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RESEARCH ARTICLE Open Access

Handgrip force steadiness in young and
older adults: a reproducibility study
Andreas W. Blomkvist1, Fredrik Eika1, Eling D. de Bruin2,3* , Stig Andersen1 and Martin Jorgensen1

Abstract

Background: Force steadiness is a quantitative measure of the ability to control muscle tonus. It is an independent
predictor of functional performance and has shown to correlate well with different degrees of motor impairment
following stroke. Despite being clinically relevant, few studies have assessed the validity of measuring force steadiness.
The aim of this study was to explore the reproducibility of handgrip force steadiness, and to assess age difference
in steadiness.

Method: Intrarater reproducibility (the degree to which a rating gives consistent result on separate occasions)
was investigated in a test-retest design with seven days between sessions. Ten young and thirty older adults
were recruited and handgrip steadiness was tested at 5%, 10% and 25% of maximum voluntary contraction
(MVC) using Nintendo Wii Balance Board (WBB). Coefficients of variation were calculated from the mean force
produced (CVM) and the target force (CVT). Area between the force curve and the target force line (Area) was
also calculated. For the older adults we explored reliability using intraclass correlation coefficient (ICC) and
agreement using standard error of measurement (SEM), limits of agreement (LOA) and smallest real difference
(SRD).

Results: A systematic improvement in handgrip steadiness was found between sessions for all measures (CVM,
CVT, Area). CVM and CVT at 5% of MVC showed good to high reliability, while Area had poor reliability for all
percentages of MVC. Averaged ICC for CVM, CVT and Area was 0.815, 0.806 and 0.464, respectively. Averaged ICC
on 5%, 10%, and 25% of MVC was 0.751, 0.667 and 0.668, respectively. Measures of agreement showed similar
trends with better results for CVM and CVT than for Area. Young adults had better handgrip steadiness than older
adults across all measures.

Conclusion: The CVM and CVT measures demonstrated good reproducibility at lower percentages of MVC using
the WBB, and could become relevant measures in the clinical setting. The Area measure had poor reproducibility.
Young adults have better handgrip steadiness than old adults.

Keywords: Nintendo Wii balance board, Reproducibility, Reliability, Force steadiness, Handgrip steadiness

Background
Diminished strength, especially maximal voluntary
contraction (MVC), and greater variability of voluntary
contractions develops with advancing age and with
neurological insults such as stroke [1]. However, every-
day tasks such as walking or holding items require

steady and sustained sub-maximal contractions rather
than maximal force. Force steadiness is a quantitative
measure of this ability and might be a better proxy for
functional limitations than MVC. It is most often assessed
by measuring the variability of force production as the
subject aims to maintain a target force [2]. People with a
history of stroke have impaired isometric steadiness com-
pared to controls, and the degree of impairment correlates
with functional tests [3] and clinical measures of motor
impairment [4–6]. Moreover, the degree of force variabi-
lity is correlated with the severity of stroke, making it a
functionally relevant index of motor performance [5].
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Force steadiness has also been considered an inde-
pendent predictor of functional performance in healthy
individuals, e.g. chair-rise time, stair-climbing and pos-
tural sway [7, 8]. Furthermore, hand muscle steadiness
correlates with different hand performance tasks and,
interestingly, more strongly so than maximal strength
[9]. Exercise interventions have shown similar improve-
ments in steadiness and functional tasks, making it an
index of hand function [10–14]. Although studies on
age-related differences in force steadiness have given
varying results, older adults seem to have reduced hand
muscle steadiness compared to younger individuals,
especially at lower forces [15–18]. However, force steadi-
ness depends not only on age, but also on the muscle
group tested [19], on the type and intensity of muscle
contraction, physical activity level of the individual [20],
and the use of different experimental methods and
measures.
Most commonly, the force produced during MVC is

