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An ankle rehabilitation robot based
on 3-RRS spherical parallel
mechanism

Yuting Du1, Ruiqin Li1, Dahai Li1 and Shaoping Bai2

Abstract
This article presents the design modeling of a novel 3-RRS spherical parallel mechanism for ankle rehabilitation applica-
tions. The kinematics of the 3-RRS spherical parallel mechanism is established. The degree of freedom of 3-RRS spherical
parallel mechanism is calculated using screw theory. The inverse kinematics of 3-RRS spherical parallel mechanism is
solved. Eight groups of inverse solutions of 3-RRS spherical parallel mechanism are obtained. A method for forward posi-
tion analysis is developed with variation and iteration approaches, which is suitable for motor position control. The ankle
rehabilitation robot can be widely used in clinical treatment and can also be used at home, hotels, and fitness centers for
ankle muscle relaxation.

Keywords
3-RRS, spherical parallel mechanism, forward position analysis, inverse position analysis, ankle rehabilitation robot

Date received: 6 February 2017; accepted: 31 May 2017

Academic Editor: Soheil Salahshour

Introduction

Ankle sprain is one of the common sport injuries, par-
ticularly in complex movement such as in the ball
games, where there are sudden changes in direction, or
urgent start and stop bring in the problems.1 If the
injuries are not treated timely or thoroughly, it can lead
to ankle ligament laxity and joint instability and cause
repeated injuries. In the worst cases, it can lead to more
serious problems such as ankle dysfunctions.

The development of robot technology makes possi-
ble to perform ankle rehabilitation effectively with a
robotic device. An ankle rehabilitation robot can not
only reduce the labor intensity of the doctor but also
can quantitatively evaluate patient rehabilitation condi-
tion. The robots make them possible for regularly,
moderately rehabilitation exercises.

Some ankle rehabilitation robots in experimental
study or the market products have been reported in the
literature. A 2-RRR/UPRR (R-revolute joint, U-uni-
versal joint, P-prismatic joint) robot mechanism for

ankle rehabilitation is presented by Bian et al.,2 where
the mechanism can realize three rotations around the
remote center and satisfy the requirements of ankle
rehabilitation motions. Wang et al.3 presented a novel
parallel ankle rehabilitation robot and achieved the
kinematic solution and simulation analysis. A parallel
robot for ankle rehabilitation was reported by Shah
and Basah.4 Hou et al.5 proposed a concept of ankle
rehabilitation mechanism, which can train the move-
ments of flexion, inversion, and eversion of ankle. A
decoupled parallel mechanism designed for ankle
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rehabilitation is presented by Zeng et al.;6 the proposed
mechanism can realize independent rotational rehabili-
tation under the traction simultaneously. Other parallel
ankle rehabilitation robots can be found in Jamwal
et al.,7 Dai, et al.,8 Girone, et al.,9 Zhao, et al.,10 among
others.

It can be noted that the existing ankle rehabilitation
robots have some limitations. First, most robots have
only 1 or 2 degrees of freedom (DOFs) and cannot be
used for comprehensive rehabilitations in all degrees of
angle motions. Second, for most robots, their rotation
centers can easily shift away from the rotation center of
human ankle. Such a shift can cause uncomfortable
feeling in the patients, or in the worst case cause second-
ary injury of ankle joint. An ankle rehabilitation robot
with simple structure, which can fully meet the ankle
structure characteristics and realize ankle rehabilitation
motion, is needed.

In this work, we propose a spherical parallel manip-
ulator for ankle rehabilitations. The robot is based on
a 3-revolute–revolute–spherical joint’s (RRS) spherical
parallel mechanism (SPM), which generates rotation
analogy to human ankles.

The motion of human ankle

Prior to the design of the SPM, we looked at the bio-
mechanics of human ankle motion to determine robot
specifications properly.

Movement of human ankle joint

As shown in Figure 1, ankle joint has three kinds of
movements: dorsiflexion and plantar flexion, inversion
and eversion, adduction and abduction.

The ranges of motion of ankle joint are shown in
Table 1.

The motion curve of foot relative to ankle

Based on the anthropometric measurements,14 the dis-
tance between the moving center of the ankle and the

bottom of the foot is generally 60–100mm long. The
size of the foot is 210–270mm long for 96% female over
the age of 14 and 240–285mm long for 96% male over
the age of 15.

In Figure 2, the distance between the moving center
O of the ankle and the bottom of the foot B takes as
80mm. The distance between the moving center O of
the ankle and the front of foot A takes a value of
240mm. Taking this foot size as an example, we ana-
lyze the motion curve of the foot relative to ankle.

