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Relative Generalized Matrix Weights of Matrix
Codes for Universal Security

on Wire-Tap Networks
Umberto Martínez-Peñas , Student Member, IEEE, and Ryutaroh Matsumoto , Member, IEEE

Abstract— Universal security over a network with linear net-
work coding has been intensively studied. However, previous
linear codes and code pairs used for this purpose were linear
over a larger field than that used on the network, which restricts
the possible packet lengths of optimal universal secure codes,
does not allow to apply known list-decodable rank-metric codes
and requires performing operations over a large field. In this
paper, we introduce new parameters (relative generalized matrix
weights and relative dimension/rank support profile) for code
pairs that are linear over the field used in the network, and
show that they measure the universal security performance
of these code pairs. For one code and non-square matrices,
generalized matrix weights coincide with the existing Delsarte
generalized weights, hence we prove the connection between these
latter weights and secure network coding, which was left open.
As main applications, the proposed new parameters enable us
to: 1) obtain optimal universal secure linear codes on noiseless
networks for all possible packet lengths, in particular for packet
lengths not considered before, 2) obtain the first universal secure
list-decodable rank-metric code pairs with polynomial-sized lists,
based on a recent construction by Guruswami et al; and
3) obtain new characterizations of security equivalences
of linear codes. Finally, we show that our parameters
extend relative generalized Hamming weights and relative
dimension/length profile, respectively, and relative general-
ized rank weights and relative dimension/intersection profile,
respectively.

Index Terms— Network coding, rank weight, relative
dimension/rank support profile, relative generalized matrix
weight, universal secure network coding.

I. INTRODUCTION

L INEAR network coding was first studied in [1], [23]
and [25], and enables us to realize higher throughput than

the conventional storing and forwarding. Error correction in
this context was first studied in [5], and security, meaning
information leakage to an adversary wire-tapping links in
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the network, was first considered in [6]. In that work, the
authors give outer codes with optimal information rate for the
given security performance, although using large fields on the
network. The field size was later reduced in [15] by reducing
the information rate. In addition, the approach in [14] allows
us to see secure network coding as a generalization of secret
sharing [4], [37], which is a generalization of the wire-tap
channel of type II [33].

However, these approaches [6], [14], [15] require know-
ing and/or modifying the underlying linear network code,
which does not allow us to perform, for instance, random
linear network coding [21], which achieves capacity in a
decentralized manner and is robust to network changes.
Later, the use of pairs of linear (block) codes as outer
codes was proposed in [39] to protect messages from errors
together with information leakage to a wire-tapping adversary
(see Remark 4), depending only on the number of errors
and wire-tapped links, respectively, and not depending on
the underlying linear network code, which is referred to as
universal security in [39].

In [39], the encoded message consists of n (number of
outgoing links from the source) vectors in Fqm or F

m
q , called

packets, where m is called the packet length and where Fq is
the field used for the underlying linear network code, as
opposed to previous works [6], [14], [15], where m = 1. The
universal performance of the proposed linear codes in [39] is
measured by the rank metric [9], and the authors in [39] prove
that linear codes in F

n
qm with optimal rank-metric parameters

when n ≤ m [17], [36] are also optimal for universal security.
This approach was already proposed in in [38] and [40]
for error correction, again not depending on the underlying
network code. Later the authors in [20] obtained the first list-
decodable rank-metric codes whose list sizes are polynomial
in the code length and which are able to list-decode universally
on linearly coded networks roughly twice as many errors as
optimal rank-metric codes [17], [36] can correct. The rank
metric was then generalized in [24] to relative generalized
rank weights (RGRWs) and relative dimension/intersection
profiles (RDIPs), which were proven in [24] to measure
exactly and simultaneously the universal security performance
and error-correction capability of pairs of linear codes, in the
same way as relative generalized Hamming weights (RGHWs)
and relative dimension/length profiles (RDLPs) [26], [42] do
on wire-tap channels of type II.
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TABLE I

NEW AND EXISTING NOTIONS OF GENERALIZED WEIGHTS

Unfortunately, the codes studied and proposed in [24],
and [38]–[40] are linear over the extension field Fqm . This
restricts the possible packet lengths of optimal universal
secure codes, requires performing computations over the larger
field Fqm and leaves out important codes, such as the list-
decodable rank-metric codes in [20], which are only linear
over Fq .

In this work, we introduce new parameters, called relative
generalized matrix weights (RGMWs) and relative dimen-
sion/rank support profiles (RDRPs), for codes and code pairs
that are linear over the smaller field Fq , and prove that
they measure their universal security performance in terms
of the worst-case information leakage. As main applications,
we obtain the first optimal universal secure linear codes on
noiseless networks for all possible packet lengths, we obtain
the first universal secure list-decodable rank-metric code pairs
with polynomial-sized lists, and obtain new characterizations
of security equivalences of linear codes.

A. Notation

Let q be a prime power and m and n, two positive integers.
We denote by Fq the finite field with q elements, which we
will consider to be the field used for the underlying linear
network code (see [23, Definition 1]).

Most of our technical results hold for an arbitrary field,
which we denote by F and which mathematically plays the
role of Fq . F

n denotes the vector space of row vectors of
length n with components in F, and F

m×n denotes the vector
space of m × n matrices with components in F. Throughout
the paper, a (block) code in F

m×n (respectively, in F
n) is a

subset of F
m×n (respectively, of F

n), and it is called linear if
it is a vector space over F. In all cases, dimensions of vector
spaces over F will be denoted by dim.

Finally, we recall that we may identify F
n
qm and F

m×n
q as

vector spaces over Fq . Fix a basis α1, α2, . . . , αm of Fqm as
a vector space over Fq . We define the matrix representation
map Mα : F

n
qm −→ F

m×n
q associated to the previous basis by

Mα(c) = (ci, j )1≤i≤m,1≤ j≤n, (1)

where ci = (ci,1, ci,2, . . . , ci,n) ∈ F
n
q , for i = 1, 2, . . . ,m,

are the unique vectors in F
n
q such that c = ∑m

i=1 αi ci . The
map Mα : F

n
qm −→ F

m×n
q is an Fq -linear vector space

isomorphism.
The works [24], [38]–[40] consider Fqm -linear codes in F

n
qm ,

which are a subfamily of Fq -linear codes in F
m×n
q through the

map given in (1). In this paper, we will consider arbitrary
linear (meaning F-linear) codes in F

m×n .

B. Our Motivations

Our main motivation to study universal secure network
coding is to avoid knowing and/or modifying the underlying
linear network code, and in particular be able to apply our
theory on random linearly coded networks [21], which achieve
capacity in a decentralized manner and are robust to network
changes.

Our main motivation to study pairs of linear codes is to be
able to protect messages simultaneously from errors, erasures
and information leakage to a wire-tapper. See also Section II
and more concretely, Remark 4.

Our main motivations to study codes which are linear over
the base field Fq instead of the extension field Fqm are the
following:

1) Fq -linear codes with optimal rank-metric parameters [9],
and thus with optimal universal security and error-correction
capability, cannot be Fqm -linear for most packet lengths m
when m < n. In many applications, packet lengths satisfying
m < n are required (see the discussion in [24, Sec. I-A], for
instance).

2) The only known list-decodable rank-metric codes [20]
with polynomial-sized lists are linear over Fq , but not
over Fqm . Hence the previous studies on universal security
cannot be applied on these codes. In particular, no construction
of universal secure list-decodable rank-metric coding schemes
with polynomial-sized lists are known.

3) In previous works [38]–[40], the proposed codes are
Fqm -linear and m ≥ n. In many cases, this requires performing
operations over a very large field, instead of the much smaller
field Fq .

C. Related Works and Considered Open Problems

We consider the following four open problems in the
literature, which correspond to the main four contributions
listed in the following subsection:

1) Several parameters have been introduced to measure the
security performance of linear codes and code pairs on differ-
ent channels, in terms of the worst-case information leakage.
The original RGHWs and RDLPs [26], [42] measure security
performance over wire-tap channels of type II, and relative
network generalized Hamming weigths (RNGHWs) [31], [45]
measure security performance over networks depending on
the underlying linear network code (non-universal security).
Later, RGRWs and RDIPs were introduced [24] and [32] to
measure universal security performance of Fqm -linear code
pairs C2 � C1 ⊆ F

n
qm . A notion of generalized weight for one

Fq -linear code (that is, for an arbitrary C1 and for C2 = {0})
in F

m×n
q , called Delsarte generalized weights (DGWs), was
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TABLE II

NEW AND EXISTING OPTIMAL SECURE CODES FOR NOISELESS NETWORKS (N = # LINKS,μ = # OBSERVATIONS, t = # DESTINATIONS)

TABLE III

NEW AND EXISTING CHARACTERIZATIONS OF LINEAR ISOMORPHISMS BETWEEN VECTOR SPACES OF MATRICES PRESERVING CERTAIN PROPERTIES

introduced in [34], but its connection with universal security
was only given for Fqm -linear codes. Thus, no measure of
universal security performance for all Fq -linear codes or code
pairs is known. See also Table I.

2) The first optimal universal secure linear codes for
noiseless networks were obtained in [39, Sec. V], whose
information rate attain the information-theoretical limit given
in [6]. However, these codes only exist when m ≥ n. The
cartesian products in [39, Sec. VII-C] are also optimal among
Fq -linear codes (see Remark 22), but only exist when
m divides n. No optimal universal secure Fq-linear codes for
noiseless networks have been obtained for the rest of values
of m. See also Table II for an overview of existing optimal
constructions, including non-universal codes [6], [14], [15].

3) In [20], the authors introduce the first list-decodable
rank-metric codes in F

n
qm able to list-decode close to the

information-theoretical limit and roughly twice as many errors
as optimal rank-metric codes [17], [36] are able to correct,
in polynomial time and with polynomial-sized lists (on the
length n). However, no universal secure coding schemes with
such list-decoding capabilities are known. Observe that list-
decoding rank errors implies list-decoding errors in linear
network coding in a universal manner [38].

4) Several characterizations of maps between vector spaces
of matrices preserving certain properties have been given in
the literature [3], [10], [27], [28], [30]. The maps considered
in [3] are linear over the extension field Fqm and preserve
ranks, and the maps considered in [10], [27], [30] are linear
over the base field (Fq or an arbitrary field) and preserve
fundamental properties of matrices, such as ranks, determi-
nants, eigenvalues or invertible matrices. Characterizations
of maps preserving universal security performance were first
given in [28], although the considered maps were only linear
over Fqm . No characterizations of general Fq -linear maps
preserving universal security are known. See also Table III.

D. Our Contributions and Main Results

In the following, we list our four main contributions
together with our main result summarizing each of them.

Each contribution tackles each open problem listed in the
previous subsection, respectively.

1) We introduce new parameters, RGMWs and RDRPs,
in Definitions 10 and 11, respectively, which measure
the universal security performance of Fq -linear code pairs
C2 � C1 ⊆ F

m×n
q , in terms of the worst-case information

leakage. The main result is Theorem 1 and states the following:
The r -th RGMW of the code pair is the minimum number of
links that an adversary needs to wire-tap in order to obtain at
least r bits of information (multiplied by log2(q)) about the
sent message. The μ-th RDRP of the code pair is the maximum
number of bits of information (multiplied by log2(q)) about
the sent message that can be obtained by wire-tapping μ links
of the network.

Since Fqm -linear codes in F
n
qm are also Fq -linear codes in

F
m×n
q , RGMWs and RDRPs must coincide with RGRWs and

RDIPs [24], respectively, for Fqm -linear codes in F
n
qm , which

we prove in Theorem 7.
When C2 = {0} and m �= n, we will also show in Theorem 9

that the RGMWs of the pair coincide with their DGWs, given
in [34], hence proving the connection between DGWs and
universal security for general Fq -linear codes, which was left
open.

2) We obtain optimal universal secure Fq-linear codes for
noiseless networks for any value of m and n, not only when
m ≥ n or m divides n, as in previous works [39]. The
main result is Theorem 2, which states the following: Denote
by � the number of packets in F

m
q that the source can transmit

and by t the number of links the adversary may wire-tap
without obtaining any information about the sent packets. For
any m and n, and a fixed value of � (respectively t), we obtain
a coding scheme with optimal value of t (respectively �).

3) We obtain the first universal secure list-decodable rank-
metric code pairs with polynomial-sized lists. The main result
is Theorem 3, and states the following: Defining � and t as
in the previous item, assuming that n divides m, and fixing
1 ≤ k2 < k2 ≤ n, ε > 0 and a positive integer s such that
4sn ≤ εm and m/n = O(s/ε), we obtain an Fq -linear code
pair such that � ≥ m(k1 − k2)(1 − 2ε), t ≥ k2 and which can
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list-decode s
s+1 (n − k1) rank errors in polynomial time, where

the list size is qO(s2/ε2).
4) We obtain characterizations of vector space isomor-

phisms between certain spaces of matrices over Fq that pre-
serve universal security performance over networks. The main
result is Theorem 4, which gives several characterizations of
Fq -linear vector space isomorphisms φ : V −→ W , where
V and W are rank support spaces in F

m×n
q and F

m×n�
q (see

Definition 7), respectively.
As application, we obtain in Subsection VI-B ranges of

possible parameters m and n that given linear codes and
code pairs can be applied to without changing their universal
security performance.