measured and a percentage of this force used as a target
force, e.g. 5%, 20% or 40% of MVC. The participant then
tries to match his or her force output with the target
force (usually via visual feedback) for a given duration.
From this, one can derive the standard deviation (SD) of
the force variability and the coefficient of variation (CV).
However, other measures are frequently calculated, such
as the ApEn1 of the time-dependent signal [5], CV using
the target force [16] or approximating the area between
target force line and force curve produced [21].
So far, only a few studies have investigated the reliability

of measures on force steadiness [22–27]. In general,
results are mixed, but usually poorer compared to values
seen with maximal strength assessments. More import-
antly, there seem to be no reports on the reliability or
agreement of force steadiness measurements on hand
muscles.
Credible reliability is a prerequisite for the use of

different measures in clinical settings. A related measure
is the duration of sustained handgrip contraction at a
given target force (e.g. 50% of MVC). Despite being used
in previous research [28–30], the reliability of this meas-
ure has been found to be poor and not recommendable
for clinical use [31]. This emphasises the importance of
method validation before using measures of force steadi-
ness in the clinical setting. If valid and feasible, such
measures could have value in clinical settings, e.g. as an
outcome measure for rehabilitation programs in stroke
survivors [5]. Therefore, we aim to test an alternative
method and measure of force steadiness using the
Nintendo Wii Balance Board (WBB). The WBB has
previously shown promising results as a valid instrument
for the assessment of balance [32–34], reaction time
[35], isometric handgrip strength [36] and whole isomet-
ric lower limb strength [37, 38].

The aim of this study was to explore the reproducibility
of the WBB to measure handgrip force steadiness in
healthy older adults, and to assess the purported differ-
ence in force steadiness between young and old adults.

Method
Design and terminology
A method comparison study with the gold standard is
usually warranted when introducing a new method [39].
We used a test-retest design with seven days between
each session to test the reproducibility of the WBB
method [39]. The term “reproducibility” refers to the
variation in measurements made on a subject under chan-
ging conditions [39]. Reproducibility was the ability of our
method to give consistent results on two occasions
separated in time. This includes the ability to distinguish
between subjects in a sample on repeated tests, referred to
as reliability [39, 40], and the degree to which two
measurements made on the same subject are comparable,
referred to as agreement [40]. Following the Guidelines
for Reporting Reliability and Agreement Studies, we use
the terms reliability and agreement [40].

Study-population
Our study-population consisted of a group of old adults
for reproducibility testing and a smaller group of young
adults for age-related comparison. The old participants
were recruited by telephone lists in Ålesund municipality
in Møre and Romsdal County, Norway. Participants were
included if they were 55 years or older, judged themselves
to be healthy and willing and able to be tested twice, one
week apart. Participants were excluded if they had
neuromuscular diseases (e.g. Parkinson’s disease), sequelae
from stroke, suffered from dementia, did not understand
Norwegian, suffered from acute illness or had recent
(within 6 months) surgery.
The younger participants were recruited at university

campus at the University of Oslo. The inclusion and
exclusion criteria were the same for both groups, but
age was between 20 and 30 years for the younger partici-
pants. All participants gave oral consent and the proto-
col was reviewed and declared not mandatory for
submission by the Regional Committee for Medical and
Health Research Ethics in Norway (2016/1505/REK
Nord). The North Regional Ethics Committee, Norway,
did not provide a full ethical evaluation and formal
approval due to the ethically benign nature of our work
(method development study). Still, all participants were
required to provide oral consent to participate in the
study and, thus, participant registration was synonymous
with documented consent. None of the authors had ac-
cess to any personal or potentially identifying participant
information.
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Experimental procedure
The WBB is a rectangular-shaped platform with one
force transducer in each corner. Data was wirelessly
streamed to a computer (Samsung Chronos series 7,
Windows 8) and onto FysioMeter software (version 1.0.
8, Bronderslev, Denmark) via a Bluetooth Human Inter-
face Device. Each of the transducers channels delivered
16-bit digital data at approximately 100 Hz. These were
filtered using 4th order Butterworth filter (cut-off
20 Hz). The software records and visualizes the data in
real-time on a force-time curve.
Prior to testing we measured weight and collected