The moving center O of the ankle is as the coordi-
nate origin. The motion curve of the front of foot A
relative to moving center O of the ankle based on the
coordinate system in Figure 1 is shown in Figure 3.

The 3-RRS SPM for ankle rehabilitation

The conceptual design of the 3-RRS rehabilitation
robot is shown in Figure 4, which includes the base, the
moving platform, support, motor, crank, coupler, foot
support, expansion device, and so on. Three motors
drive the cranks to generate the rotations of the moving
platform around the center of the sphere.

The adjustable length of the expansion device is
50mm, which can be applied to most patients. Compared
with the existing ankle rehabilitation robots, the ankle
rehabilitation robot based on 3-RRS SPM mainly shows
some unique features as follows:

Figure 1. The motion of human ankle joint.

Table 1. The range of motion of ankle joint.

Rotation direction Name Human limit
swing angle (�)

Human normal
walking angle (�)a

Angle of
mechanism design (�)b

CW around x-axis Dorsiflexion 0–20 (30)c 0–14 0–20
CCW around x-axis Plantar flexion 0–30 (50)c 0–20 0–25
CCW around z-axis Inversion 0–30d 0–14 0–20
CW around z-axis Eversion 0–15d 0–10 0–15
CCW around y-axis Adduction 0–30e 0–25 0–30
CW around y-axis Abduction 0–35e 0–25 0–30

CW: clockwise; CCW: counterclockwise.
aThe data are taken from the Yao Taishun’s book Ankle Surgery.13

bThe data are the design parameters in this article.
cThe data are taken from the third chapter in Kapandji’s book The Ankle.11 The numbers in parentheses indicate the difference among individuals.
dThe data are taken from the 18th chapter in Dror Paley’s book Principles of deformity correction.12

eThe data are taken from the David’s book Foot & ankle.1
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1. The mechanism can implement 3-DOF rotation
to be completely compatible for human ankle
motion.

2. The mechanism is adjustable and controllable
by adjusting the telescopic rod in the expansion
device to adapt to the different sizes of feet.

3. The location of the spherical center O of 3-RRS
SPM remains during movement. On the other
hand, the center position can be adjusted
according to the distance between ankle move-
ment center and the bottom of foot adjusting
the telescopic rod of the mechanism, to make
the ankle movement center coincide with the
spherical center.

4. The mechanism has a large range of motion in
its three axes. This allows the magnitude of rota-
tion adjustable to satisfy the requirements of dif-
ferent rehabilitations.

Kinematics of 3-RRS SPM

Kinematic parameters and coordinate systems
of 3-RRS SPM

Figure 5 shows the kinematics model of 3-RRS SPM.
It is composed of the base, the crank, the coupler, and
the moving platform. It has three limbs with identical
structures.

In each limb, there are two revolute pairs R and one
spherical pair S. The point O represents spherical cen-
ter. The point P represents the geometrical center of the
moving platform. The point G represents the geometri-
cal center of the base. Ai, Bi, and Ci represent the center
of the kinematic pair in limb i (i=1, 2, 3), respectively.

The structure parameters of 3-RRS SPM are shown
in Table 2. The cone angles u1 and u2 of the moving
platform and the base are 54.74�. Three axes OA1, OA2,
and OA3 of the revolute joints connecting the cranks
and the base are perpendicular to each other in space
and intersect at the spherical center. Three lines OC1,
OC2, and OC3 between the centers Ci (i=1, 2, 3) of the
spherical pairs and the spherical center O are perpendi-
cular to each other in space.

The fixed coordinate system O-XYZ is established at
the base. The coordinate origin O is located at the sphe-
rical center. The OX, OY, and OZ axes coincide with
OA1, OA2, and OA3, respectively.

Figure 3. The movement curves of foot with respect to ankle:
(a) the curve of dorsiflexion and plantar flexion, (b) the curve of
inversion and eversion and (c) the curve of adduction and
abduction.

Figure 2. The sizes of the foot.
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The moving coordinate system m-xyz is attached to
the moving platform. The coordinate origin m is also
located at the spherical center O. The mz, mx, and my
axes coincide with OC1, OC2, and OC3, respectively.

The kinematic modeling of 3-RRS SPMs is well-
documented based on constraint equations of spherical
linkages.15,16 In this work, we develop their model with
a different approach.