E. Organization of the Paper

First, all of our main results are stated as Theorems. After
some preliminaries in Section II, we introduce in Section III
the new parameters of linear code pairs (RGMWs and
RDRPs), give their connection with the rank metric, and
prove that they exactly measure the worst-case information
leakage universally on networks (Theorem 1). In Section IV,
we give optimal universal secure linear codes for noiseless net-
works for all possible parameters (Theorem 2). In Section V,
we show how to add universal security to the list-decodable
rank-metric codes in [20] (Theorem 3). In Section VI, we
define and give characterizations of security equivalences of
linear codes (Theorem 4), and then obtain ranges of pos-
sible parameters of linear codes up to these equivalences.
In Section VII, we give upper and lower Singleton-type bounds
(Theorems 5 and 6) and study when they can be attained, when
the dimensions are divisible by m. Finally, in Section VIII,
we prove that RGMWs extend RGRWs [24] and RGHWs [26],
[42], and we prove that RDRPs extend RDIPs [24] and RDLPs
[16], [26] (Theorems 7 and 8, respectively). We conclude the
section by showing that GMWs coincide with DGWs [34]
for non-square matrices, and are strictly larger otherwise
(Theorem 9).

II. COSET CODING SCHEMES FOR UNIVERSAL

SECURITY IN LINEAR NETWORK CODING

This section serves as a brief summary of the model of linear
network coding that we consider (Subsection II-A), the con-
cept of universal security under this model (Subsection II-B)
and the main definitions concerning coset coding schemes used
for this purpose (Subsection II-C). The section only contains
definitions and facts known in the literature, which will be
used throughout the paper.

A. Linear Network Coding Model

Consider a network with several sources and several sinks.
A given source transmits a message x ∈ F

�
q through the

network to multiple sinks. To that end, that source encodes
the message as a collection of n packets of length m, seen
as a matrix C ∈ F

m×n
q , where n is the number of outgoing

links from this source. We consider linear network coding
on the network, first considered in [1] and [25] and formally
defined in [23, Definition 1], which allows us to reach higher

throughput than just storing and forwarding on the network.
This means that a given sink receives a matrix of the form

Y = C AT ∈ F
m×N
q ,

where A ∈ F
N×n
q is called the transfer matrix corresponding to

the considered source and sink, and AT denotes its transpose.
This matrix may be randomly chosen if random linear network
coding is applied [21].

B. Universal Secure Communication Over Networks

In secure and reliable network coding, two of the main
problems addressed in the literature are the following:

1) Error and erasure correction [5], [24], [38]–[40]:
An adversary and/or a noisy channel may introduce
errors on some links of the network and/or modify the
transfer matrix. In this case, the sink receives the matrix

Y = C A�T + E ∈ F
m×N
q ,

where A� ∈ F
N×n
q is the modified transfer matrix, and

E ∈ F
m×N
q is the final error matrix. In this case, we

say that t = Rk(E) errors and ρ = n − Rk(A�) erasures
occurred, where Rk denotes the rank of a matrix.

2) Information leakage [6], [14], [15], [24], [39]: A wire-
tapping adversary listens to μ > 0 links of the network,
obtaining a matrix of the form C BT ∈ F

m×μ
q , for some

matrix B ∈ F
μ×n
q .

Outer coding in the source node is usually applied to tackle
the previous problems, and it is called universal secure [39] if
it provides reliability and security as in the previous items for
fixed numbers of wire-tapped links μ, errors t and erasures ρ,
independently of the transfer matrix A used. This implies that
no previous knowledge or modification of the transfer matrix
is required and random linear network coding [21] may be
applied.

C. Coset Coding Schemes for Outer Codes

Coding techniques for protecting messages simultaneously
from errors and information leakage to a wire-tapping adver-
sary were first studied by Wyner in [43]. In [43, p. 1374],
the general concept of coset coding scheme, as we will next
define, was first introduced for this purpose. We use the formal
definition in [24, Definition 7]:

Definition 1 (Coset Coding Schemes [24], [43]): A coset
coding scheme over the field F with message set S is a family
of disjoint nonempty subsets of F

m×n , PS = {Cx}x∈S .
If F = Fq , each x ∈ S is encoded by the source by choosing

uniformly at random an element C ∈ Cx.
Definition 2 (Linear Coset Coding Schemes

[28, Definition 2]):A coset coding scheme as in the
previous definition is said to be linear if S = F

�, for some
0 < � ≤ mn, and

aCx + bCy ⊆ Cax+by,

for all a, b ∈ F and all x, y ∈ F
�.

With these definitions, the concept of coset coding scheme
generalizes the concept of (block) code, since a code is a
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coset coding scheme where |Cx| = 1, for each x ∈ S.
In the same way, linear coset coding schemes generalize linear
(block) codes.

An equivalent way to describe linear coset coding schemes
is by nested linear code pairs, introduced in [44, Sec. III.A].
We use the description in [7, Sec. 4.2].

Definition 3 (Nested Linear Code Pairs [7], [44]): A nested
linear code pair is a pair of linear codes C2 � C1 ⊆ F

m×n .
Choose a vector space W such that C1 = C2 ⊕ W , where
⊕ denotes the direct sum of vector spaces, and a vector space
isomorphism ψ : F

� −→ W , where � = dim(C1/C2). Then
we define Cx = ψ(x) + C2, for x ∈ F

�. They form a linear
coset coding scheme called nested coset coding scheme [24].

Remark 4: As observed in [33] for the wire-tap channel
of type II, linear code pairs where C1 = F

m×n are suitable
for protecting information from leakage on noiseless channels.
Analogously, linear code pairs where C2 = {0} are suitable
for error correction without the presence of eavesdroppers.
Observe that these two types of linear code pairs are dual to
each other (see Definition 15 and Appendix A): If C �

1 = C⊥
2

and C �
2 = C⊥

1 , then C1 = F
m×n if, and only if, C �

2 = {0}.
To treat both error correction and information leakage, we
need general linear coset coding schemes.

We recall here that the concept of linear coset coding
schemes and nested coset coding schemes are exactly the
same. An object in the first family uniquely defines an object
in the second family and vice-versa. This is formally proven
in [28, Proposition 1].

Finally, we recall that the exact universal error and erasure
correction capability of a nested coset coding scheme was
found, in terms of the rank metric, first in [38, Sec. IV.C]
for the case of one code (C2 = {0}) that is maximum rank
distance, then in [39, Th. 2] for the general case of one linear
code (again C2 = {0}), then in [24, Th. 4] for the case where
both codes are linear over an extension field Fqm , and finally in
[28, Th. 9] for arbitrary coset coding schemes (linear over Fq

and non-linear).

III. NEW PARAMETERS OF LINEAR COSET CODING

SCHEMES FOR UNIVERSAL SECURITY

ON NETWORKS

This is the main section of the paper, which serves as a
basis for the rest of sections. The next sections can be read
independently of each other, but all of them build on the
results in this section. Here we introduce rank support spaces
(Subsection III-A), which are the main technical building
blocks of our theory, then we define of our main parameters
and connect them with the rank metric (Subsection III-B), and
we conclude by showing (Theorem 1) that these parameters
measure the worst-case information leakage universally on
linearly coded networks (Subsection III-C).

A. Rank Supports and Rank Support Spaces

In this subsection, we introduce rank support spaces, which
are the mathematical building blocks of our theory. The
idea is to attach to each linear code its rank support, given
in [22, Definition 1], and based on this rank support, define a

vector space of matrices containing the original code that can
be seen as its ambient space with respect to the rank metric.

We remark here that the family of rank support spaces can
be seen as the family of vector spaces in [35, Notation 25]
after transposition of matrices, or the family of vector spaces
in [22, Definition 6] taking C = F

m×n
q . We start with the

definitions:
Definition 5 (Row Space and Rank): For a matrix C ∈

F
m×n , we define its row space Row(C) as the vector space

in F
n generated by its rows. As usual, we define its rank as

Rk(C) = dim(Row(C)).
Definition 6 (Rank Support and Rank Weight

[22, Definition 1]): Given a vector space C ⊆ F
m×n ,

we define its rank support as

RSupp(C) =
∑

C∈C
Row(C) ⊆ F

n.

We also define the rank weight of the space C as

wtR(C) = dim(RSupp(C)).
Observe that RSupp(�{C}�) = Row(C) and wtR(�{C}�) =

Rk(C), for every matrix C ∈ F
m×n , where �A� denotes the

vector space generated by a set A over F.
Definition 7 (Rank Support Spaces): Given a vector space

L ⊆ F
n , we define its rank support space VL ⊆ F

m×n as

VL = {V ∈ F
m×n | Row(V ) ⊆ L}.

We denote by RS(Fm×n) the family of rank support spaces
in F

m×n .
The following lemma shows that rank support spaces behave

as a sort of ambient spaces for linear codes and can be attached
bijectively to vector spaces in F

n , which correspond to the rank
supports of the original linear codes.

Lemma 8: Let L ⊆ F
n be a vector space. The following

hold:

1) VL is a vector space and the correspondence L → VL
between subspaces of F

n and rank support spaces is a
bijection with inverse VL → RSupp(VL) = L.

2) If C ⊆ F
m×n is a vector space and L = RSupp(C), then

VL is the smallest rank support space containing C.

We conclude the subsection with the following characteriza-
tions of rank support spaces, which we will use throughout the
paper. In particular, item 2 will be useful to prove Theorem 4,
and item 3 will be useful to prove Theorem 1.

Proposition 9: Fix a set V ⊆ F
m×n. The following are

equivalent:

1) V is a rank support space. That is, there exists a
subspace L ⊆ F

n such that V = VL.
2) V is linear and has a basis of the form Bi, j , for

i = 1, 2, . . . ,m and j = 1, 2, . . . , k, where there are
vectors b1,b2, . . . ,bk ∈ F

n such that Bi, j has the
vector b j in the i -th row and the rest of its rows are
zero vectors.

3) There exists a matrix B ∈ F
μ×n, for some positive

integer μ, such that

V = {V ∈ F
m×n | V BT = 0}.



2534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

In addition, the relation between items 1, 2 and 3 is that
b1,b2, . . . ,bk are a basis of L, B is a (possibly not full-rank)
parity check matrix of L and dim(L) = n − Rk(B).

In particular, it holds that

dim(VL) = m dim(L). (2)

Proof: We prove the following implications:

• 1 ⇐⇒ 2: Assume item 1, let b1,b2, . . . ,bk be a basis
of L, and let Bi, j be as in item 2. Then we see that
V = �{Bi, j | 1 ≤ i ≤ m, 1 ≤ j ≤ k}�. The
reversed implication follows in the same way by defining
L = �b1,b2, . . . ,bk� ⊆ F

n .
• 1 ⇐⇒ 3: Assume item 1 and let B ∈ F

μ×n be a
parity check matrix of L. That is, a generator matrix
of the dual L⊥ ⊆ F

n . Then it holds by definition that
V ∈ F

m×n has all its rows in L if, and only if, V BT = 0.
Conversely, assuming item 3 and defining L as the code
with parity check matrix B , we see that V = VL by the
same argument. Hence the result follows. �

B. Definition and Basic Properties of the New Parameters

Definition 10 (Relative Generalized Matrix Weight): Given
nested linear codes C2 � C1 ⊆ F

m×n , and 1 ≤ r ≤ � =
dim(C1/C2), we define their r -th relative generalized matrix
weight (RGMW) as

dM,r (C1, C2) = min{dim(L) | L ⊆ F
n,

dim(C1 ∩ VL)− dim(C2 ∩ VL) ≥ r}.
For a linear code C ⊆ F

m×n , and 1 ≤ r ≤ dim(C), we define
its r -th generalized matrix weight (GMW) as

dM,r (C) = dM,r (C, {0}). (3)

Observe that it holds that

dM,r (C1, C2) ≥ dM,r (C1), (4)

for all nested linear codes C2 � C1 ⊆ F
m×n , and all 1 ≤ r ≤

� = dim(C1/C2).
Definition 11 (Relative Dimension/Rank Support Profile):

Given nested linear codes C2 � C1 ⊆ F
m×n , and 0 ≤

μ ≤ n, we define their μ-th relative dimension/rank support
profile (RDRP) as

KM,μ(C1, C2) = max{dim(C1 ∩ VL)− dim(C2 ∩ VL) |
L ⊆ F

n, dim(L) ≤ μ}.
Now, if U ⊆ V ⊆ F

m×n are vector spaces, the natural linear
map C1∩U/C2∩U −→ C1∩V/C2∩V is one to one. Therefore,
since we are taking maximums, it holds that

KM,μ(C1, C2) = max{dim(C1 ∩ VL)− dim(C2 ∩ VL) |
L ⊆ F

n, dim(L) = μ}.
We remark here that some existing notions of relative

generalized weights from the literature are particular cases
of RGMWs. The corresponding connections are given in
Section VIII. In particular, GMWs of one linear code coincide
with DGWs (introduced in [34]) for non-square matrices.

We next obtain the following characterization of RGMWs
that gives an analogous description to the original definition
of GHWs by Wei [42]:

Proposition 12 Given nested linear codes C2 � C1 ⊆ F
m×n,

and an integer 1 ≤ r ≤ dim(C1/C2), it holds that

dM,r (C1, C2) = min{wtR(D) | D ⊆ C1,D ∩ C2 = {0},
dim(D) = r}.

Proof: Denote by dr the number on the left-hand side
and by d �

r the number on the right-hand side. We prove both
inequalities:

dr ≤ d �
r : Take a vector space D ⊆ C1 such that D∩C2 = {0},

dim(D) = r and wtR(D) = d �
r . Define L = RSupp(D).