information on height, handedness, smoking history and
number of prescribed drugs taken daily. All test proce-
dures were performed independent of each other during
home visits in the old participants and on the Oslo
University campus for the young participants. The raters
(Andreas Wahl Blomkvist (AWB) and Fredrik Eika (FE),
medical doctors) were involved in all tests performed.
Initially, maximum isometric handgrip strength was
measured for each hand in order to determine MVC
using a method previously described and validated [36].
The participants were seated on a standard chair and
held the WBB on their lap (Fig. 1). The order of hand-
grip steadiness measurements at 5%, 10% or 25% of
MVC as target force was randomized to avoid order
effects. Steadiness at low percentages of MVC (e.g. 5%
and 10%) was chosen because it has been shown to vary
the most with age and gender [15, 41]. 25% of MVC was
chosen because Lodha et al. [5] recommended this
measure as most objective assessment of steadiness
when making comparisons between chronic stroke pa-
tients and age-matched controls. The software visualized
a horizontal yellow target line (20 s in duration) corre-
sponding to the target force in a force-time curve win-
dow. An ascending line of five seconds preceded this
yellow target line, which ended with a five seconds de-
scending line as shown in Fig. 2. Participants were told
to squeeze the corner of the WBB with sufficient force
such that their visual force curve, produced in real-time

(black graph in Fig. 2), was superimposed on the yellow
target line. Furthermore, the participants were instructed
to focus on the task and to avoid speaking during the
test. Starting with the left hand and alternating between
hands, six measurements per target force were recorded
in total (three for each side), giving 18 measurements
per person per session. The five seconds long intro and
outro, as well as the three initial seconds of the flat
yellow line, were omitted from analysis to give the
participant time to adjust to the flat yellow line. In total,
three times 17 s of data were used for each hand and
each target percentage (i.e. 5%, 10% and 25% of MVC).
For the old participants, a retest session was performed

one week later with a same time-of-day approach
using MVC values from the first session. Following
randomization of starting target force, handgrip
steadiness was tested as described above.

Statistics
Statistical analyses were performed using the Statistical
Package for the Social Sciences version 22 (SPSS Inc.,
Chicago, Illinois). Each side was analysed separately
using the three times 17 s of data for each session. From
these data, CV was calculated in two ways [1]: SD di-
vided by the mean force (CVM) and [2] SD divided by
the target force (CVT), i.e. the actual value of the 5%,
10% or 25% of MVC. CVM and CVT were multiplied by
100 to convert into percentages. Furthermore, Fysi-
oMeter estimated the area between the target force line
and the force produced. This was done by calculating
the approximated area between target force line (yellow)
and the force-time line (black) for ~10 ms increments of
time. Thus, for each side we derived three variables (i.e.
CVM, CVT and Area) for each percentage of MCV (5%,
10% and 25%) for each session. Every variable and their
between-session difference were tested for normality
visually (histogram) and statistically (Shapiro-Wilk test).
Two-sample t test was used to test for differences be-
tween the old and young participants. Next, paired t test
was used to explore systematic bias between test and

Fig. 1 Participant seated and squeezing the upper left corner of the Nintendo Wii Balance Board
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retest sessions. If the normality assumption was violated,
Wilcoxon signed-rank test was used.
The difference between individual results and the

mean result from both sessions was plotted in a simple
scatter plot to check for heteroscedasticity prior to
further analysis. Reliability was assessed by calculating
intra-class correlation coefficient (ICC) with 95% confi-
dence interval using absolute agreement in a two-way
mixed model and the results of a single measurement.
The results were interpreted on the recommended scale
of poor (< 0.69), fair (0.70–0.79), good (0.80–0.89) and
high (0.90–1.00) [42] reliability. Agreement was assessed
by calculating the standard error of measurement (SEM),
limits of agreement (LOA) and smallest real difference
(SRD). SEM and LOA were calculated by multiplying the
SD of the difference between each test session with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ICC
p

and 1.96, respectively. SRD was calculated by
multiplying the SEM value with 1.96 • √2. Lastly, the
agreement measures are given in percentages by dividing
them with the mean value of both test sessions multiplied
by 100.