The DOF calculation of 3-RRS SPM

Figure 6 shows one limb of the 3-RRS SPM. One sphe-
rical pair can be seen as three revolute pairs that are
concurrent but not coplanar. The axes of six revolute
pairs in three limbs intersect at the spherical center O
of 3-RRS SPM. Based on the principle that the inverse
proportion of screw is independent to the choice of
coordinate system, taking limb 1 as an example, the
kinematic screw system of limb 1 in the m-xyz system is

6S11 =( a11 b11 b11 ; 0 0 0 )
6S12 =( a12 b12 c12 ; 0 0 0 )
6S13 =( 1 0 0 ; 0 0 0 )
6S14 =( 0 b14 c14 ; d 0 0 )
6S15 =( 0 b15 c15 ; d 0 0 )

8>>>><
>>>>:

ð1Þ

In limb 1, 6S11, 6S12, and 6S13 in different planes inter-
sect one point in space. 6S14, 6S15, and 6S13 are perpendi-
cular to each other in space. Thus, 6S11, 6S12, 6S13, 6S14,
and 6S15 are linearly independent. The reciprocal basis
screw in limb 1 is as follows

6S r
11 =( 1 0 0 ; 0 0 0 )
6S r

12 =( 0 1 0 ; 0 0 0 )
6S r

13 =( 0 0 1 ; 0 0 0 )

8<
: ð2Þ

According to the relationship between force screw
and kinematics screw, limb 1 is subjected to the action
of three forces from the axes X, Y, and Z, not subjected
to the action of the couple.

From the structure in Figure 5, the spherical pair S
in each limb degenerates into the revolute pair R. Thus,
there are two passive DOFs in each limb. The DOF of
3-RRS SPM is calculated as follows using the modified
Grübler–Kutzbach equation

M = d(n� g � 1)+
Xg

i= 1

fi � y � z

= 3(8� 9� 1)+ 15� 0� 6= 3

ð3Þ

where d is the order of the mechanism, n is the link numbers
including the frame, g is the number of kinematic pairs, fi is
the DOF of ith kinematic pair, y is the number of redun-
dant constraints, and z is the number of passive DOFs.

The forward kinematic analysis of 3-RRS SPM

The forward position solution of 3-RRS SPM is to
solve the orientation of the moving platform (a, b, g)
for the given three driving angles (u1, u2, u3).

As shown in Figure 5, the position of each kinematic
pair axis is represented by unit vector ui, vi,wi in limb i
(i=1, 2, 3), respectively. The direction of each kine-
matic pair axis is pointing from the spherical center O
to the corresponding kinematic pair center.

In the 3-RRS SPM, the unit vectors u1, u2, u3 coin-
cide with OX, OY, and OZ in the base coordinate sys-
tem O-XYZ, respectively. The unit vectors w1,w2,w3

coincide with mx, my, and mz in the moving coordinate
system m-xyz, respectively. v1, v2, v3 coincide with OB1,
OB2, and OB3, respectively.

When Z–Y–X Euler angles (a, b, g) are used to rep-
resent the orientation of the moving coordinate system
m-xyz relative to the base coordinate system O-XYZ,
the transformation matrix Rm

b of m-xyz system relative

Figure 4. The 3-RRS SPM for ankle rehabilitation.
1: base; 2: support; 3: motor; 4: crank; 5: coupler; 6: moving platform;

7: foot support; 8: expansion device.

Figure 5. The structure parameters of 3-RRS SPM.
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to O-XYZ system, based on the exponential product
and the Rodrigues’ formula, can be expressed as

Rm
b = eẑaeŷbex̂g ð4Þ

Equation (4) can be expanded as

Rm
b =

cacb casbsg � sacg casbcg + sasg

sacb sasbsg + cacg sasbcg � casg

�sb cbsg cbcg

2
4

3
5

Here and hereafter c= cos and s= sin.
When 3-RRS SPM is in the initial position, the coor-

dinates of the unit vectors ui, vi,wi (i=1, 2, 3) in the O-
XYZ system are

u1O

u2O

u3O

2
64

3
75=

1 0 0

0 1 0

0 0 1

2
64

3
75,

v1O

v2O

v3O

2
64

3
75=

cd1 sd1su1 sd1cu1

sd1cu2 cd1 sd1su2

sd1su3 sd1cu3 cd1

2
64

3
75,

w1O

w2O

w3O

2
64

3
75

=

c(d1 � d2) s(d1 � d2)s(p � u1) s(d1 � d2)c(p � u1)

s(d1 � d2)c(p � u2) c(d1 � d2) s(d1 � d2)s(p � u2)

s(d1 � d2)s(p � u3) s(d1 � d2)c(p � u3) c(d1 � d2)

