanobacteria and used as natural colours in feed and foods
and as nutritional additives. Applied research in these 3 pigments is, however, still developing rapidly; particularly in
their effects on human health. This commentary provides a brief overview on the main functional effects of β-
carotene, astaxanthin and phycocyanin and presents an analysis of the current trends in research activities in
relation to their used in feed, foods and health.
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Introduction
Phototrophic microalgae and cyanobacteria make up a diverse

group of organisms. Some species are used in feed or foods or for
production of ingredients [1-3]. Their phototrophic mode of living has
launched intense interest in microalgal cultivation as these organisms,
in principle, need only inorganic nutrients and light in order to grow.
However,  their   need   for   light  also   poses  a   serious  challenge.  It  is
inherently difficult to scale up microalgal cultures and at the same time
distribute  light  evenly  and  maintain  adequate  light intensities inside
the cultures [4]. At culture surfaces will high light intensities typically
result in low photosynthetic efficiencies while darker zones with low
photosynthetic activities will prevail inside the cultures. Productivity is
therefore an unresolved bottleneck in microalgal cultivation and
production  costs  may  be  in  the  order  of  at least  5 €-15 €  per kg dry
microalgal biomass [3,5].

Only a few microalgal products are presently made at large scale and
used in the production of feed and foods or as health promoting
nutritional supplements. The most successful microalgal feed and food
products belong to the two classes of pigments; carotenoids and
phycobiliproteins. Also microalgal oils rich in long-chain
polyunsaturated fatty acids have become important ingredients
(in infant formula). These oils are however, predominantly

dinoflagellate
Crypthecodinium cohnii [6] or in marine protists [7]. Carotenoids and
phycobiliproteins function either as light harvesting pigments or used
as photoprotecting agents and synthesized mainly by phototrophic
species. Carotenoids and phycobiliproteins may provide colour to feed
and foods but often their most important roles are as functional health
promoting ingredients. All phycobiliproteins, some carotenoids, and
also other biologically active molecules [8] are synthesised exclusively
by microalgae or cyanobacteria. Still, for only 3 pigments; β-carotene,
astaxanthin, and phycocyanin is large scale microalgal cultivations

presently a production methods of choice. Table 1 shows world market
sizes for β-carotene, astaxanthin, and phycocyanin, and the market
shares supplied via microalgal or cyanobacterial cultivation. All 3
pigments are used not only as feed or food colours but also as
nutritional supplements. Particularly their health effects have attracted
more and more attention during the past years. The main purpose of
this commentary is to provide a brief overview of the major functional
roles of microalgal and cyanobacterial β-carotene, astaxanthin, and
phycocyanin, and analyse current trends in the level of scientific
activity and interest in their use in feed, foods and health [9].

Pigment World market Publications
in WOS

β-carotene 253-280 mio. USD
[1,20,78,79] 24,260

β-carotene from Dunaliella/
microalgae1

8.5-30% produced in
microalgae [25,78,80] 678 (2.8%)

Astaxanthin 150-240 mio. USD
[1,20,79] 3,090

Astaxanthin from Haematococcus/
microalgae2

Small fraction produced
in microalgae [20,25,45] 882 (28.5%)

Phycocyanin 10-60 mio. USD
[1,78,79] 2,317

Phycocyanin from Spirulina3/
cyanobacteria3

Only produced in
cyanobacteria 1,519 (65.6%)

Table1: Estimates of world market sizes and fractions covered by
microalgal pigments. Number of publications registered by Web of
Science (WOS) until January 2016 where topic (title, key words or
abstract) includes the pigment name, β-carotene, astaxanthin, or
phycocyanin and the pigment name in combination with either the
genus name of the main microalgal producer or microalgae or
cyanobacteria in general and the percentage of publications on each
pigment that also include the name of the main microalgal producer or
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microalgae or cyanobacteria in general. Topic search terms included;
1microalgae, microalga and microalgal, 2Spirulina and Arthrospira and
3cyanobacteria, cyanobacterium and cyanobacterial.