Since D ⊆ VL, we have that dim((C1 ∩ VL)/(C2 ∩ VL)) ≥
dim((C1 ∩ D)/(C2 ∩ D)) = dim(D) = r . Hence

dr ≤ dim(L) = wtR(D) = d �
r .

dr ≥ d �
r : Take a vector space L ⊆ F

n such that dim((C1 ∩
VL)/(C2 ∩ VL)) ≥ r and dim(L) = dr .

There exists a vector space D ⊆ C1 ∩VL with D∩C2 = {0}
and dim(D) = r . We have that RSupp(D) ⊆ L, since D ⊆ VL,
and hence

dr = dim(L) ≥ wtR(D) ≥ d �
r .

�
Thanks to this characterization, we may connect RGMWs

with the rank distance [9]. This will be crucial in the next
section, where we will use maximum rank distance codes
from [9] to obtain optimal universal secure linear codes for
noiseless networks. Recall the definition of minimum rank
distance of a linear coset coding scheme, which is a particular
case of [28, eq. (1)], and which is based on the analogous
concept for the Hamming metric given in [13]:

dR(C1, C2) = min{Rk(C) | C ∈ C1,C /∈ C2}. (5)

The following result follows from the previous theorem and
the definitions:

Corollary 13 (Minimum Rank Distance of Linear Coset
Coding Schemes): Given nested linear codes C2 � C1 ⊆ F

m×n,
it holds that

dR(C1, C2) = dM,1(C1, C2).

By Theorem 9, the previous corollary coincides with item 1
in [34, Th. 30] when C2 = {0} and m �= n.

We conclude by showing the connection between RDRPs
and RGMWs:

Proposition 14 (Connection Between RDRPs and
RGMWs): Given nested linear codes C2 � C1 ⊆ F

m×n

and 1 ≤ r ≤ dim(C1/C2), it holds that

dM,r (C1, C2) = min{μ | KM,μ(C1, C2) ≥ r}.

Proof: It is proven as [24, Proof of Lemma 4]. �
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C. Measuring Information Leakage on Networks

In this subsection, we show how the introduced parameters
(RGMWs and RDRPs) measure the universal security perfor-
mance of nested linear code pairs.

Assume that a given source wants to convey the message
x ∈ F

�
q , which we assume is a random variable with uniform

distribution over F
�
q . Following Subsection II-C, the source

encodes x into a matrix C ∈ F
m×n
q using nested linear codes

C2 � C1 ⊆ F
m×n
q . We also assume that the distributions used

in the encoding are all uniform (see Subsection II-C).
According to the information leakage model in

Subsection II-B, item 2, a wire-tapping adversary obtains
C BT ∈ F

m×μ
q , for some matrix B ∈ F

μ×n
q .

Recall from [8] the definition of mutual information of two
random variables X and Y :

I (X; Y ) = H (Y )− H (Y | X), (6)

where H (Y ) denotes the entropy of Y and H (Y | X) denotes
the conditional entropy of Y given X , and where we take
logarithms with base q (see [8] for more details).

We will need to use the concept of duality with respect
to the Hilbert-Schmidt or trace product. In Appendix A,
we collect some basic properties of duality of linear codes.
We now give the main definitions:

Definition 15 (Hilbert-Schmidt or Trace Product): Given
matrices C, D ∈ F

m×n , we define its Hilbert-Schmidt product,
or trace product, as

�C, D� = Trace(C DT ) =
m∑

i=1

ci · di =
m∑

i=1

n∑

j=1

ci, j di, j ∈ F,

where ci and di are the rows of C and D, respectively, and
where ci, j and di, j are their components, respectively.

Given a vector space C ⊆ F
m×n , we denote by C⊥ its dual:

C⊥ = {D ∈ F
m×n | �C, D� = 0,∀C ∈ C}.

We first compute the mutual information of the message
and the wire-tapper’s observation via rank support spaces:

Proposition 16: Given nested linear codes C2 � C1 ⊆
F

m×n
q , a matrix B ∈ F

μ×n
q , and the uniform random

variables x and C BT , as in the beginning of this subsection,
it holds that

I (x; C BT ) = dim(C⊥
2 ∩ VL)− dim(C⊥

1 ∩ VL), (7)

where I (x; C BT ) is as in (6), and where L = Row(B).
Proof: Define the map f : F

m×n
q −→ F

m×μ
q given by

f (D) = DBT ,

for the matrix B ∈ F
μ×n
q . Observe that f is a linear map. It

follows that

H (C BT ) = H ( f (C)) = logq (| f (C1)|) = dim( f (C1))

= dim(C1)− dim(ker( f ) ∩ C1),

where the last equality is the well-known first isomorphism
theorem. On the other hand, we may similarly compute the

conditional entropy:

H (C BT | x) = H ( f (C) | x)= logq(| f (C2)|) = dim( f (C2))

= dim(C2)− dim(ker( f ) ∩ C2).

However, it holds that ker( f ) = VL⊥ ⊆ F
m×n
q by

Proposition 9, since B is a parity check matrix of L⊥.
Therefore

I (x; C BT )

= H (C BT )− H (C BT | x) = (dim(C1)

− dim(VL⊥ ∩ C1))− (dim(C2)− dim(VL⊥ ∩ C2)).

Finally, the result follows by Lemmas 63 and 64
in Appendix A. �

The following theorem follows from the previous proposi-
tion, Corollary 13 and the definitions:

Theorem 1 (Worst-Case Information Leakage): Given
nested linear codes C2 � C1 ⊆ F

m×n
q , and integers 0 ≤ μ ≤ n

and 1 ≤ r ≤ dim(C1/C2), it holds that

1) μ = dM,r (C⊥
2 , C⊥

1 ) is the minimum number of links that
an adversary needs to wire-tap in order to obtain at
least r units of information (number of bits multiplied
by log2(q)) of the sent message.

2) r = KM,μ(C⊥
2 , C⊥

1 ) is the maximum information (num-
ber of bits multiplied by log2(q)) about the sent message
that can be obtained by wire-tapping at most μ links of
the network.

In particular, t = dR(C⊥
2 , C⊥

1 )− 1 is the maximum number of
links that an adversary may listen to without obtaining any
information about the sent message.

Remark 17: Proposition 16 extends [24, Lemma 7, item 2]
from Fqm -linear codes in F

n
qm to Fq-linear codes in F

m×n
q due

to Lemma 52 in Subsection VIII-A. Furthermore, as we will
explain in Theorem 7, our Theorem 1 extends in the same
sense [24, Th. 2] and [24, Corollary 5].

Remark 18: In Section VIII, we will prove that GMWs
coincide with DGWs [34] when using one code (C⊥

1 = {0}
in Theorem 1) and non-square matrices. Hence the results
in this subsection prove that DGWs measure the worst-case
information leakage in these cases, which has not been proven
in the literature yet.

IV. OPTIMAL UNIVERSAL SECURE LINEAR CODES FOR

NOISELESS NETWORKS AND ANY PACKET LENGTH

In this section, we obtain linear coset coding schemes built
from nested linear code pairs C � F

m×n , which in this section
will refer to those with C2 = C and C1 = F

m×n , with optimal
universal security performance in the case of finite fields
F = Fq (Theorem 2). Recall from Subsection II-C that
these linear coset coding schemes are suitable for noiseless
networks, as noticed in [33] (see also Remark 4).

In this section, we consider perfect universal secrecy (the
adversary obtains no information after wire-tapping a given
number of links), thus we make use of the theory in last section
concerning the first RGMW. In Section VII, we will consider
bounds on the rest of RGMWs, for general code pairs (suitable
for noisy networks), and their achievability.
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Definition 19: For a nested linear code pair of the form
C � F

m×n
q , we define its information parameter as � =

dim(Fm×n
q /C) = dim(C⊥), that is the maximum number of

log2(q) bits of information that the source can convey, and
its security parameter t as the maximum number of links that
an adversary may listen to without obtaining any information
about the sent message.

Due to Theorem 1, it holds that t = dR(C⊥)− 1. We study
two problems:

1) Find a nested linear code pair C � F
m×n
q with maximum

possible security parameter t when m, n, q and the
information parameter � are fixed and given.

2) Find a nested linear code pair C � F
m×n
q with maximum

possible information parameter � when m, n, q and the
security parameter t are fixed and given.

We will deduce bounds on these parameters from
the Singleton bound on the dimension of rank-metric
codes [9, Th. 5.4]:

Lemma 20 [9, Th. 5.4]: For a linear code C ⊆ F
m×n
q , it

holds that

dim(C) ≤ max{m, n}(min{m, n} − dR(C)+ 1). (8)

As usual in the literature, we say that C is maximum rank
distance (MRD) if equality holds in (8).

Thanks to Theorem 1 and the previous lemma, we may give
upper bounds on the attainable parameters in the previous two
problems:

Proposition 21: Given a nested linear code pair C � F
m×n
q

with information parameter � and security parameter t, it
holds that:

� ≤ max{m, n}(min{m, n} − t), (9)

t ≤ min{m, n} −
⌈

�

max{m, n}
⌉

. (10)

In particular, � ≤ mn and t ≤ min{m, n}.
Proof: Recall that � = dim(Fm×n

q /C) = dim(C⊥) and,
due to Theorem 1, t = dR(C⊥)− 1. Hence the result follows
from the bound (8) for C⊥. �

On the other hand, the existence of linear codes in F
m×n
q

attaining the Singleton bound on their dimensions, for all
possible choices of m, n and minimum rank distance dR

[9, Th. 6.3], leads to the following existence result on optimal
linear coset coding schemes for noiseless networks.

Theorem 2: For all choices of positive integers m and n,
and all finite fields Fq , the following hold:

1) For every positive integer � ≤ mn, there exists a
nested linear code pair C � F

m×n
q with information

parameter � and security parameter t = min{m, n} −
�(�/max{m, n})�.

2) For every positive integer t ≤ min{m, n}, there exists
a nested linear code pair C � F

m×n
q with secu-

rity parameter t and information parameter � =
max{m, n}(min{m, n} − t).

Remark 22: We remark here that, to the best of our knowl-
edge, only the linear coset coding schemes in item 2 in the
previous theorem, for the special case n ≤ m, have been
obtained in the literature. It corresponds to [39, Th. 7].

Using cartesian products of MRD codes as
in [39, Sec. VII-C], linear coset coding schemes as in
item 2 in the previous theorem can be obtained when n > m,
for the restricted parameters n = lm and � = mlk �, where l
and k � < m are positive integers.

V. UNIVERSAL SECURE LIST-DECODABLE RANK-METRIC

LINEAR COSET CODING SCHEMES

In this section, we will obtain nested linear code pairs
C2 � C1 ⊆ F

m×n
q when n divides m that can list-decode rank

errors on noisy networks (as opposed to the scenario in last
section), whose list sizes are polynomial on the code length n,
while being univeral secure under a given number of wire-
tapped links. As in last section, we consider perfect universal
secrecy, and thus make use of the results in Section III
concerning the first RGMW of the dual code pair.

We give the construction in Subsection V-A, together with
its parameters (Theorem 3): information parameter �, security
parameter t and number of list-decodable rank errors e.
To measure the quality of the proposed code pair, we will com-
pare in Subsection V-B their parameters with those obtained
when choosing C1 and C2 as MRD codes [17], [36], which
provide coset coding schemes with both optimal universal
security and optimal error-correction capability [39]. We will
also show (Subsection V-C) the near optimality of the obtained
construction in terms of the introduced uncertainty on the
secret message and the number of list-decodable rank errors.

A. The Construction and Its Main Properties

We start by extending the definition of rank list-decodable
codes from [11, Definition 2] to coset coding schemes:

Definition 23: For positive integers e and L, we say that a
coset coding scheme PS = {Cx}x∈S over Fq is rank (e, L)-
list-decodable if, for every Y ∈ F

m×n
q , we have that

| {x ∈ S | Px ∩ B(Y, e) �= ∅} | ≤ L,

where B(Y, e) denotes the ball in F
m×n
q with center Y and rank

radius e. The number of list-decodable rank errors is e and the
list sizes are said to be polynomial in n if L = O(F(n)), for
some polynomial F(x).

Remark 24: Observe however that, if a coset coding scheme
can list-decode e rank errors with polynomial-sized lists of
cosets, we still need to decode these cosets to obtain the
uncoded secret messages. In general, it is possible that the
union of such cosets has exponential size while the scheme
can still obtain all the corresponding uncoded messages via
an algorithm with polynomial complexity. This is the case in
the construction below.

We now give the above mentioned construction, which
exists whenever n divides m. The main objective is to obtain
simultaneously large information parameter �, security para-
meter t and number of list-decodable rank errors e.

Construction 1: Assume that n divides m and fix ε > 0 and
positive integers s and 1 ≤ k2 < k1 ≤ n such that 4sn ≤ εm
and m/n = O(s/ε). In the next subsection, mk1 and mk2 will
be the dimensions of the MRD linear codes constituting an
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optimal universal secure nested coset coding scheme, but here
they are just fixed parameters.

Fix a basis α1, α2, . . . , αm of Fqm as a vector space over Fq ,
such that α1, α2, . . . , αn generate Fqn (recall that Fqn ⊆ Fqm

since n divides m).
Recall that a q-linearized polynomial over Fqm is a poly-

nomial of the form F(x) = ∑d
i=0 Fi xqi

, where Fi ∈ Fqm , for
some positive integer d . Denote also evα(F(x)) = (F(α1),
F(α2), . . . , F(αn)) ∈ F

n
qm , and finally define the linear codes

C2 = {Mα(evα(F(x))) | Fi = 0 for i < k1 − k2 and i ≥ k1},
C1 = {Mα(evα(F(x))) | Fi ∈ Hi for 0 ≤ i < k1 − k2,

Fi ∈ Fqm for k1 − k2 ≤ i < k1, Fi = 0 for i ≥ k1},
where Mα is the map given in (1) and H0,H1, . . . ,
Hk1−k2−1 ⊆ Fqm are the Fq -linear vector spaces described
in [20, Th. 8]. We recall this description in Appendix B.
Observe that these vector spaces depend on ε and s.