2
64

3
75:
ð5Þ

Suppose the center of three spherical pairs Ci (i=1,
2, 3) connected the coupler and the moving platforms

are all located on the unit sphere, the coordinate of Ci

(i=1, 2, 3) in the O-XYZ system, based on the expo-
nential product and the Rodrigues’ formula, can be
expressed as

Ci(ui)= eûiOuiev̂iOhiwiO ð6Þ

where hi (i=1, 2, 3) is the angle between links AiBi and
BiCi, called passive angle

eûiOui = I+ ûiO sin ui +(ûiO)
2(1� cos ui);

ûiO =
1 �uiO3 uiO2

�uiO3 0 �uiO1

�uiO2 uiO1 0

2
4

3
5.

In the 3-RRS SPM, the following equation always
holds

C1C2

��� ���2

=(C2 � C1)
T(C2 � C1) ð7Þ

Differentiating and simplifying equation (7) yield

d C1C2

��� ���= (C2 � C1)
T

C1C2

�� �� (dC2 � dC1) ð8Þ

From equation (6), the following expression can be
obtained

dCi = eûiOuiev̂iOhi v̂iOwiOdhi ð9Þ

Let the distance between point C1 and point C2 be
l12, then

dl12 = l12 � C1C2

�� ��= (C2 � C1)
T

C1C2

�� �� (dC2 � dC1) ð10Þ

For the other two limbs C1C3 and C2C3, there exists
the same relationship

dl23 = l23 � (C3�C2)
T

C2C3k k (dC3 � dC2)

dl31 = l31 � (C3�C1)
T

C1C3k k (dC3 � dC1)

8<
: ð11Þ

From equations (10) and (11), the following expres-
sion can be obtained

dhi = J�1dl ð12Þ

where

J=

� (C2�C1)
T

C1C2k k
_C1

(C2�C1)
T

C1C2k k
_C2 0

0 � (C3�C2)
T

C2C3k k
_C2

(C3�C2)
T

C2C3k k
_C3

� (C3�C1)
T

C1C3k k
_C1 0 (C3�C1)

T

C1C3k k
_C3

2
666664

3
777775,

_Ci = eûiOuiev̂iOhi v̂iOwiO

dl= l12 � C1C2

�� �� l23 � C2C3

�� �� l31 � C3C1

�� ��� �T
:

Table 2. The structure parameters of 3-RRS SPM.

Parameters Explanation (i = 1, 2, 3)

d1 Dimension of curved link AiBi

d2 Dimension of curved link BiCi

u1 Cone angle of the moving platform :CiOP
u2 Cone angles of the base :AiOG
r Radius of the curved link AiBi

rb Radius of the curved link BiCi

rc Distance OCi between the spherical center O
and the spherical joint center Ci

h1 Thickness of the crank and the coupler
h2 Height of the small boss on the crank

and the coupler
ls Distance between the spherical joint center

and the coupler boss; distance between the
spherical joint center and the moving platform

Figure 6. The ith limb of 3-RRS SPM.
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The matrix J is the Jacobian matrix of 3-RRS SPM.
The Jacobian matrix J expresses the mapping relation-
ship between the displacement of the moving platform
and the driving angles of 3-RRS SPM when the passive
angles hi (i=1, 2, 3) are used as driving angles.

From equation (12), dhi = J�1dl, the iteration equa-
tion of h= ½h1 h2 h3 � can be obtained

h(k + 1) =h(k) + (J�1dl)(k) ð13Þ

where k is the iteration time.
After the passive angles hi (i=1, 2, 3) are obtained

using Newton iteration method, the rotation matrix Rm
b

can be obtained using Rodrigues’ exponential product
equation. Furthermore, the coordinates pO of center P
of the moving platform in the O-XYZ system are
obtained as follows

pO =Rm
b p ð14Þ

The inverse kinematic analysis of 3-RRS SPM

The inverse position solution is to solve three driving
angles (u1, u2, u3) for a given orientation (a, b, g) of the
moving platform.