Results
We recruited 30 old and 10 young adults. Characteristics
of the two groups are presented in Table 1. All partici-
pants reported right-sided handedness. Young adults
were on average stronger than older adults (Table 1).
The simple scatter plots revealed no obvious signs of
heteroscedasticity. The mean results for each session,
results of the t-test and the reliability and agreement
measures are given in Tables 2 and 3 for the left and
right hand, respectively. The right side generally
performed better for CVT and CVM than the left side
(Tables 2 and 3).

In Fig. 3, the raw test and retest data at 5, 10 and 25%
of MVC using the CVM measure for both dominant
(right) and non-dominant (left) sides are shown. There
is a clear-cut trend of higher (i.e. poorer) handgrip
steadiness for lower percentage of MVC as illustrated by
three distinct bands of colour with the 5% (blue) at top,
10% (green) in the centre and 25% (red) at the bottom.
The limited overlap even between individuals emphasises
the strength of this trend. Figure 3 also shows that
between-subject variation is higher with lower percentage
of MVC as is illustrated by differences within colours.
An improvement from session one to session two was

observed for every measure of steadiness. The improve-
ment was statistically significant for CVM 25%, CVT 5%
and CVT 25% for the right side (Table 3). For the left
side, the improvement was statistically significant for
every measure except CVT 5% and Area 5% (Table 2).
Regarding reliability, the combined ICC for CVM, CVT
and Area was 0.815, 0.806 and 0.464, respectively. Simi-
larly, the combined ICC for all measures was 0.751, 0.
667 and 0.668 for 5%, 10% and 25% of MVC,

Fig. 2 Screenshot showing the force-time curve (black) and the target force line (yellow) in the FysioMeter software

Table 1 Group characteristics

Characteristic Old Young

Number (sex) 30 (63% female;
37% male)

10 (50% female;
50% male)

Age (years) 67±8 24±3

Height (cm) 171±7 174±8

Weight (kg) 80±21 72±7

BMI (kg/cm2) 27 24

Left Mean MVC (kg) 20.7±6 25.6±7

Right Mean MVC (kg) 22.4±6 26.7±8

BMI and MVC is body mass index and maximal voluntary
contraction, respectively
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respectively. Regarding agreement, the Area measure
had disproportionally high SEM, LOA and SRD results
compared to CVT and CVM. The agreement for CVT
and CVM was higher at 5% of MVC, except for LOA on
the right side, compared with 10% and 25% of MVC.
The young adults outperformed the old adults for all

measures but Area 25% MVC on the right side even
though the differences did not reach statistical signifi-
cance for all measures (Table 4).

Discussion
We explored the reproducibility of handgrip steadiness
measures using the WBB and compared handgrip steadi-
ness between young and old adults. Our main findings
were [1] higher reliability with 5% of MVC compared to
10% or 25% of MVC [2], higher reliability and agreement
with CVM and CVT measures as compared to the Area
measure [3], an improvement in handgrip steadiness be-
tween sessions [4], better handgrip steadiness among
younger adults as compared to older adults. Furthermore,
we found side-dependent differences in steadiness im-
provement, reliability, agreement and age-differences.