Carotenoids
Carotenoids are used in animal feed to provide colour to e.g.

salmon, chicken, egg yolk, and butter and for colouration and
nutritional purposes in foods, as reviewed by Shahidi et al. [10].
Primary carotenoids are integral parts of the photosynthetic apparatus
in all photosynthetic organisms. They act as light harvesting pigments
or play essential structural or photoprotective roles. Secondary
carotenoids have no roles in photosynthesis but may still play
protective roles because of their ability to absorb excess light and their
antioxidant properties and capabilities to scavenge free radicals.
Primary carotenoids make up less than 1% of the biomass in
phototrophic microalgae [11] and only the two secondary carotenoids,
β-carotene and astaxanthin are produced commercially in large scale
microalgal cultures [12].

β-carotene
β-carotene is one of the most widespread pigments in nature.

Although it is a primary carotenoid and an essential component of the
core complex of photosystems I and II in plants and algae [13,14],
some microalgae also accumulate β-carotene as a secondary
carotenoid. In the halophilic chlorophyte, Dunaliella salina (syn. D.
bardawil [15]) can β-carotene make up as much as 8% of the biomass
[16]. D. salina is grown in warm, hypersaline, solar exposed shallow
lagoons or ponds where most other organisms do not thrive [17,18].
Between 8.5 and 30% of the β-carotene world market is supplied from
D. salina cultures (Table 1) and at least 8 companies are marketing D.
salina β-carotene [19,20]. The fungus Blakeslea trispora is an
alternative source of natural β-carotene [21]. Synthetic β-carotene
made by chemical synthesis contains only the all-trans isomers of β-
carotene [22] while natural β-carotene is a mixture of isomers. In D.
salina can 9-cis β-carotene be the dominating isomer depending on the
growth conditions [23,24].

The most important functions of β-carotene in feed and foods are its
antioxidant and pro-vitamin A activities, see reviews [1-2] but also
cancer prevention, immune response modulations, and hepato-
protection have been associated to β-carotene [25]. β-carotene is safe
to eat [26] and isomeric differences between natural and synthetic β-
carotene have been an important argument to justify the use of natural
β-carotene in feed and foods over less costly synthetic β-carotene. Up-
take of β-carotene depends on the initial solubilisation of the
carotenoid in lipid micelles in the stomach [27]. It is however, not
obvious which β-carotene isomer composition is preferable. Natural β-
carotene from D. salina composed of equal amounts of all-trans and 9-
cis isomers seem to be more bioavailable to rats than synthetic all-trans
β-carotene [28], probably because all-trans β-carotene is the lesser
soluble of the two isomers [16]. The 9-cis β-carotene isomer also acts
as precursor for the synthesis of 9-cis retinoic acid [29], which is
involved in the regulation of a number of cellular processes [30]. Other
studies, however, suggest that all-trans β-carotene is absorbed more
efficiently in the human gut than 9-cis β-carotene [31] and has the
highest pro-vitamin A activity of all carotenoids [32].

Astaxanthin
Astaxanthin is synthesized only by a number of green microalgae

and yeast but is still a widespread pigment in aquatic environments
since it is bioaccumulated in crustaceans and certain fish [10]. The
richest source of natural astaxanthin is resting spores, haematocysts, of
the freshwater microalga Haematococcus pluvialis (Chlorophyta)
where it can make up to 3% of the biomass [33]. At least 10 companies
are marketing natural astaxanthin from Haematococcus pluvialis
[20,34]. Cultivation takes place in outdoor, closed photobioreactors
where contamination organisms are physically excluded [35]. At least
one company also grows H. pluvialis indoor in mixotrophic cultures
illuminated by artificial light [20]. Astaxanthin is found as all-trans and
a number of cis isomers, and has in addition two asymmetric carbon
atoms that give rise to 3 optical astaxanthin isomers [36]. Synthetic
astaxanthin is a mixture of the 3 optical all-trans isomers [37]. H.
pluvialis synthesise a mixture of all-trans, 9-cis and 13-cis astaxanthin
isomers but only one optical isomer [38-40].

