Aalborg Universitet

AALBORG UNIVERSITY

Crystallization of artemisinin from chromatography fractions of Artemisia annua extract

Malwade, Chandrakant Ramkrishna; Buchholz, Hannes Konrad; Rong, Ben-Guang; Qu, Haiyan; Christensen, Lars Porskjær; Lorenz, Heike; Seidel-Morgenstern, Andreas

Published in:
Organic Process Research \& Development

DOI (link to publication from Publisher):
10.1021/acs.oprd.5b00399

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Malwade, C. R., Buchholz, H. K., Rong, B-G., Qu, H., Christensen, L. P., Lorenz, H., \& Seidel-Morgenstern, A. (2016). Crystallization of artemisinin from chromatography fractions of Artemisia annua extract. Organic Process Research \& Development, 20(3), 646-652. https://doi.org/10.1021/acs.oprd.5b00399

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Supporting information

Figure S1. HPLC calibration curve for artemisinin obtained by using CAD signal.

Figure S2. HPLC calibration curve for coumarin obtained by using signal at 200 nm .

Figure S3. Chromatogram (CAD) of the combined fraction. Arteannuin B (RT 2.26 min); Artemisitene (RT 2.63 min); Artemisinin (RT 4.22 min); Dihydroartemisinic acid (RT 7.46 min); Artemisinic acid (RT 8.26).

Figure S4. Chromatogram (UV 200 nm) of the combined fraction. Coumarin (RT 3.02 min).

Figure S5. Chromatogram (CAD) of mother liquor obtained after cooling crystallization.

Figure S6. Chromatogram (CAD) of artemisinin crystals obtained after cooling crystallization.

Table S1. Mass balance of artemisinin during crystallization process.

Step	Volume of solution (ml)	Artemisinin concentration $(\mathrm{mg} / \mathrm{ml}$ of solution $)$	Artemisinin in solution (mg)	Yield $(\%)$
Combined fraction (1)	180	1.82	327.6	-
Evaporation (2)	18	17.81	320.58	-
Anti-solvent crystallization (3)	78	3.5	273	14.84
Cooling crystallization (4) Overall yield (\%)	78	2.07	161.46	40.85