Let � = dim(C1/C2) = dim(H0 × H1 × · · · × Hk1−k2−1).
We now show how C2 � C1 ⊆ F

m×n
q form a coset coding

scheme as in Definition 3. Define the vector space

W = {Mα(evα(F(x))) | Fi ∈ Hi for i < k1 − k2

and Fi = 0 for i ≥ k1 − k2},
which satisfies that C1 = C2 ⊕ W . Now consider the secret
space as H0×H1×· · ·×Hk1−k2−1 ∼= F

�
q , and define the vector

space isomorphism ψ : H0 × H1 × · · · × Hk1−k2−1 −→ W
as follows: For x ∈ H0 × H1 × · · · × Hk1−k2−1, take F(x) =
∑k1−k2−1

i=0 Fi xqi
such that x = (F0, F1, . . . , Fk1−k2−1), and

define

C = ψ(x) = Mα(evα(F(x))).

We may now state the main result of this section:
Theorem 3: With the same assumptions and notation, the

nested coset coding scheme in Construction 1 satisfies that:

1) � = dim(C1/C2) ≥ m(k1 − k2)(1 − 2ε).
2) Its security parameter (Definition 19) satisfies t ≥ k2.
3) It is rank (e, L)-list-decodable for all e ≤ s

s+1 (n − k1),

with L ≤ qO(s2/ε2), and it admits a list-decoding algo-
rithm that obtains all corresponding uncoded messages
with polynomial complexity in n.

We devote the rest of the subsection to prove this theorem.
We need to recall some definitions and results from [20]:

Definition 25 (Subspace Designs [20, Definition 3]):
Assuming that n divides m and given positive integers r and N ,
a collection of Fq -linear subspaces U1,U2, . . . ,UM ⊆ Fqm is
called an (r, N, n) Fq -linear subspace design if

M∑

i=1

dim(Ui ∩ V) ≤ N,

with dimensions taken over Fq , for every Fqn -linear subspace
V ⊆ Fqm of dimension at most r over Fqn .

The following lemma is part of [20, Th. 8]:
Lemma 26 [20]: With assumptions and notation as in

Construction 1, the spaces H0,H1, . . .Hk1−k2−1 defined in
Appendix B form an (s, 2(m/n −1)s/ε, n) Fq-linear subspace
design.

Definition 27 (Periodic Subspaces [20, Definition 9]):
Given positive integers r, l, k, we say that an affine subspace
H ⊆ F

lk
qn is (r, l, k)-periodic if there exists an Fqn -linear

subspace V ⊆ F
l
qn of dimension at most r over Fqn such that,

for every j = 2, 3, . . . , k and a ∈ F
( j−1)l
qn , the affine space

{π[( j−1)l+1, j l](x) | x ∈ H, π[1,( j−1)l](x) = a} ⊆ F
l
qn

is contained in va + V , for a vector va ∈ F
l
qn that depends on

a. Here, πJ denotes the projection over the coordinates in J ,
and [a, b] denotes the set of integers i such that a ≤ i ≤ b.

We may now prove our main result:
Proof of Theorem 3: We prove each item separately:

1) By Lemma 69 in Appendix B, it holds that dim(Hi ) ≥
m(1 − 2ε), for i = 0, 1, 2, . . . , k1 − k2 − 1. Therefore

� = dim(H0 × H1 × · · · × Hk1−k2−1)

≥ m(k1 − k2)(1 − 2ε).

2) By Theorem 1, the security parameter is t =
dR(C⊥

2 , C⊥
1 ) − 1 ≥ dR(C⊥

2 ) − 1. Since C2 is MRD, then so
is its trace dual [9], which means that dR(C⊥

2 ) = k2 + 1, and
the result follows.

3) As shown in [20, Sec IV-B], we may perform list-
decoding for the Gabidulin code G1 ⊇ C1,

G1 = {Mα(evα(F(x))) | Fi = 0 for i ≥ k1},
and obtain in polynomial time a list containing all possible
sent messages that is an (s − 1,m/n, k1)-periodic subspace of
F

k1m/n
qn

∼= F
k1
qm (isomorphic as Fqn -linear vector spaces).

Project this periodic subspace onto the first k1 − k2 coordi-
nates, which gives a (s − 1,m/n, k1 − k2)-periodic subspace
of F

k1−k2
qm , and intersect it with H0 × H1 × · · · × Hk1−k2−1.

Since H0,H1, . . .Hk1−k2−1 form an (s, 2(m/n − 1)s/ε, n)
Fq -linear subspace design by Lemma 26, such intersection
is an Fq-linear affine space of dimension at most O(s2/ε2)
(recall that m/n = O(s/ε)) by the definition of subspace
designs and periodic subspaces.

B. Comparison With Optimal Unique-Decodable Linear
Coset Coding Schemes Based on MRD Codes

In this subsection, we compare the schemes in
Construction 1 with those obtained when using MRD
codes [17], [36], whose information parameter � is optimal
for given security parameter t and number of unique-decodable
rank errors e, due to [39, Ths. 11 and 12].

Proposition 28 [39]: Assume that n ≤ m and C2 � C1 ⊆
F

m×n
q are MRD linear codes of dimensions dim(C1) = mk1

and dim(C2) = mk2 (recall that, by the Singleton bound (8),
dimensions of MRD codes are multiple of m when n ≤ m).

The linear coset coding scheme (Definition 3) constructed
from this nested linear code pair satisfies that:

1) Its information parameter is � = m(k1 − k2).
2) Its security parameter is t = k2.
3) If the number of rank errors is e ≤ � n−k1

2 �, then
rank error-correction can be performed, giving a unique
solution.
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Therefore, assuming that n divides m and given MRD linear
codes C2 � C1 ⊆ F

m×n
q of dimensions dim(C1) = mk1

and dim(C2) = mk2, the linear coset coding scheme in
Construction 1 has at least the same security parameter t as
that obtained using C1 and C2, an information parameter � that
is at least 1 − 2ε times the one obtained using C1 and C2, and
can list-decode in polynomial time (with list of polynomial
size) roughly n − k1 errors, which is twice as many as the
rank errors that C1 and C2 can correct, due to the previous
proposition and Theorem 3.

C. Near Optimality of the Obtained Construction

In this subsection, we will show the near optimality of
Construction 1 in terms of its introduced uncertainty H (C|x)
compared to the maximum observed information H (C BT )
by the wire-tapper, and the number of rank errors e that the
scheme can list-decode.

Let x ∈ F
�
q and C ∈ F

m×n
q denote the random variables

representing the secret message and the transmitted codeword,
respectively, as in Subsection III-C.

The quantity H (C|x) measures the amount of randomness
of C given x introduced by the corresponding coset coding
scheme, and we would like it to be as small as possible since
generating randomness is difficult in practice. Observe that
H (C|x) = dim(C2) for nested coset coding schemes. On the
other hand, the quantity H (C BT ) measures the amount of
observed information by wire-tapping μ links if B ∈ F

μ×n
q ,

which satisfies H (C BT ) ≤ mμ, being the inequality usually
tight when I (x; C BT ) = 0 or even an equality, as is the case
for Gabidulin codes. Thus the following bound is a weaker
version of a bound of the form mt ≤ dim(C2), which we
leave as open problem.

Proposition 29: Fix an arbitrary coset coding scheme in
F

m×n
q with message set S = F

�
q , let x ∈ F

�
q, and let C ∈ F

m×n
q

be its encoding. It holds that

max{H (C BT ) | B ∈ F
μ×n
q , I (x; C BT ) = 0} ≤ H (C|x).

Proof: Fix B ∈ F
μ×n
q . The result follows from the

following chain of inequalities:

I (x; C BT ) = H (C BT )− H (C BT |x)
= H (C BT )− H (C BT |C, x)

+ H (C BT |C, x)− H (C BT |x)
= H (C BT )− H (C BT |C)

+ H (C BT |C, x)− H (C BT |x)
(since x→C →C BT is a Markov chain [8])

= I (C; C BT )− I (C; C BT |x)
≥ H (C BT )− H (C|x).

�
Now consider the coset coding scheme in Construction 1,

and fix μ ≤ k1. Define the Gabidulin code

G1 = {Mα(evα(F(x))) | Fi = 0, i ≥ k1} ⊆ F
m×n
q ,

and let G be the uniform random variable on G1. It holds that

max
B∈F

μ×n
q

H (G BT ) = mμ, (11)

since μ ≤ k1. Equation (11) together with dim(G1/C1) ≤
2mε(k1 − k2) implies that

max
B∈F

μ×n
q

H (C BT ) ≥ m(μ− 2ε(k1 − k2)).

Using that H (C|x) = dim(C2) = mk2, we see that the bound
in the previous proposition is tight for Construction 1:

0 ≤ H (C|x)− max{H (C BT ) | B ∈ F
μ×n
q , I (x; C BT ) = 0}

≤ m(k2 − t + 2ε(k1 − k2)) ≤ 2εm(k1 − k2).

Next we show that the rank list-decoding capability cannot
be improved for large s and small ε, compared to general
nested coset coding schemes. Since rank list-decodable nested
coset coding schemes still require decoding each coset, we
will consider those such that a complementary space W as in
Definition 3 is rank list-decodable with polynomial-sized lists
after adding an error matrix from the smaller code C2:

Proposition 30: Fix a nested linear code pair C2 � C1 ⊆
F

m×n
q and a subspace W ⊆ C1 such that C1 = C2 ⊕ W , and

denote by M the maximum rank of a matrix in C2. If W is
rank (e + M, L)-list-decodable with polynomial list sizes L,
then

e ≤ n − dim(C1)

m
.

Proof: By [11, Proposition 1], if the linear code W is
rank (e + M, L)-list-decodable with polynomial-sized lists L,
then

e + M ≤ n − dim(W)/m.

On the other hand, the maximum rank of codewords in C2 is
at least dim(C2)/m by [35, Proposition 47]. Hence

e ≤ n − dim(W)

m
− dim(C2)

m
= n − dim(C1)

m
,

and we are done. �
For the nested coset coding scheme in Construction 1, it

holds that

e = s

s + 1
(n − k1),

and

n − dim(C1)

m
= n − k1(1 − 2ε)− 2εk2,

which are closer as s becomes larger and ε becomes smaller.

VI. SECURITY EQUIVALENCES OF LINEAR COSET CODING

SCHEMES AND MINIMUM PARAMETERS

In this section, we study when two nested linear code pairs
C2 � C1 ⊆ F

m×n and C �
2 � C �

1 ⊆ F
m�×n�

have the same
universal security and/or reliability performance.

First, we define security equivalences and give several char-
acterizations of these in Theorem 4 (Subsection VI-A), which
show that they also preserve error and erasure correction capa-
bilities. As applications, we study ranges and minimum pos-
sible parameters m and n for linear codes (Subsection VI-B),
and we study when they are degenerate (Subsection VI-C),
meaning when they can be applied to networks with strictly
smaller length n.
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A. Security Equivalences and Rank Isometries

In this subsection, we first give in Theorem 4 the above
mentioned characterizations, and we define afterwards security
equivalences as maps satisfying one of such characterizations.
We continue with Proposition 36, which shows that secu-
rity equivalences actually preserve universal security perfor-
mance as in Subsection II-B, thus motivating our definition.
We conclude by comparing Theorem 4 with related results
from the literature (see also Table III).

Due to the importance of the rank metric for error
and erasure correction in linear network coding (see
Subsection II-B), and for universal security (by Theorem 1
and Corollary 13), we start by considering rank isometries:

Definition 31 (Rank Isometries): We say that a map φ :
V −→ W between vector spaces V ⊆ F

m×n and W ⊆ F
m�×n�

is a rank isometry if it is a vector space isomorphism and
Rk(φ(V )) = Rk(V ), for all V ∈ V . In that case, we say that
V and W are rank isometric.

We have the following result, which was first proven
in [27, Theorem 1] for square matrices and the complex field
F = C. In [30, Proposition 3] it is observed that the square
condition is not necessary and it may be proven for arbitrary
fields:

Proposition 32 [27], [30]: If φ : F
m×n −→ F

m×n is a
rank isometry, then there exist invertible matrices A ∈ F

m×m

and B ∈ F
n×n such that

1) φ(C) = AC B, for all C ∈ F
m×n, or

2) φ(C) = ACT B, for all C ∈ F
m×n,

where the latter case can only happen if m = n.
We will define security equivalences as certain vector space

isomorphisms satisfying one of several equivalent conditions.
We first show their equivalence in the following theorem,
which is the main result of this section:

Theorem 4: Let φ : V −→ W be a vector space iso-
morphism between rank support spaces V ∈ RS(Fm×n) and
W ∈ RS(Fm×n�

), and consider the following properties:

(P 1) There exist full-rank matrices A ∈ F
m×m and B ∈

F
n×n�

such that φ(C) = AC B, for all C ∈ V .
(P 2) A subspace U ⊆ V is a rank support space if, and

only if, φ(U) is a rank support space.
(P 3) For all subspaces D ⊆ V , it holds that wtR(φ(D)) =

wtR(D).
(P 4) φ is a rank isometry.

Then the following implications hold:

(P 1) ⇐⇒ (P 2) ⇐⇒ (P 3) �⇒ (P 4).