Aquaculture is the largest market for astaxanthin. It is the most
important pigment in the flesh of salmonids, the skin of sea bream and
ornamental fish, and in crustacean shells, reviewed by [10]. The
aquaculture market is dominated by synthetic astaxanthin with the
salmon industry as the largest consumer [33]. Salmonids do not
discriminate between isomeric differences between natural and
synthetic astaxanthin [41]. Astaxanthin is also used as food additive,
and no health related problems seem associated to the intake
astaxanthin [42,43]. Numerous health effects have been linked to
astaxanthin, see reviews [44-47], including positive effects in eyes, skin
and muscles, the heart, the immune system, the liver, and to
metabolism, cognitive functions, and sperm quality. Astaxanthin may
be used against e.g. inflammation, cancer, neurogenerative diseases
and diabetes. Astaxanthin exhibits higher antioxidant activity than
other carotenoids [48] and the 9-cis and 13-cis isomers have higher in-
vitro antioxidant activities than all-trans astaxanthin [49]. Astaxanthin
is a particular efficient antioxidant when dissolved in phospo-lipid
bilayer membranes [50] and able to scavenge electrons or radicals on
the membrane surfaces as well as in the interior of the membrane,
interact synergistically with β-carotene, other non-polar carotenoids,
and α-tocopherol (Vitamin E) in the membrane, and with water
soluble ascorbic acid (Vitamin C) at the membrane surface [47,51,52].
While apolar carotenoids like β-carotene dissolve deep inside phospo-
lipid bilayer membranes oriented in parallel to the membrane surface
[53,54], astaxanthin dissolves perpendicular to the membrane surfaces,
spans the phospo-lipid bilayer, and exposes its end-positioned polar
keto- and hydroxyl-groups on both sides of the membrane [51].

Phycobiliproteins
Phycobiliproteins are light harvesting pigments found only in

cyanobacteria, red algae, and cryptophytes. Phycobiliproteins can be
used in feed and foods to provide colour and for health purposes.
Phycobiliproteins are multichain proteins and it is covalently bound
prosthetic phycobilin groups that provide colour to the
phycobiliproteins [55,56]. The 3 common phycobiliproteins are red
coloured phycoerythrin with phycoerythrobilin chromophores, and
blue coloured phycocyanin and allophycocyanin with phycocyanobilin
chromophores. Macroalgae (Rhodophyta) are the main source of
phycoerythrin, used mainly as a fluorophore [57] while cyanobacterial
cultures are the major source for allophycocyanin (also used mainly as
fluorophore) and phycocyanin.
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Phycocyanin
Phycocyanin is the phycobiliprotein that has attracted most

attention for use in feed, foods, and health probably because it is the
most readily available phycobiliprotein. Phycocyanin cannot be made
synthetically but is synthesised in cultures of Arthrospira platensis
(syn. Spirulina platensis [15]) and possibly other cyanobacteria and
cannot be made synthetically. Phycocyanin can make up more than
15% of the biomass in A. platensis [58]. This cyanobacterium tolerates
pH values up to pH 10.5 [59] and is grown photoautotrophically in
outdoor, open ponds or raceways in tropical and subtropical regions
[2,60,61]. Phycocyanin can actually be produced more efficiently in
heterotrophic cultures of the unicellular rhodophyte, Galdieria
sulphuraria [62,63] though this organism has no history for use in feed
of foods. A. platensis cells are, in contrast, already used as feed, food
and in health food products. A. platensis is believed to stimulate the
immune defence system and possess antioxidant, anti-inflammatory,
anti-viral, anti-cancer, and cholesterol-lowering effects because of their
high contents of phycocyanin and other biologically active molecules
[64,65].

Purified phycocyanin is quite a novel food ingredient in most parts

use in candy, chewing gum and other types for confection in the US in
2013 and 2014 by the US Food and Drug Administration [66]. In EU
have ‘Guidance notes for the use of colouring foodstuffs’ since 2013
provided novel opportunities for the use of phycocyanin rich
Arthrospira extracts as a so-called colouring food [67]. Phycocyanin
itself is not yet on the list of approved food additives in the EU [68].
The nutraceutical value of phycocyanin is a second reason for its use in
foods. The phycocyanobilin groups provide antioxidant and radical
scavenging activities to phycocyanin [69-73]. The list of potential
health effects related to phycocyanin includes anti-inflammatory
effects, anti-platelet aggregation, anti-cancerogenic effects, prevention
of cholesterol-induced artherosclerosis, kainic acid-induced neural
damage, kidney stone formation, thioacetamide-induced hepatic
encephalopathy, and reduced cardiotoxicity of doxorubicin, see
reviews [74,75]. It may be that it is actually a second compound,
phycocyanorubin that is the true antioxidant species in vivo [76].
Phycocyanorubin is produced from phycocyanobilin in vivo by
biliverdin reductase and is similar to bilirubin, a natural antioxidant in
plasma that also inhibits formation of superoxide radicals by NADPH
oxidase.