The coordinates of the unit vector wi (i=1, 2, 3) in
the m-xyz system are

w1m

w2m

w3m

2
4

3
5=

1 0 0

0 1 0

0 0 1

2
4

3
5 ð15Þ

The vector wim (i=1, 2, 3) can be transformed to the
base system O-XYZ using transformation matrix Rm

b

wiO =Rm
b w

T
im ð16Þ

that is

½w1O w2O w3O �

=

cacb casbsg � sacg casbcg + sasg

sacb sasbsg + cacg sasbcg � casg

�sb cbsg cbcg

2
64

3
75

When the angles a, b, and g are known in the trans-
formation matrix Rm

b , the unit vectors vi and vectors wi

are connected by the coupler in each limb. The dimen-
sional angle of link BiCi is d2. This relationship can be
used to establish the constraint equation as follows

vi � wi = cos d2(i= 1, 2, 3) ð17Þ

that is

vioxwiox + vioywioy + viozwioz = cos d2 ð18Þ

The constraint equations of 3-RRS SPM are as
follows

cd2 = cd1cacb� sd1sbsu1 + sd1sacbcu1

cd2 =(sasbsg + cacg)cd1 +(casbsg � sacg)sd1su2

+ cbsgsd1cu2

cd2 = cd1cbcg +(sasbcg � casg)sd1su3

+(casbcg + sasg)sd1cu3

8>>>><
>>>>:

ð19Þ

Equation (19) yields

Di sin ui +Ei cos ui =Fi(i= 1, 2, 3) ð20Þ

where

D1 =�sd1sb

E1 = sd1sacb

F1 = cd2 � cd1cacb

8<
: ,

D2 =(casbsg � sacg)sd1

E2 = cbsg sin d1

F2 = cd2 � (sasbsg + cacg)cd1

8<
: ,

D3 =(sasbcg � casg)sd1

E3 =(casbcg + sasg)sd1

F3 = cd2 � cd1cbcg

8<
: :

Equation (20) is a first-order equation about sin ui

and cos ui.

Let tan (ui=2)= ti, then
sin ui =(2ti)=(1+ t2

i )
cos ui =(1� t2

i )=(1+ t2
i )

�
.

Substituting it into equation (20) yields

(Ei +Fi)ti
2 � 2Diti � Ei +Fi = 0(i= 1, 2, 3) ð21Þ

Thus

ti =
Di 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

i +E2
i � F2

i

p
(Ei +Fi)

(i= 1, 2, 3) ð22Þ

Therefore, the inverse position solution of 3-RRS
SPM is obtained as follows

ui = 2 arctan
Di 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

i +E2
i � F2

i

p
(Ei +Fi)

 !
(i= 1, 2, 3)

ð23Þ

ui has two solutions for limb i. This shows that
the inverse position solutions have eight sets of
solutions for a given position and orientation of 3-
RRS SPM.

Case study

The structure parameters of 3-RRS SPM are shown in
Table 3. Figure 7 is the simulation model of 3-RRS
SPM.

The moving platform and the base of 3-RRS SPM
are parallel to each other when 3-RRS SPM is located
in the initial position. When the driving angles
u1 =�308, u2 =�458, and u3 =�458, the forward
kinematics leads to h= ½ 0:1 0:2 0:4 �, the transfor-
mation matrix Rm

b is further obtained

6 Advances in Mechanical Engineering



Rm
b =

0:9975 0:1064 0:1668
0:0599 0:9900 0:2226
0:0375 0:0923 0:9605

2
4

3
5 ð24Þ

The values of the driving angles can be obtained as
shown in Table 4 using inverse position solution equa-
tions and substituting the structure parameters in Table
3 and the value of transformation matrix Rm

b in equa-
tion (24). To sum up, the driving angles (u1, u2, u3) have
eight kinds of combination for a given position and
orientation of the moving platform.

Observing Table 4, the second sets of the
inverse position solutions, that is, u1 =�30:028,
u2 =�44:998, and u3 =�44:998, are the same as the
driving angles u1 =�308, u2 =�458, and u3 =�458

within the range of acceptable errors. This verifies the
inverse position solutions of 3-RRS SPM.

Conclusion

This article proposes a new ankle rehabilitation robot
based on 3-RRS SPM, which accords with the topology
structure of ankle. 3-RRS SPM can move along a sphe-
rical trajectory in the space, and therefore, it can realize
the motion of ankle.

The kinematics of 3-RRS SPM is analyzed. Eight
sets of inverse kinematics are obtained. The case veri-
fies the inverse position solutions of 3-RRS SPM.

The ankle rehabilitation robot has a high poten-
tial for rehabilitation applications; it can be widely
used in clinical treatment and can also be used at
home, hotels, and fitness centers for ankle muscle
relaxation.
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