In particular, a security equivalence is a rank isometry and, in
the case V = W = F

m×n and m �= n, the reversed implication
holds by Proposition 32.

Proof: See Appendix C. �
Remark 33: Unfortunately, the implication (P 3) ⇐� (P 4)

does not always hold. Take for instance m = n and the map
φ : F

m×m −→ F
m×m given by φ(C) = CT , for all C ∈ F

m×m.
Remark 34: Observe that, in particular, security equiva-

lences also preserve (relative) generalized matrix weights,
(relative) dimension/rank support profiles and distributions of

rank weights of vector subspaces, and they are the only rank
isometries with these properties.

Property (P 1) will be useful for technical computations
and, in particular, for Proposition 36 below. As explained in
Appendix C, (P 2) allows us to connect (P 1) with (P 3), and (P
3) allows us to connect the first two with the rank metric (P 4),
crucial for error and erasure correction as in Subsection II-B.
Finally, Property (P 2) also explains why we will consider
security equivalences defined between rank support spaces,
and intuitively explains that such spaces behave as ambient
spaces in our theory, as mentioned in Subsection III-A.

Definition 35 (Security Equivalences): We say that a map
φ : V −→ W between rank support spaces V ∈ RS(Fm×n)
and W ∈ RS(Fm×n�

) is a security equivalence if it is a vector
space isomorphism and satisfies condition (P 1), (P 2) or
(P 3) in Theorem 4.

Two nested linear code pairs C2 � C1 ⊆ F
m×n and C �

2 �

C �
1 ⊆ F

m×n�
are said to be security equivalent if there exist

rank support spaces V ∈ RS(Fm×n) and W ∈ RS(Fm×n�
),

containing C1 and C �
1, respectively, and a security equivalence

φ : V −→ W with φ(C1) = C �
1 and φ(C2) = C �

2.
We now motivate the previous definition with the next

proposition, which makes use of Theorem 4. Observe that
Remark 34 above already shows that security equivalences
preserve the worst-case information leakage as described in
Theorem 1. Now, given nested linear code pairs C2 � C1 ⊆
F

m×n
q and C �

2 � C �
1 ⊆ F

m×n�
q , Proposition 36 below shows that

if the dual pairs are security equivalent, then there exists a
bijective correspondence between wire-tappers’ transfer matri-
ces (matrix B in Subsection II-B, item 2) that preserves the
mutual information with the original sent message. If the
original pairs are also security equivalent, we conclude that
encoding with C2 � C1 ⊆ F

m×n
q or C �

2 � C �
1 ⊆ F

m×n�
q yields

exactly the same universal error and erasure correction perfor-
mance, and exactly the same universal security performance
over linearly coded networks, as in Subsection II-B.

Proposition 36: Assume that F = Fq and the dual pairs of
C2 � C1 ⊆ F

m×n
q and C �

2 � C �
1 ⊆ F

m×n�
q are security equivalent

by a security equivalence given by matrices A ∈ F
m×m
q and

B ∈ F
n×n�
q as in item 1 in Theorem 4. For any matrix

M ∈ F
μ×n
q , it holds that

I
(

x; C MT
)

= I
(

x; C �(M B)T
)
, (12)

with notation as in Proposition 16, where C ∈ F
m×n
q and

C � ∈ F
m×n�
q are the encodings of x using C2 � C1 ⊆ F

m×n
q

and C �
2 � C �

1 ⊆ F
m×n�

, respectively.
Furthermore, assuming n ≤ n�, the correspondence

M → M B is one to one and, for any matrix N ∈ F
μ×n�
q , there

exists M ∈ F
μ×n
q such that I

(
x; C �NT

) = I
(
x; C �(M B)T

)
.

Proof: Denote by φ the security equivalence. Take a
matrix M ∈ F

μ×n
q , define L = Row(M) ⊆ F

n
q and L� =

Row(M B) ⊆ F
n�
q . Then φ(VL) = VL� and

dim(φ(C⊥
1 ) ∩ VL�) = dim(φ(C⊥

1 ∩ VL)) = dim(C⊥
1 ∩ VL),

and similarly for C2. Thus Equation (12) follows from
Proposition 16.
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Observe that we may assume n ≤ n� without loss of
generality, since the inverse of a security equivalence is a
security equivalence. Thus the injectivity of M → M B
follows from the fact that B has full rank.

Finally, if N ∈ F
μ×n�
q , L = Row(N) and K = Row(B),

then C⊥
1 ⊆ VK and

C⊥
1 ∩ VL = C⊥

1 ∩ (VL ∩ VK),
and similarly for C⊥

2 . Since VL ∩ VK = VL∩K and L ∩ K =
Row(M B) for a matrix M ∈ F

μ×n
q , the last statement follows

again from Proposition 16. �
The topic of vector space isomorphisms φ : F

m×n −→
F

m×n preserving some specified property has been intensively
studied in the literature (see also Table III), where the term
Frobenius map is generally used for maps of the form of those
in Proposition 32.

When m = n, it is proven in [10, Th. 3] that Frobenius maps
are characterized by being those preserving invertible matrices
and in [27] they are characterized by being those preserving
ranks (this is extended to m �= n in [30, Proposition 3]), those
preserving determinants and those preserving eigenvalues.

On the other hand, [3, Th. 1] shows that Fqm -linear vector
space isomorphisms φ : F

n
qm −→ F

n
qm preserving ranks are

given by φ(c) = βcA, for β ∈ Fqm \ {0} and an invertible
A ∈ F

n×n
q . This is extended in [28, Th. 5] to Fqm -linear vector

space isomorphisms whose domain and codomain are Fqm -
linear Galois closed spaces in F

n
qm , which correspond to rank

support spaces in F
m×n
q (see Lemma 52 below).

Therefore, we extend these works in three directions simul-
taneously: First, we consider the stronger properties (P 1),
(P 2) and (P 3) than those considered in [3], [10], [27],
and [30], which are essentially (P 4). Second, we extend the
domains and codomains from F

m×n to general rank support
spaces whose matrices do not necessarily have the same sizes.
Finally, in the case F = Fq , we consider general Fq-linear
maps, instead of the particular case of Fqm -linear maps as
in [3] and [28].

B. Minimum Parameters of Linear Codes

As main application of the previous subsection, we study in
this subsection the minimum parameters m and n for which
there exists a linear code that is security equivalent to a given
one. Recall from Subsection II-A that m corresponds to the
packet length used in the network, and n corresponds to the
number of outgoing links from the source.

Both cases of one linear code, that is C2 = {0} and
C1 = F

m×n , are covered since they are dual of each other (see
also Remark 4 and Appendix A). Since security equivalences
are rank isometries by Theorem 4, in the first case we find
minimum parameters for error and erasure correction, and in
the second case we find minimum parameters for universal
security on noiseless linearly coded networks.

Proposition 37: Fix a linear code C ⊆ F
m×n of

dimension k. There exists a linear code C � ⊆ F
m×n�

that is
security equivalent to C if, and only if, n� ≥ dM,k(C).

Proof: First, if C � ⊆ F
m×n�

is security equivalent to C,
then dim(C �) = k and dM,k(C) = dM,k(C �) ≤ n�.

On the other hand, assume that n� ≥ dM,k(C). Take a
subspace L ⊆ F

n with d = dim(L) = dM,k(C) and dim(C ∩
VL) ≥ k, which implies that C ⊆ VL. Take a generator matrix
A ∈ F

d×n of L. There exists a full-rank matrix A� ∈ F
n×d

such that AA� = I ∈ F
d×d .

The linear map φ : VL −→ F
m×d , given by φ(V ) = V A�,

for V ∈ VL, is a vector space isomorphism. By dimensions, we
just need to see that it is onto. Take W ∈ F

m×d . It holds that
W = W I = W AA� = φ(W A), and W A ∈ VL by definition.

On the other hand, φ is a security equivalence by
Theorem 4. Therefore φ(C) ⊆ F

m×d is security equivalent
to C. Finally, we see that appending n� − d zero columns to
the matrices in φ(C) gives a security equivalent code to C
in F

m×n�
. �

By transposing matrices, we obtain the following conse-
quence, where we consider linear codes that are rank isometric
to a given one. By [28, Th. 9], such equivalent codes perform
equally when used for error and erasure correction, and by
Theorem 1 and Corollary 13, they perform equally regarding
the maximum number of links that an adversary may wire-tap
without obtaining any information on noiseless networks.

Corollary 38: For a linear code C ⊆ F
m×n, define the

transposed linear code

CT = {CT | C ∈ C} ⊆ F
n×m .

If m� ≥ dM,k(CT ), where k = dim(C), then there exists a
linear code C � ⊆ F

m�×n that is rank isometric to C.
Proof: It follows from Theorem 4 and Proposition 37. �

As a related result, [28, Proposition 3] computes the min-
imum parameter n for which there exists an Fqm -linear code
C ⊆ F

n
qm that is rank isometric to a given one. In contrast,

we consider both parameters m and n, we consider security
equivalences for the parameter n, and not only rank isometries,
and as the biggest difference with [28], we consider general
linear codes, and not only Fqm -linear codes in F

n
qm .

C. Degenerate Codes

In this subsection, we study degenerate codes, which by the
study in the previous subsection, can be applied to networks
with less outgoing links or, by transposing matrices, with
smaller packet length. Degenerateness of codes in the rank
metric has been studied in [22, Sec. 6] and [28, Sec. IV-B],
but only for Fqm -linear codes in F

n
qm . We extend those studies

to general linear codes in F
m×n .

Definition 39 (Degenerate Codes): We say that a linear
code C ⊆ F

m×n is degenerate if it is security equivalent to
a linear code C � ⊆ F

m×n�
with n� < n.

The following lemma follows from Proposition 37:
Lemma 40: A linear code C ⊆ F

m×n is degenerate if, and
only if, dM,k(C) < n, where k = dim(C).

Now we may give characterizations in terms of the mini-
mum rank distance of the dual code thanks to Proposition 65
in Appendix A.

Proposition 41: Given a linear code C ⊆ F
m×n, the follow-

ing hold:

1) Assuming dim(C⊥) ≥ m, C is degenerate if, and only if,
dM,m(C⊥) = 1.

2) If dR(C⊥) > 1, then C is not degenerate.
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Proof: From Proposition 65 (see Appendix A), we know
that

W k(C) ∪ W0(C⊥) = {1, 2, . . . , n},
where the sets on the left-hand side are disjoint, and where k =
dim(C). Now, the smallest number in W k(C) is n+1−dM,k(C),
and the smallest number in W0(C⊥) is dM,m(C⊥). Item 1
follows from this and the previous lemma. Item 2 follows
from item 1 and Proposition 43 in Subsection VII-A. �

VII. MONOTONICITY AND SINGLETON-TYPE BOUNDS

In this section, we give upper and lower Singleton-type
bounds on RGMWs. We start with the monotonicity of RDRPs
and RGMWs (Subsection VII-A), which have their own inter-
est, but which are a crucial tool to prove the main bounds
(Theorems 5 and 6 in Subsection VII-B). Finally we study
linear codes C ⊆ F

m×n , meaning C1 = C and C2 = {0}, that
attain these bounds and whose dimensions are divisible by m
(Subsection VII-C).

A. Monotonicity of RGMWs and RDRPs

The monotonicity bounds presented in this subsection are
crucial tools for Theorems 5 and 6, but they also have an
interpretation in terms of the worst-case information leakage,
due to Theorem 1: An adversary wire-tapping more links in
the network will obtain more information in the worst case,
and to obtain more information than the worst case for a given
number of links, the adversary needs to wire-tap more links.
We also bound the corresponding differences.

Proposition 42 (Monotonicity of RDRPs): Given nested
linear codes C2 � C1 ⊆ F

m×n, and 0 ≤ μ ≤ n − 1, it holds
that KM,0(C1, C2) = 0, KM,n(C1, C2) = dim(C1/C2) and

0 ≤ KM,μ+1(C1, C2)− KM,μ(C1, C2) ≤ m.

Proof: The only property that is not trivial from the
definitions is KM,μ+1(C1, C2)− KM,μ(C1, C2) ≤ m. Consider
L ⊆ F

n with dim(L) ≤ μ+ 1 and dim(C1 ∩ VL)− dim(C2 ∩
VL) = KM,μ+1(C1, C2).

Take L�
� L with dim(L�) = dim(L) − 1. Using (2), a

simple computation shows that

dim(C1 ∩ VL�)+ m ≥ dim(C1 ∩ VL).
Since dim(C2 ∩ VL�) ≤ dim(C2 ∩ VL), it holds that

dim(C1 ∩ VL�)− dim(C2 ∩ VL�)+ m

≥ dim(C1 ∩ VL)− dim(C2 ∩ VL),
and the result follows. �

Proposition 43 (Monotonicity of RGMWs): Given nested
linear codes C2 � C1 ⊆ F

m×n with � = dim(C1/C2), it holds
that

0 ≤ dM,r+1(C1, C2)− dM,r (C1, C2) ≤ min{m, n},
for 1 ≤ r ≤ �− 1, and

dM,r (C1, C2)+ 1 ≤ dM,r+m(C1, C2),

for 1 ≤ r ≤ �− m.

Proof: The first inequality in the first equation is obvious.
We now prove the second inequality. By Proposition 12, there
exists a subspace D ⊆ C1 with D ∩ C2 = {0}, dim(D) = r
and wtR(D) = dM,r (C1, C2). Now take D ∈ C1 not contained
in D ⊕ C2, and consider D� = D ⊕ �{D}�. We see from the
definitions that RSupp(D�) ⊆ RSupp(D)+Row(D), and hence

wtR(D�) ≤ wtR(D)+ Rk(D) ≤ dM,r (C1, C2)+ min{m, n}.
Therefore it follows that dM,r+1(C1, C2) ≤ dM,r (C1, C2) +
min{m, n}.