This is the first report to explore the reproducibility of
handgrip steadiness. Previous studies used different
muscle groups, most used CVM, and included fewer
participants [22–27]. An improvement in force steadi-
ness at retest was seen with most measures and statisti-
cally significant in our study. Previous studies found
numerical differences that rarely reached statistical sig-
nificance [22, 23] except for one [27].
We found ICCs comparable to previous studies when

matching for percentages of MVC [22–24, 26] and even
better when comparing with higher percentage of MVC
[27]. The improved reliability for lower percentages of
MVC is consistent with previous studies [24, 26] and
seen across studies using similar populations and
techniques [26, 27].
Also in keeping with other studies, the age-related

differences in handgrip steadiness was larger for lower
force levels [5, 15, 43, 44]. This range also had the high-
est reproducibility and thus a higher sensitivity to detect
differences. The similarities to our findings are interest-
ing even though different muscle groups are not directly
comparable as they have different variability in force

Table 2 Results from reproducibility analysis of measures on handgrip steadiness in old adults for the left side

Measure % of MVC Session 1 Session 2 Difference ICC [95% CI] SEM (SEM, %) LOA (LOA, %) SRD (SRD, %)

CVM 5% 8.64 8.21 0.43 (p = 0.007)a .911 [.785–.960] 0.29 (3.4) 1.89 (22.4) 0.80 (9.5)

CVM 10% 5.03 4.56 0.47 (p = 0.001)b .820 [.526–.924] 0.31 (6.4) 1.43 (29.7) 0.86 (17.9)

CVM 25% 2.95 2.59 0.36 (p = 0.003)b .767 [.439–.898] 0.31 (11.3) 1.25 (46.1) 0.86 (31.8)

CVT 5% 8.79 8.56 0.23 (p = 0.077)b .911 [.817–.957] 0.37 (4.2) 2.41 (27.7) 1.03 (11.8)

CVT 10% 5.10 4.63 0.47 (p = 0.004)b .806 [.559–.912] 0.38 (7.7) 1.69 (34.7) 1.05 (21.6)

CVT 25% 2.89 2.54 0.35 (p = 0.003)a .774 [.446–.901] 0.28 (10.2) 1.15 (42.4) 0.78 (28.5)

Area 5% 1.85 1.59 0.26 (p = 0.063)a .604 [.300–.793] 0.44 (25.5) 1.37 (79.6) 1.22 (70.9)

Area 10% 2.09 1.72 0.37 (p = 0.001)b .512 [.120–.751] 0.38 (20.1) 1.08 (56.5) 1,05 (55.2)

Area 25% 2.88 2.38 0.50 (p = 0.004)b .496 [.145–.730] 0.63 (23.9) 1.74 (66.0) 1.75 (66.3)

Session 1 and Session 2 are the mean values. Difference are the difference in the mean value from session 1 to 2. ICC, SEM, LOA and SRD are intraclass correlation
coefficient, standard error of measurement, limits of agreement and smallest real difference, respectively. Absolute reproducibility results are also given in
percentages (e.g. SEM%) by dividing it with the grand mean for both sessions. aindicates the use of Wilcoxon signed-rank test. bindicates the use of paired t-test

Table 3 Results from reproducibility analysis of measures on handgrip steadiness in old adults for the right side

Measure % of MVC Session 1 Session 2 Difference ICC [95% CI] SEM (SEM, %) LOA (LOA, %) SRD (SRD, %)

CVM 5% 7.93 7.54 0.39 (p = 0.11)b .842 [.669–.925] 0.52 (6.7) 2.57 (33.2) 1.44 (18.6)

CVM 10% 4.41 4.16 0.25 (p = 0.15)b .783 [.595–.890] 0.41 (9.5) 1.72 (40.0) 1.14 (26.5)

CVM 25% 2.52 2.37 0.15 (p = 0.034)b .768 [.553–.885] 0.17 (7.3) 0.72 (29.6) 4.85 (19.3)

CVT 5% 7.99 7.64 0.35 (p = 0.041)b .806 [.619–.904] 0.55 (7.0) 2.45 (31.3) 1.52 (19.5)

CVT 10% 4.51 4.22 0.29 (p = 0.13)b .771 [.576–.884] 0.43 (9.8) 1.76 (40.3) 1.19 (27.2)

CVT 25% 2.49 2.33 0.16 (p = 0.012)a .769 [.546–.886] 0.17 (7.1) 0.70 (29.0) 0.47 (19.5)