Scientific Activities on β-carotene, Astaxanthin and
Phycocyanin
The scientific interests in microalgal β-carotene, astaxanthin, and

phycocyanin in feed, foods and health applications have increased
sharply the past decades. The number of scientific papers and the
number of citations to these papers recorded by Web of Science [9] can
be used as indicators of the developments in scientific activities [77]
related to these pigments. In February 2016 were more than 24,000
publications on β-carotene and 2,300-3,000 publications on
phycocyanin and astaxanthin, respectively, registered by WOS (Table
1) [78-81]. Publications on β-carotene has been released annually since
the 1930’s, for the two other pigments since the 1950’s. Less than 3% of
the publications on β-carotene associate this pigment to either

denoted the topic). Much higher proportions of the publications on

astaxanthin or phycocyanin associate these pigments to either
reflecting the

much narrower range of organisms in which these pigments are
present (Table 1).

Scientific interests on microalgal β-carotene, astaxanthin, and
phycocyanin in feed, foods, and health began much later. Only since
the early 1990’s are publications linking these pigments to feed or food
released annually, while publications associating these pigments to
health have been released regularly since approximately Year 2000.
Since then have the interests in all 3 pigments developed rapidly.
Figure 1 shows the total number of publications published each year in
which the 3 pigment names are mentioned in combination with either
the genus name of the main producer (Dunaliella, Haematococcus, or

) or with microalgae or cyanobacteria in general.
The total number of citations these publications have received each
year is also shown in Figure 1. Lastly are also the annual number of
publications linking the 3 pigments to feed, food, or health, and their
annual number of citations shown in Figure 1.

The specific rates by which the annual numbers of publications and
their citations have increased can be estimated by fitting a first order
exponential equation to the data points in Figure 1.

n = ek·(t-t0)  (1)

where n is annual number of publications or citations, t is time
measured in years, t0 represents the first year publications on a given
topic started to appear on a yearly basis, and k is the specific rate
constant for the annual growth in numbers of publications or citations.
The total numbers of annual publications registered by WOS have
increased by 3.2% per year from 1975–2015. The annual numbers of
publications on microalgal β-carotene, astaxanthin, or phycocyanin are
growing at much faster at almost similar specific rates of 11%-13% per
year (Figure 1). Also the annual numbers of publications on the 3
microalgal pigments in association to feed, food, and health are
growing at comparable specific rates. In all cases are the highest rates
of growth seen in the publication numbers associating the microalgal
pigments to health.

The annual numbers of citations to the publications on microalgal
β-carotene, astaxanthin, or phycocyanin have increased by 21%-23%
per year (Figure 1). The annual numbers of publications linking these
pigments to feed or food have experienced only slightly higher specific
rates of growth of 22%-28% per year. By far the highest specific rates of
growth (38%-40%) are seen in the numbers of annual citations
received by the publications linking the 3 pigments to health.

The large specific rates of growth in publications and their citations
indicate that applied research in microalgal pigments is an expanding
research topic in absolute as well as in relative terms, and reflect how
health related aspects of microalgal pigments have become a
particularly ‘hot’ research topic in recent years. A substantial number
of pigments and prospective microalgal feed and food products have
been identified and characterised [8]. Much research is, however, still
centred on the only 3 pigments, β-carotene, astaxanthin, and
phycocyanin that successfully have been taken into large-scale
production. The scientific interests in their use in feed, foods and
health have never been greater than now. Strong interests in health
effects also apply to algal pigments not yet produced by microalgal
cultivation. One example is the anti-obesity potential of fucoxanthin
from seaweed or diatoms [18].
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New developments in the use of microalgal pigments in feed and
foods can therefore be expected to relate largely to their potential
health benefits.
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