The last inequality follows from Proposition 14 and Propo-
sition 42. �

Due to Theorem 9, the first and third inequalities in
the previous proposition coincide with items 3 and 4
in [34, Th. 30] when C2 = {0} and m �= n.

B. Upper and Lower Singleton-Type Bounds

Due to Theorem 1, it is desirable to obtain nested linear
code pairs with large RGMWs. The following result gives a
fundamental upper bound on them, whose achievability for
one linear code (C2 = {0}) is studied in the next subsection.

Theorem 5 (Upper Singleton-Type Bound): Given nested
linear codes C2 � C1 ⊆ F

m×n and 1 ≤ r ≤ � = dim(C1/C2),
it holds that

dM,r (C1, C2) ≤ n −
⌈
�− r + 1

m

⌉

+ 1. (13)

In particular, it follows that

dim(C1/C2) ≤ max{m, n}(min{m, n} − dR(C1, C2)+ 1),

which extends (8) to nested linear code pairs.
Proof: First of all, we have that dM,�(C1, C2) ≤ n by

definition. Therefore the case r = � follows.
For the general case, we will prove that mdM,r (C1, C2) ≤

mn − � + r + m − 1. Assume that 1 ≤ r ≤ � − hm,
where the integer h ≥ 0 is the maximum possible. That is,
r + (h + 1)m > �. Using Proposition 43, we obtain

mdM,r (C1, C2)

≤ mdM,r+hm(C1, C2)− hm ≤ mdM,�(C1, C2)− hm

≤ mn − �+ r + m − 1,

where the last inequality follows from mdM,�(C1, C2) ≤ mn
and r + (h + 1)m − 1 ≥ �.

Finally, the last bound is obtained by setting r = 1 and
using Corollary 13 for the given nested linear code pair and
the pair obtained by transposing matrices. �

Due to Theorem 9, the previous theorem coincides with item
5 in [34, Th. 30] when C2 = {0} and m �= n.

Remark 44: In view of [24, Proposition 1] or [26, eq. (24)],
it is natural to wonder whether a sharper bound of the form

dM,r (C1, C2) ≤ n −
⌈

dim(C1)− r + 1

m

⌉

+ 1

holds. However, this is not the case in general, as the following
example shows.



2542 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

Example 45: Consider m = 2, the canonical basis e1, e2,
. . . , en of F

n , and the linear codes C1 = F
2×n and

C2 =
〈(

e1
0

)

,

(
e2
0

)

, . . . ,

(
en

0

)〉

.

Observe that � = dim(C1/C2) = n. A bound as in the previous
remark would imply that dM,n(C1, C2) ≤ �n/2�. However,
a direct inspection shows that dM,n(C1, C2) = n, since all
vectors e1, e2, . . . , en must lie in the row space of any D with
C1 = C2 ⊕ D.

On the other hand, we have the following lower bound:
Theorem 6 (Lower Singleton-Type Bound): Given nested

linear codes C2 � C1 ⊆ F
m×n and 1 ≤ r ≤ dim(C1/C2), it

holds that mdM,r (C1, C2) ≥ r , which implies that

dM,r (C1, C2) ≥
⌈ r

m

⌉
. (14)

Proof: Take a subspace D ⊆ F
m×n and define L =

RSupp(D). We have that D ⊆ VL. Using (2), we see that

mwtR(D) = m dim(L) = dim(VL) ≥ dim(D).
The result follows from this and Proposition 12. �

Due to Theorem 9, the previous theorem coincides with item
6 in [34, Th. 30] when C2 = {0} and m �= n.

C. Linear Codes Attaining the Bounds and Whose
Dimensions Are Divisible by the Packet Length

In this subsection, we study the achievability of the
bounds (13) and (14) for one linear code whose dimension
is divisible by the packet length m. As we will show in
Subsection VIII-C, DGWs [34] of one linear code coincide
with its GMWs when m �= n. Thus the two propositions below
coincide with Corollaries 31 and 32 in [34] when m �= n.

Recall from (8) that, if a linear code is MRD and n ≤ m,
then its dimension is divisible by m. In the next proposition,
we show that GMWs of MRD linear codes for n ≤ m
are all given by m, n and dim(C), and all attain the upper
Singleton-type bound (13):

Proposition 46: Let C ⊆ F
m×n be a linear code with

dim(C) = mk. The following are equivalent if n ≤ m:

1) C is maximum rank distance (MRD).
2) dR(C) = n − k + 1.
3) dM,r (C) = n − k + ⌊ r−1

m

⌋ + 1, for all 1 ≤ r ≤ mk.

Proof: Item 1 and item 2 are equivalent by definition, and
item 3 implies item 2 by choosing r = 1.

Now assume item 2 and let 1 ≤ r ≤ mk. Let r = hm + s,
with h ≥ 0 and 0 ≤ s < m. We need to distinguish the cases
s > 0 and s = 0. We prove only the first case, being the
second analogous. By Proposition 43, we have that

dM,r (C) ≥ h + dM,s(C) ≥ h + dR(C) = n − k + h + 1.

On the other hand, �(mk − r + 1)/m� = k − h, and therefore
the bound (13) implies that

dM,r (C) ≤ n − k + h + 1,

and hence dM,r (C) = n − k + �(r − 1)/m� + 1 since �(r −
1)/m� = h, and item 3 follows. �

Regarding the lower Singleton-type bound, we show in the
next proposition that rank support spaces are also characterized
by having the minimum possible GMWs in view of (14):

Proposition 47: Let C ⊆ F
m×n be a linear code with

dim(C) = mk. The following are equivalent:

1) C is a rank support space. That is, there exists a
subspace L ⊆ F

n such that C = VL.
2) dM,km(C) = k.
3) dM,r (C) = �r/m�, for all 1 ≤ r ≤ mk.

Proof: Assume that C = VL, as in item 1. By taking a
sequence of subspaces

{0} � L1 � L2 � . . . � Lk = L,
we see that dM,rm−p(C) ≤ dim(Lr ) = r , for 1 ≤ r ≤ k and
0 ≤ p ≤ m − 1, since dim(C ∩ VLr ) = dim(VLr ) = mr ≥
mr − p. Hence item 3 follows.

Item 3 implies item 2 by taking r = km.
Finally, assume item 2. Take a subspace L ⊆ F

n such that
dim(L) = dM,km(C) = k and dim(C∩VL) ≥ mk. By definition
and by (2), it holds that dim(C∩VL) ≥ mk = dim(VL), which
implies that C ∩ VL = VL, or in other words, VL ⊆ C. Since
dim(C) = mk = dim(VL), we see that VL = C and item 1
follows. �

VIII. RELATION WITH OTHER EXISTING NOTIONS

OF GENERALIZED WEIGHTS

In this section, we study the relation between RGMWs and
RDRPs and other notions of generalized weights (see Table I).
We first show that RGMWs and RDRPs extend RGRWs
and RDIPs [24], [32] (Theorem 7 in Subsection VIII-A),
respectively, then we show that they extend RGHWs and
RDLPs [16], [26], [42] (Theorem 8 in Subsection VIII-B),
respectively, and we conclude by showing that GMWs coin-
cide with DGWs [34] for one linear code, meaning C1 = C
arbitrary and C2 = {0}, when m �= n, and are strictly larger
when m = n (Theorem 9 in Subsection VIII-C).

A. RGMWs Extend Relative Generalized Rank Weights

In this subsection, we prove that RGMWs and RDRPs
extend RGRWs and RDIPs [24], [32], respectively.

Definition 48 (Galois Closed Spaces [41]): We say that an
Fqm -linear vector space V ⊆ F

n
qm is Galois closed if

Vq = {(vq
1 , v

q
2 , . . . , v

q
n ) | (v1, v2, . . . , vn) ∈ V} ⊆ V .

We denote by ϒ(Fn
qm ) the family of Fqm -linear Galois closed

vector spaces in F
n
qm .

RGRWs and RDIPs are then defined in [24] as follows:
Definition 49 (Relative Generalized Rank Weigths [24, Def-

inition 2]): Given nested Fqm -linear codes C2 � C1 ⊆ F
n
qm ,

and 1 ≤ r ≤ � = dim(C1/C2) (over Fqm ), we define their
r -th relative generalized rank weight (RGRW) as

dR,r (C1, C2) = min{dim(V) | V ∈ ϒ(Fn
qm ),

dim(C1 ∩ V)− dim(C2 ∩ V) ≥ r},
where dimensions are taken over Fqm .
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Definition 50 (Relative Dimension/Intersection Profile [24,
Definition 1]): Given nested Fqm -linear codes C2 � C1 ⊆ F

n
qm ,

and 0 ≤ μ ≤ n, we define their μ-th relative dimension/
intersection profile (RDIP) as

K R,μ(C1, C2) = max{dim(C1 ∩ V)− dim(C2 ∩ V) |
V ∈ ϒ(Fn

qm ), dim(V) ≤ μ},
where dimensions are taken over Fqm .

The following is the main result of the subsection, which
shows that Theorem 1 extends the study on worst-case infor-
mation leakage on Fq -linearly coded networks in [24] (see its
Theorem 2 and Corollary 5) from Fqm -linear codes in F

n
qm to

general Fq -linear codes in F
m×n
q , when considering uniform

probability distributions.
Theorem 7: Let α1, α2, . . . , αm be a basis of Fqm as a

vector space over Fq . Given nested Fqm -linear codes C2 �

C1 ⊆ F
n
qm , and integers 1 ≤ r ≤ � = dim(C1/C2) (over Fqm ),

0 ≤ p ≤ m − 1 and 0 ≤ μ ≤ n, we have that

dR,r (C1, C2) = dM,rm−p(Mα(C1),Mα(C2)),

mK R,μ(C1, C2) = KM,μ(Mα(C1),Mα(C2)),

where Mα : F
n
qm −→ F

m×n
q is as in (1).

The theorem follows from the next two lemmas, where we
take the first one from [41]:

Lemma 51 [41, Lemma 1]: An Fqm -linear vector space
V ⊆ F

n
qm is Galois closed if, and only if, it has a basis of

vectors in F
n
q as a vector space over Fqm .

Lemma 52: Let α1, α2, . . . , αm be a basis of Fqm as a
vector space over Fq , and let V ⊆ F

n
qm be an arbitrary set.

The following are equivalent:

1) V ⊆ F
n
qm is an Fqm -linear Galois closed vector space.

That is, V ∈ ϒ(Fn
qm ).

2) Mα(V) ⊆ F
m×n
q is a rank support space. That is,

Mα(V) ∈ RS(Fm×n
q ).

Moreover, if Mα(V) = VL for a subspace L ⊆ F
n
q , then

dim(V) = dim(L),
where dim(V) is taken over Fqm and dim(L) over Fq .

Proof: We first observe the following. For an arbitrary
set V ⊆ F

n
qm , the previous lemma states that V is an Fqm -

linear Galois closed vector space if, and only if, V is Fq-linear
and it has a basis over Fq of the form vi, j = αi b j , for i =
1, 2, . . . ,m and j = 1, 2, . . . , k, where b1,b2, . . . ,bk ∈ F

n
q .

By considering Bi, j = Mα(vi, j ) ∈ F
m×n
q , we see that this

condition is equivalent to item 2 in Proposition 9, and we are
done. �

Remark 53: The results in this subsection can be extended
to Galois extensions of fields F ⊆ F̃ of finite degree m. For that
purpose, we only need to define Galois closed spaces as those
F̃-linear subspaces V ⊆ F̃

n that are closed under the action
of every field morphism in the Galois group of the extension
F ⊆ F̃. The rest of definitions and results in this subsection
can be directly translated word by word to this case, except
for Lemma 51, which would be replaced by [18, Th. 1].

Thus the results in this subsection can be applied to gener-
alizations of rank-metric codes such as those in [2].

B. RGMWs Extend Relative Generalized Hamming Weights

In this subsection, we show that RGMWs and RDRPs also
extend RGHWs and RDLPs [16], [26], [42], respectively.
We start with the definitions of Hamming supports and
Hamming support spaces:

Definition 54 (Hamming Supports): Given a vector space
C ⊆ F

n , we define its Hamming support as

HSupp(C) = {i ∈ {1, 2, . . . , n} |
∃(c1, c2, . . . , cn) ∈ C, ci �= 0}.

We also define the Hamming weight of the space C as

wtH(C) = |HSupp(C)|.
Finally, for a vector c ∈ F

n , we define its Hamming support
as HSupp(c) = HSupp(�{c}�), and its Hamming weight as
wtH(c) = wtH(�{c}�).

Definition 55 (Hamming Support Spaces): Given a subset
I ⊆ {1, 2, . . . , n}, we define its Hamming support space as
the vector space in F

n given by

LI = {(c1, c2, . . . , cn) ∈ F
n | ci = 0,∀i /∈ I }.

We may now define RGHWs and RDLPs:
Definition 56 (Relative Generalized Hamming Weigths

[26, Section III]): Given nested linear codes C2 � C1 ⊆ F
n ,

and 1 ≤ r ≤ � = dim(C1/C2), we define their r -th relative
generalized Hamming weight (RGHW) as

dH,r (C1, C2) = min{|I | | I ⊆ {1, 2, . . . , n},
dim(C1 ∩ LI )− dim(C2 ∩ LI ) ≥ r}.

As in Proposition 12, it holds that

dH,r(C1, C2) = min{wtH(D) | D ⊆ C1,D ∩ C2 = {0},
dim(D) = r}.