Area 5% 1.92 1.71 0.21 (p = 0.28)a .431 [.098–.679] 0.62 (34.1) 1.62 (89.2) 1.72 (94.7)

Area 10% 2.11 1.79 0.32 (p = 0.16)a .312 [−.023–.592] 0.78 (39.9) 1.84 (94.3) 2.16 (111.0)

Area 25% 2.60 2.42 0.18 (p = 0.27)b .431 [.095–.680] 0.63 (25.2) 1.65 (65.7) 1.75 (69.7)

Session 1 and Session 2 are the mean values. Difference are the difference in the mean value from session 1 to 2. ICC, SEM, LOA and SRD are intraclass correlation
coefficient, standard error of measurement, limits of agreement and smallest real difference, respectively. Absolute reproducibility results are also given in
percentages (e.g. SEM%) by dividing it with the grand mean for both sessions. aindicates the use of Wilcoxon signed-rank test. bindicates the use of paired t-test
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output (i.e. force steadiness) [19, 45]. It should be noted
that some studies have found small sex differences in
force steadiness [46, 47] with males being more steady
than females. Thus, the small difference in sex distribu-
tion between age groups in our data may have
augmented the age-difference (Table 1). Our sample size
was too small to provide an estimate of the age-
difference for males and females separately according to
a post hoc analysis.
As expected, CVM and CVT showed parallel reprodu-

cibility. Still, we included the CVT measures as CVM is
calculated independently of the target force, and it seems
odd to use CVM as a test of force variability on a given
target force. In fact, an excellent score using CVM may
be seen while completely failing the desired target force.
In addition, the CVT and CVM measures may both be

relevant for future investigation as motor impairments
measured by target force dependent measures (i.e. CVT)
differ from the target force independent measures (i.e.
CVM) [48]. The reliability and agreement of the Area
measure using the WBB was poor and thus found not to
be a recommendable measure.
The ICCs reflect the degree to which individuals main-

tain their ranked position in a sample with repeated
measurements [49]. A high ICC indicates that the
method is applicable for comparisons among groups of
people. Our results indicate that CVM and CVT measure
at 5% of MVC is useful for comparing handgrip steadiness
between groups. We also found good relative reproduci-
bility for CVM and CVT at 10% of MVC despite an
increasing steadiness between sessions. This means that
improvements, especially in CVM and CVT at 5% of

Fig. 3 The raw test and retest data at 5 (blue), 10 (green) and 25% (red) of maximal voluntary contraction (MVC) using the coefficient of variation
calculated using mean force (CVM) as an example, for both dominant (right) and non-dominant (left) sides

Table 4 Age-related differences in handgrip steadiness across different measures

Measure % of MVC Left Difference Right Difference

Old Young Old Young

CVM 5% 8.64 6.46 2.18 (p = .018*) 7.93 6.45 1.48 (p = .062)

CVM 10% 5.03 3.89 1.14 (p = .033*) 4.41 3.55 0.86 (p = .058)

CVM 25% 2.95 2.29 0.66 (p = .009*) 2.52 2.24 0.28 (p = .083)

CVT 5% 8.79 6.50 2.29 (p = .012*) 7.99 6.53 1.46 (p = .043*)

CVT 10% 5.10 3.87 1.23 (p = .031*) 4.51 3.53 0.98 (p = .043*)

CVT 25% 2.89 2.25 0.64 (p = .012*) 2.49 2.20 0.29 (p = .077)

Area 5% 1.85 1.16 0.69 (p < .001*) 1.92 1.30 0.62 (p = .017*)

Area 10% 2.09 1.52 0.57 (p = .015*) 2.11 1.52 0.59 (p = .031*)

Area 25% 2.88 2.57 0.31 (p = .450) 2.60 2.64 −0.04 (p = .866)

*Statistically significant at the .05 level. CVM and CVT is the calculated coefficient of variation using the mean value and the target force, respectively
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MVC, were similar and participants did not greatly change
their ranked position in the sample. It is important for
future studies to investigate and/or account for this
systematic improvement.
The agreement measures (SEM, LOA and SRD) ad-

dresses the degree to which repeated measurements vary
in an individual. These are clinically relevant measures
that indicate if it is a “true” change or if it may be due to
random variation [38]. However, these measures should
be interpreted in context. For instance, CVM and CVT
at 5% of the SEM, LOA and SRD are on average 5%,
29% and 15%, respectively. This means that these
measures will vary around 5% (SEM) of a subjects “true”
value, and that the magnitude of change that may be
due to random error lies within 29% (LOA) with 95%
probability. Beckerman et al. [50] introduced the SRD to
indicate whether a subsequent measurement represents
a real change and not random variation. SRD represents
the smallest change in measurement, which can be at-
tributed to a real change in the parameter assessed. A
SRD of 15% means that the subsequent force steadiness
measurement must exceed a 15% difference to indicate a
true change in force steadiness. Also, we found a mean
difference between sessions that was more prominent
for the left than for the right. The side-dependent differ-
ence might be due to a training effect. In keeping with
the poorer side being more sensitive to a training effect,
the right side outperformed the left side on CVT and
CVM.
The SEM, LOA and SRD for CVM at 5% of MVC

were 3.4/6.7%, 22/33% and 9.5/19% respectively for the
left/right sides. The cause for this difference cannot be
deduced from our results. One speculation is that by
testing the left side first on each trial for a given target
force, the participant needed some time to adjust for the
new target line and, thus, the left side avoided an imme-
diate learning effect to a larger degree than the right.
Another possible reason is that the right side, as it is the
preferred hand, will in all likelihood show less between-
subject variation and, hence, lower reliability. These ex-
planations are not mutually exclusive, but can easily be
explored in other experimental set ups. A final specula-
tion on noticeable side-difference can be related to the
target force most frequently used in everyday life that is
approximately 25% of MVC [51]. Thus, this measure has
the lower within-subject variation and the lowest train-
ing effect, which could explain the higher agreement for
CVM and CVT at 25% of MVC on the right side. In fact,
opposite to the left side, the agreement measure at the
right side is noticeably better for 25% of MVC than for
10% of MVC.
Our study and method have limitations. Using the WBB

does not allow adjustments for differences in hand size,
which also may have implications for sex differences in

steadiness. Second, the method relies on visuomotor feed-
back. Some of the age-related force steadiness differences
in hand muscles may be attributable to processing of
visuomotor information [52]. Specifically, old adults, as
opposed to young adults, seem to have significantly lower
steadiness with visual feedback compared to no visual
feedback at lower forces [52]. Still, the clinical relevance
may be independent of the cause of the age-related de-
crease in force steadiness. Third, the observed systematic
improvement and its side-dependent difference, as well as
the influence of the starting hand, are all aspects which
require further investigation. Different experimental
protocols can easily be developed to understand and likely
adjust for these factors.
The study also has strengths. The WBB is a relatively

cheap, widely available and portable device, and the Fysi-
oMeter software is accessible to support the method.
Using this method, we reported multiple measures
across different target forces, and we separate true
effects from random results as the study included a
sufficient number of participants to conduct reliability
and agreement statistics [40].

Conclusion
This reproducibility study on handgrip force steadiness
reported good reliability and acceptable agreement for
CVM and CVT measures at 5% of MVC in older adults.
We found side-dependent differences in force steadiness
improvement, reliability, agreement and age-differences,
and we detected a systematic difference in the mean
with sessions and with age. With these caveats in mind,
we conclude that the WBB method is a reliable instru-
ment for measuring handgrip steadiness using CVM and
CVT at low MVC. More research is needed to under-
stand and characterize how handgrip steadiness is re-
lated to age, handedness and over repeated assessments.

Endnote
1ApEn is a regularity statistic that gives a measure of

the time-dependent structure of the force signal
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