Given a linear code C ⊆ F
n , we see that its r -th

GHW [42, Sec. II] is dH,r (C) = dH,r (C, {0}), for
1 ≤ r ≤ dim(C).

Definition 57 (Relative Dimension/Length Profile [16],
[26]): Given nested linear codes C2 � C1 ⊆ F

n , and
0 ≤ μ ≤ n, we define their μ-th relative dimension/length
profile (RDLP) as

K H,μ(C1, C2) = max{dim(C1 ∩ LI )− dim(C2 ∩ LI ) |
I ⊆ {1, 2, . . . , n}, |I | ≤ μ}.

To prove our results, we need to see vectors in F
n as

matrices in F
n×n . To that end, we introduce the diagonal

matrix representation map � : F
n −→ F

n×n given by

�(c) = diag(c) = (ciδi, j )1≤i≤n,1≤ j≤n, (15)

where c = (c1, c2, . . . , cn) ∈ F
n and δi, j represents the

Kronecker delta. In other words, �(c) is the diagonal matrix
whose diagonal vector is c.

The map � : F
n −→ F

n×n is linear, one to one and, for
any vector space D ⊆ F

n , it holds that

wtR(�(D)) = wtH(D).
We may now give the main result of this subsection:
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Theorem 8: Given nested linear codes C2 � C1 ⊆ F
n, and

integers 1 ≤ r ≤ � = dim(C1/C2), and 0 ≤ μ ≤ n, we have
that

dH,r (C1, C2) = dM,r (�(C1),�(C2)),

K H,μ(C1, C2) = KM,μ(�(C1),�(C2)).

Proof: We prove the first equality, being the second
analogous. Denote by dr the number on the left-hand side
and by d �

r the number on the right-hand side, and prove both
inequalities:

dr ≤ d �
r : Take a vector space L ⊆ F

n such that dim(L) =
d �

r and dim((�(C1) ∩ VL)/(�(C2) ∩ VL)) ≥ r . It holds that
VL ∩ �(Fn) = �(LI ), for some subset I ⊆ {1, 2, . . . , n}.
We have that dim((C1 ∩ LI )/(C2 ∩ LI )) ≥ r and

dr ≤ |I | = wtR(�(LI )) ≤ wtR(VL) = dim(L) = d �
r .

dr ≥ d �
r : Take a subset I ⊆ {1, 2, . . . , n} such that |I | = dr

and dim((C1 ∩LI )/(C2 ∩LI )) ≥ r . Now it holds that �(LI ) =
VLI ∩�(Fn). Therefore dim((�(C1)∩VLI )/(�(C2)∩VLI )) ≥
r and

d �
r ≤ dim(LI ) = |I | = dr .

�

C. Relation With Delsarte Generalized Weights

A notion of generalized weights, called Delsarte generalized
weights (DGWs), for a linear code, which in this section means
C1 = C arbitrary and C2 = {0} has already been proposed
in [34] as an algebraic invariant of the code. We will prove
that GMWs are strictly larger than DGWs when m = n, and
we will prove that both coincide in the other cases.

These weights are defined in terms of optimal anticodes for
the rank metric:

Definition 58 (Maximum Rank Distance): For a linear code
C ⊆ F

m×n , we define its maximum rank distance as

MaxRk(C) = max{Rk(C) | C ∈ C,C �= 0}.
The following bound is given in [35, Proposition 47]:

dim(C) ≤ mMaxRk(C). (16)

This leads to the definition of rank-metric optimal anticodes:
Definition 59 (Optimal Anticodes [34, Definition 22]): We

say that a linear code V ⊆ F
m×n is a (rank-metric) optimal

anticode if equality in (16) holds.
We will denote by A(Fm×n) the family of linear optimal

anticodes in F
m×n .

In view of this, DGWs are defined in [34] as follows:
Definition 60 (Delsarte Generalized Weights [34, Definition

23]): For a linear code C ⊆ F
m×n and an integer 1 ≤ r ≤

dim(C), we define its r -th Delsarte generalized weight (DGW)
as

dD,r(C) = m−1 min{dim(V) | V ∈ A(Fm×n),

dim(C ∩ V) ≥ r}.

Observe that dD,r (C) is an integer since the dimension of
optimal anticodes is a multiple of m by definition.

Before giving the main result, we need the following
proposition:

Proposition 61: If a set V ⊆ F
m×n is a rank support space,

then it is a (rank-metric) optimal anticode. In other words,
RS(Fm×n) ⊆ A(Fm×n). The reversed inclusion also holds if
m �= n.

Proof: We first prove that RS(Fm×n) ⊆ A(Fm×n). Let V ∈
RS(Fm×n) and let Bi, j , i = 1, 2, . . . ,m and j = 1, 2, . . . , k,
be a basis of V as in Proposition 9, item 2. For any V =∑m

i=1
∑k

j=1 λi, j Bi, j ∈ V , with λi, j ∈ F, it holds that

Rk(V ) ≤ dim(�b1,b2, . . . ,bk�) = k,

where b1,b2, . . . ,bk are as in Proposition 9, item 2. There-
fore dim(V) = mk ≥ mMaxRk(V) and V is an optimal
anticode.

We now prove that A(Fm×n) ⊆ RS(Fm×n) when m �= n.
Let V ∈ A(Fm×n). By [34, Th. 26], there exist full-rank
matrices A ∈ F

m×m
q and B ∈ F

n×n
q such that V = {AC B ∈

F
m×n
q | C ∈ VL}, where L = F

k
q × {0}n−k for some positive

integer k. By Proposition 9, V is a rank support space and we
are done. �

In [34, Th. 18] it is proven that V ⊆ F
n
qm is an Fqm -

linear Galois closed vector space if, and only if, it is an Fqm -
linear vector space satisfying equality in (16). Hence due to
Lemma 52, the previous proposition strengthens [34, Th. 18]
when m �= n by showing that the Fqm -linearity of V may be
weakened to Fq -linearity. Moreover, our result holds for any
field F �= Fq .

The main result of this subsection is the next theorem, which
follows from the previous proposition and the corresponding
definitions:

Theorem 9: For a linear code C ⊆ F
m×n and an integer

1 ≤ r ≤ dim(C), we have that

dD,r(C) ≤ dM,r (C) if m = n,

and

dD,r(C) = dM,r (C) if m �= n.

Due to Theorem 1, when considering universal security on
linearly coded networks it is desirable to obtain linear codes
C ⊆ F

m×n
q with large GMWs. Therefore, linear codes with

large DGWs serve this purpose, but linear codes with low
DGWs may still have large GMWs when m = n.

The next example shows that not all linear optimal anticodes
are rank support spaces when m = n, that is, RS(Fn×n) �

A(Fn×n), for any n and any field F. As a consequence, in
some cases GMWs are strictly larger than DGWs. To that
end, we will use the characterization of rank support spaces
as matrix modules from Appendix D.

Example 62: Consider m = n = 2 and the linear code

C =
〈(

1 0
0 0

)

,

(
0 1
0 0

)〉

⊆ F
2×2.

It holds that dim(C) = 2, m = 2 and MaxRk(C) = 1.
Therefore C is an optimal anticode. However, it is not a
matrix module, and therefore it is not a rank support space
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(see Appendix D), since
(

0 0
1 0

) (
1 0
0 0

)

=
(

0 0
1 0

)

/∈ C.

In other words, RS(F2×2) � A(F2×2).
On the one hand, we have that dD,1(C) = dD,2(C) = 1, by

[34, Corollary 32], or just by inspection.
On the other hand, it is easy to check that dM,1(C) = 1, and

since RSupp(C) = F
2, it holds that dM,2(C) = 2. Therefore

dM,2(C) > dD,2(C).
Observe that we may trivially extend this example to any

value of m = n, and it holds for an arbitrary field F.

IX. CONCLUSION AND OPEN PROBLEMS

In this work, we have extended the study of universal
security provided by Fqm -linear nested coset coding schemes
from [24], [39] to that provided by Fq -linear schemes, where
Fq is the field used on the network and m is the packet length.

Thanks to this study, we have completed the list of parame-
ters �, t , m and n for which we can obtain optimal universal
secure Fq -linear codes for noiseless networks from [39], and
we have added near optimal universal security to the rank
list-decodable codes from [20], providing the first universal
secure linear coset coding schemes able to list-decode in
polynomial time roughly twice the rank errors that optimal
universal secure schemes can unique-decode, with almost the
same secret message size � and security parameter t .

Motivated by our study, we defined a family of security
equivalences between linear coset coding schemes and gave
mathematical characterizations of such equivalences, which
allowed us to obtain, in terms of the last generalized matrix
weight, ranges of parameters m and n of networks on which a
linear code can be applied with the same security performance.

Finally, we give the following list of open problems:
1) Obtain optimal universal secure and error-correcting

linear coset coding schemes for noisy networks for all possible
parameters �, t , m, n, and number of rank errors.

2) Extend the concept of universal strong security from
[24, Definition 6] to general Fq -linear coset coding schemes,
and provide optimal universal strong secure schemes as those
in [24, Sec. V] for all possible parameters �, t , m and n, for
either noiseless or noisy networks.

3) Subsection V-C implies that � is close to but smaller than
n − t − e, where e is the number of list-decodable rank errors
with polynomial list sizes L. We conjecture, but leave as open
problem, that a bound similar to � ≤ n− t −e holds in general.

4) Study the sharpness of the bounds given in Theorem 6.

APPENDIX A
DUALITY THEORY

In this appendix, we collect technical results concerning
trace duality of linear codes in F

m×n used throughout the
paper. Some of the results are taken or expanded from the
literature, and some are new. Recall first the definition of trace
product and dual of a linear code in F

m×n (Definition 15).

First, since the trace product in F
m×n coincides with the

usual inner product in F
mn , it holds that

dim(C⊥) = mn − dim(C), C ⊆ D ⇐⇒ D⊥ ⊆ C⊥,
C⊥⊥ = C, (C + D)⊥ = C⊥ ∩ D⊥,

(C ∩ D)⊥ = C⊥ + D⊥,

for linear codes C,D ⊆ F
m×n . We have the following:

Lemma 63 [35, Lemma 27]: If V ∈ RS(Fm×n), then V⊥ ∈
RS(Fm×n). More concretely, for any subspace L ⊆ F

n, it
holds that

(VL)⊥ = V(L⊥).

Lemma 64 (Forney’s Duality [16]): Given vector spaces
C,V ⊆ F

m×n, it holds that

dim(V)− dim((C⊥) ∩ V) = dim(C)− dim(C ∩ (V⊥)).

We now show that all GMWs of a linear code determine
uniquely those of the corresponding dual code. Since GMWs
and DGWs [34] coincide when F = Fq and m �= n by
Theorem 9, the next result coincides with [34, Corollary 38]
in such cases:

Proposition 65: Given a linear code C ⊆ F
m×n with k =

dim(C), and given an integer p ∈ Z, define

Wp(C) = {dM,p+rm(C) | r ∈ Z, 1 ≤ p + rm ≤ k},
W p(C) = {n + 1 − dM,p+rm(C) | r ∈ Z, 1 ≤ p + rm ≤ k}.

Then it holds that

{1, 2, . . . , n} = Wp(C⊥) ∪ W p+k(C),
where the union is disjoint.

The proof of this proposition can be translated word by word
from the proof of [34, Corollary 38] using the monotonicity
properties from Proposition 43. However, [34, Corollary 38]
relies on [34, Th. 37], and therefore we need to extend such
result to the cases F �= Fq or m = n. The following lemma
constitutes such extension:

Lemma 66: Given a linear code C ⊆ F
m×n with k =

dim(C), and given 1 ≤ r ≤ k and 1 ≤ s ≤ mn − k, it holds
that

dM,s(C⊥) �= n + 1 − dM,r (C)
if r = p + k + r �m and s = p + s�m, for some integers
p, r �, s� ∈ Z.

Proof: Assume that equality holds for a pair of such r
and s. Denote CL = C ∩ VL, for a linear subspace L ⊆ F

n ,
and rewrite Proposition 14 as follows:

dM,r (C) = min{μ | max{dim(CL) | L ⊆ F
n,

dim(L) = μ} ≥ r}. (17)

Write dM,r (C) = μ. Then Equation (17) implies that

max{dim(CL) | L ⊆ F
n, dim(L) = μ} ≥ r, (18)

and μ is the minimum integer with such property. Now write
dM,s(C⊥) = ν = n + 1 − μ. In the same way, Equation (17)
implies that

max{dim((C⊥)L) | L ⊆ F
n, dim(L) = ν} ≥ s.
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On the other hand, given a subspace L ⊆ F
n with dim(L) = ν,

we have that

dim(CL⊥) = dim(C ∩ (VL)⊥) = k − mν + dim((C⊥)L),

where the first equality follows from Lemma 63, and the
second equality follows from Lemma 64 and Equation (2).
Therefore, it holds that

max{dim(CL) | L ⊆ F
n, dim(L) = μ− 1}

≥ k − mν + s = k − mn − m + mμ+ s. (19)

From the fact that μ is the minimum integer satisfying
Equation (18), and from Equation (19), we conclude that

k − mn − m + mμ+ s < r.

Now if we interchange the roles of C and C⊥, and the roles
of r and s, then we automatically interchange the roles of μ
and n + 1 −μ, and the roles of k and mn − k. Therefore, we
may also conclude that

k − mn + mμ+ s > r.

Using the expressions r = p + k + r �m and s = p + s�m, and
dividing everything by m, the previous two inequalities are,
respectively

s� − n − 1 + μ < r �, and s� − n + μ > r �,

which contradict each other. Hence the lemma follows. �
Observe that the duality theorem for GRWs [12] is a direct

consequence of Theorem 7 and Proposition 65:
Corollary 67 [12]: Given an Fqm -linear code C ⊆ F

n
qm

of dimension k over Fqm , denote dr = dR,r (C) and d⊥
s =

dR,s(C⊥), for 1 ≤ r ≤ k and 1 ≤ s ≤ n − k. Then

{1, 2, . . . , n} = {d1, d2, . . . , dk}
∪{n + 1 − d⊥

1 , n+1−d⊥
2 , . . . , n + 1 − d⊥

n−k},
where the union is disjoint.

Finally, we show that the duality theorem for GHWs [42]
is a consequence of Theorem 8 and Proposition 65:

Corollary 68 [42]: Given a linear code C ⊆ F
n of

dimension k, denote dr = dH,r (C) and d⊥
s = dH,s(C⊥), for

1 ≤ r ≤ k and 1 ≤ s ≤ n − k. Then

{1, 2, . . . , n} = {d1, d2, . . . , dk} ∪ {n + 1 − d⊥
1 ,

n + 1 − d⊥
2 , . . . , n + 1 − d⊥

n−k},
where the union is disjoint.

Proof: We will use the notation in Proposition 65 during
the whole proof. First of all, by Theorem 8 it holds that
Wp(�(C)) = {dH,p(C)} if 1 ≤ p mod n ≤ k and Wp(�(C)) =
∅ if k + 1 ≤ p mod n ≤ n − 1 or p mod n = 0. Therefore

n⋃

p=1

Wp−k(�(C)) = {d1, d2, . . . , dk}.

On the other hand, from Proposition 65 it follows that
⎛

⎝
n⋃

p=1

Wp−k(�(C))
⎞

⎠ ∪
⎛

⎝
n⋂

p=1

W p(�(C)⊥)
⎞

⎠ = {1, 2, . . . , n},

where the union is disjoint. Hence we only need to show that
n + 1 − d⊥

s ∈ W p(�(C)⊥), for p = 1, 2, . . . , n and s =
1, 2, . . . , n − k.

Denote by Dn ⊆ F
n×n the vector space of matrices with

zero components in their diagonals. It holds that �(C)⊥ =
�(C⊥)⊕ Dn .

Fix 1 ≤ s ≤ n −k and denote d = dH,s(C⊥). First, consider
a subspace D ⊆ C⊥ with wtH(D) = d and dim(D) = s,
and define D� ⊆ �(C)⊥ as the direct sum of �(D) and all
matrices in Dn with columns in the Hamming support of D.
Since dim(D�) = d(n−1)+s and wtR(D�) = d , by Proposition
12 it follows that

dM,d(n−1)+s(�(C)⊥) ≤ d. (20)

On the other hand, assume that dM,(d−1)(n−1)+s(�(C)⊥) =
d � < d . Let E ⊆ �(C)⊥ be such that wtR(E) = d � and
dim(E) = (d − 1)(n − 1)+ s. Denote by ED the vector space
of matrices obtained by replacing the elements outside the
diagonal of those matrices in E by zero. If L = RSupp(E) ⊆
F

n , we claim that

dim(E ∩ Dn) ≤ nwtR(E)− wtH(L). (21)

It is sufficient to show that dim(VL ∩ Dn) = n dim(L) −
wtH(L). Denote by VLD the vector space of matrices obtained
by replacing the elements outside the diagonal of those matri-
ces in VL by zero. Then, by Proposition 9, dim(VLD) =
wtH(L), and dim(VL ∩ Dn) = dim(VL) − dim(VLD) =
n dim(L)− wtH(L).

By monotonicity (Proposition 43), we have that d � = d −1,
and thus dim(E) = d �(n − 1) + s. Therefore, by (21),
dim(�−1(ED)) = dim(ED) = dim(E) − dim(E ∩ Dn) ≥
s + wtH(L) − d �. Choose indices i1, i2, . . . , iwtH(L)−d � from
HSupp(�−1(ED)), and define

W = {c ∈ �−1(ED) | ci j = 0, 1 ≤ j ≤ wtH(L)− d �}.
Then W ⊆ C⊥, dim(W) ≥ s, and wtH(W) ≤
wtH(�−1(ED))−wtH(L)+d � ≤ d �, which implies dH,s(C⊥) =
d � < d , which is a contradiction. Hence

dM,(d−1)(n−1)+s(�(C)⊥) ≥ d. (22)

Combining Equation (20) and Equation (22), we conclude
that

dM,(d−1)(n−1)+s+ j(�(C)⊥) = d,

for j = 0, 1, 2, . . . , n − 1, which implies that n + 1 − d⊥
s ∈

W p(�(C)⊥), for p = 1, 2, . . . , n, and we are done. �

APPENDIX B
CONSTRUCTION OF EXPLICIT SUBSPACE DESIGNS

In this appendix, we recall how to construct the subspace
design formed by H0,H1,H2, . . . ⊆ Fqm in Section V. This
construction is given in [20], based on a construction in [19],
and is explicit in the sense that it can be constructed using an
algorithm of polynomial complexity on q .

Fix ε > 0 and a positive integer s such that 4sn ≤
εm, and assume that n divides m. Let d1 = qm/n−1,
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d2 = qm/n−2, . . . , dm/n = 1 and let γ1, γ2, . . . , γm/n be
distinct non-zero elements of Fqn . Define

fi (x1, x2 . . . , xm/n) =
m/n∑

j=1

γ i
j x

d j
j ,

for i = 1, 2, . . . , s, and let S ⊆ F
m/n
qn be the set of common

zeros of f1, f2, . . . , fs , which is an Fq -linear vector space.
We may assume that S ⊆ Fqm by an Fqn -linear vector space
isomorphism F

m/n
qn

∼= Fqm (any isomorphism works).
Let β be a primitive element of Fqn . For α ∈ F

qn� εm2ns � , let

Sα =
{
αq j

β i | 0 ≤ j <
⌊ εm

2ns

⌋
, 0 ≤ i < 2s

}
.

The algorithm in [19, Sec. 4.3] gives in polynomial time over
q a set F ⊆ F

qn� εm2ns � of size q�(
εm
ns ) such that:

1) Fq(α) = F
qn� εm2ns � , for all α ∈ F ,

2) Sα ∩ Sβ = ∅, for all distinct α, β ∈ F , and
3) |Sα| = 2s� εm

2ns �, for all α ∈ F .

Define the Fqn -linear vector space Vα ⊆ F
m/n
qn as

Vα = {(a0, a1, . . . , am/n−1) ∈ F
m/n
qn |

m/n−1∑

i=0

ai (αβ
j )i = 0 | 0 ≤ j < 2s},

for every α ∈ F , where we may consider Vα ⊆ Fqm as before.
Finally, the Fq-linear vector spaces H0,H1,H2, . . . ⊆ Fqm

in Section V are defined as Hi = S ∩Vαi , for distinct αi ∈ F .
The constructions of F and Vα appeared first in

[19, Sec. 4.2] and S appeared first in [20, Corollary 6].
We conclude the appendix by computing the dimensions of

the vector spaces H0,H1,H2, . . . ⊆ Fqm , which is done in
the proof of [20, Th. 8]:

Lemma 69 [20]: The vector spaces H0,H1,H2, . . . ⊆ Fqm

have dimension at least m(1 − 2ε) over Fq .

APPENDIX C
PROOF OF THEOREM 4

In this appendix, we give the proof of Theorem 4, which
we now recall:

Theorem 4: Let φ : V −→ W be a vector space iso-
morphism between rank support spaces V ∈ RS(Fm×n) and
W ∈ RS(Fm×n�

), and consider the following properties:

(P 1) There exist full-rank matrices A ∈ F
m×m and

B ∈ F
n×n�

such that φ(C) = AC B, for all C ∈ V .
(P 2) A subspace U ⊆ V is a rank support space if, and

only if, φ(U) is a rank support space.
(P 3) For all subspaces D ⊆ V , it holds that

wtR(φ(D)) = wtR(D).
(P 4) φ is a rank isometry.

Then the following implications hold:

(P 1) ⇐⇒ (P 2) ⇐⇒ (P 3) �⇒ (P 4).

In particular, a security equivalence is a rank isometry and, in
the case V = W = F

m×n and m �= n, the reversed implication
holds by Proposition 32.

Proof: First we prove (P 1) �⇒ (P 2): It follows
immediately from the characterization of rank support spaces
in Proposition 9, item 3.

Now we prove (P 2) �⇒ (P 3): Let L = RSupp(D) ⊆ F
n

and L� = RSupp(φ(D)) ⊆ F
n�

. It holds that VL ⊆ V and
VL� ⊆ W , and they are the smallest rank support spaces in
V and W containing D and φ(D), respectively, by Lemma 8.
Since φ preserves rank support spaces and their inclusions,
we conclude that φ(VL) = VL� , which implies that dim(L) =
dim(L�) by (2), and (P 3) follows.

Next we prove (P 2) ⇐� (P 3): Assume that U ⊆ V is a
rank support space. This means that mwtR(U) = dim(U) by
(2). Since φ satisfies (P 3) and is a vector space isomorphism,
we conclude that mwtR(φ(U)) = dim(φ(U)), and thus φ(U)
is a rank support space also by (2). Similarly we may prove
that, if φ(U) is a rank support space, then U is a rank support
space.

Now we prove (P 3) �⇒ (P 4): Trivial from the fact that
wtR(�{C}�) = Rk(C), for all C ∈ V .

Finally we prove (P 1) ⇐� (P 2): Denote dim(V) =
dim(W) = mk and consider bases of V and W as in
Proposition 9, item 2. By defining vector space isomorphisms
F

m×k −→ V and W −→ F
m×k , sending such bases to the

canonical basis of F
m×k , we see that we only need to prove

the result for the particular case V = W = F
m×n .

Denote by Ei, j ∈ F
m×n the matrices in the canonical basis,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, that is, Ei, j has 1 in its (i, j)-th
component, and zeroes in its other components.

Consider the rank support space U j = �E1, j , E2, j ,
. . . , Em, j � ⊆ F

m×n , for 1 ≤ j ≤ n. Since φ(U j ) is a rank
support space, it has a basis Bi, j , i = 1, 2, . . . ,m, as in
Proposition 9, item 2, for a vector b j ∈ F

n . This means that

φ(Ei, j ) =
m∑

s=1

a( j )
s,i Bs, j ,

for some a( j )
s,i ∈ F, for all s, i = 1, 2, . . . ,m and j = 1,

2, . . . , n. If we define the matrix A( j ) ∈ F
m×m whose

(s, i)-th component is a( j )
s,i , and B ∈ F

n×n whose j -th row
is b j , then a simple calculation shows that

φ(Ei, j ) = A( j )Ei, j B,

and the matrices A( j ) and B are invertible. If we prove that
there exist non-zero λ j ∈ F with A( j ) = λ j A(1), for j = 2,
3, . . . , n, then we are done, since we can take the vectors λ j b j

instead of b j , define A = A(1), and then it holds that

φ(Ei, j ) = AEi, j B,

for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n, implying (P 1).
To this end, we first denote by a( j )

i ∈ F
m the i -th column in

A( j ) (written as a row vector). Observe that we have already
proven that φ preserves ranks. Hence Rk(φ(Ei, j + Ei,1)) = 1,
which means that Rk(A( j )Ei, j + A(1)Ei,1) = 1, which implies
that there exist λi, j ∈ F with

a( j )
i = λi, j a(1)i .
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On the other hand, a matrix calculation shows that

φ

⎛

⎝
m∑

i=1

n∑

j=1

Ei, j

⎞

⎠

=
(

m∑

i=1

a(1)i ,

m∑

i=1

a(2)i , . . . ,

m∑

i=1

a(n)i

)

B

=
(

m∑

i=1

a(1)i ,

m∑

i=1

λi,2a(1)i , . . . ,

m∑

i=1

λi,n a(1)i

)

B.

Since Rk(
∑m

i=1
∑n

j=1 Ei, j ) = 1 and the vectors a(1)i ,
1 ≤ i ≤ m, are linearly independent, we conclude that
λi, j depends only on j and not on i , and we are done. �

APPENDIX D
MATRIX MODULES

Rank support spaces can also be seen as left submodules of
the left module F

m×n over the (non-commutative) ring F
m×m .

This has been used in Example 62. Since we think this result
is of interest by itself, we include the characterization in this
appendix.

Definition 70 (Matrix Modules): We say that a set
V ⊆ F

m×n is a matrix module if

1) V + W ∈ V , for every V ,W ∈ V , and
2) MV ∈ V , for every M ∈ F

m×m and every V ∈ V .

Proposition 71: A set V ⊆ F
m×n is a rank support space

if, and only if, it is a matrix module.
Proof: Assume that V is a rank support space. Using the

characterization in Proposition 9, item 3, it is trivial to see that
V is a matrix module.

Assume now that V is a matrix module. It holds that V is a
vector space. Let L = RSupp(V), and take v ∈ L. There exist
V1, V2, . . . , Vs ∈ V and v j ∈ Row(Vj ), for j = 1, 2, . . . , s,
such that v = ∑s

j=1 v j .
For fixed 1 ≤ i ≤ m and 1 ≤ j ≤ s, it is well-known

that there exists Mi, j ∈ F
m×m such that Mi, j V j has v j as its

i -th row and the rest of its rows are zero vectors. Since V is
closed under sums of matrices, we conclude that VL ⊆ V and
therefore both are equal. �
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