
 

  

 

Aalborg Universitet

Medium-scale Laboratory Model of Mono-bucket Foundation for Installation Tests in
Sand

Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo

Published in:
Canadian Geotechnical Journal

DOI (link to publication from Publisher):
10.1139/cgj-2018-0134

Publication date:
2019

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Koteras, A. K., & Ibsen, L. B. (2019). Medium-scale Laboratory Model of Mono-bucket Foundation for Installation
Tests in Sand. Canadian Geotechnical Journal, 56(8), 1142-1153. https://doi.org/10.1139/cgj-2018-0134

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1139/cgj-2018-0134
https://vbn.aau.dk/en/publications/ccbe22da-73b5-4dcf-83d9-7f1c79671e9e
https://doi.org/10.1139/cgj-2018-0134


1 

 

(i) Title of paper: 1 

Medium-scale Laboratory Model of Mono-bucket Foundation for Installation Tests in 2 

Sand 3 

(ii) Authors: 4 

1. Aleksandra Katarzyna Koteras 5 

2. Lars Bo Ibsen  6 

(iii) Affilation and address for each author: 7 

1. Ph.D. student, Department of Civil Engineering, Aalborg University, Aalborg, 8 

Denmark, akl@civil.aau.dk 9 

2. Professor, Department of Civil Engineering, Aalborg University, Aalborg, Denmark, 10 

lbi@civil.aau.dk 11 

(iv) Aleksandra Katarzyna Koteras, Ph.D. Student, Department of Civil Engineering, Aalborg 12 

University, Thomas Manns Vej 23, 9220 Aalborg Ø, Denmark,  Phone: +4591470101, 13 

Email: akl@civil.aau.dk  14 



2 

 

Abstract 15 

This paper described medium scale test results for bucket foundation installation. The campaign 16 

includes both, the jacking and the suction installation tests in the sand. Results allow for better 17 

understanding of the interaction between the soil and the bucket skirt. Such observations are 18 

desired as there are many issues concerning the suction installation. The suction applied under the 19 

bucket lid results in seepage flow inside the surrounding sand. The seepage flow plays a pivotal role 20 

in the reduction of the penetration resistance and, therefore, allows for the full penetration despite 21 

of the initial large soil resistance. On the other hand, the loosening of inside soil plug might become 22 

problematic when the soil approaches its failure stage. The failure happens as a result of soil piping 23 

or due to extensive soil heave inside the bucket foundation. All aspects are still not fully understood 24 

and challenging, while capturing them into the design, therefore, they are addressed in this paper. 25 

Additionally, measurements of pore pressures around the bucket skirts are compared with results 26 

of numerical simulations. This allows for validation of the FE-model and enables the analysis of the 27 

soil behavior around the skirt. 28 

 29 

Keywords:  Bucket foundation, Dense sand, Suction, Seepage, Soil resistance  30 
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Introduction 31 

The development in offshore wind energy comes together with the increase in research, where the 32 

main purpose is seen in the reduction of the total cost of wind turbines. Budget cuts can be found 33 

in the design of the foundation; therefore, new, more cost-effective solutions are desirable. Such a 34 

solution is seen in the suction bucket foundation technology, where the bucket lid is equipped with 35 

special valves allowing for suction installation. This is a great advantage over the jacking installation. 36 

The suction process is more cost-effective and feasible, as no heavy drilling equipment is required. 37 

This makes the solution also environmental-friendly. Until today, the suction anchors have been 38 

extensively installed in various types of offshore engineering devices and systems across different 39 

offshore sites. There are also well-documented examples of skirted structures installed as 40 

foundations (Tjelta 1995, Andersen et al. 2008). The suction bucket foundation for a wind turbine 41 

was used in Frederikshavn, Denmark. The 5-year research project documenting installation and 42 

operation of the wind turbine is described by Ibsen (2008).  43 

The area of focus for a number of offshore projects takes place in the North Sea, where the seabed 44 

consists mainly of dense sand. In comparison with clay, the penetration resistance of cohesionless 45 

soils is much higher and the installation might seem more problematic. However, past research has 46 

shown that the suction application not only creates the downward force required for installation, 47 

but also provides a large decrease in resistance for all permeable soils. The seepage flow generated 48 

around the bucket skirt induces upward hydraulic gradient within the inner soil and downward 49 

gradient on the outside of skirt. The effective soil stress is therefore changed, but overall resulting 50 

in reduction of the total soil penetration resistance. Many studies on the installation of suction 51 

bucket foundation in sand have been published, proposing different calculation methods for the 52 

installation process (Erbrich and Tjelta 1999, Houlsby and Byrne 2005, Andersen et al. 2008, Senders 53 
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and Randolph 2009). However, these methods show only the reduction in soil resistance based on 54 

the value of applied suction without even analyzing the interaction between the bucket skirt and 55 

the surrounding soil during the seepage flow. 56 

The installation process for suction bucket foundation in sand consists of two parts: the self-weight 57 

penetration and the suction penetration. The first stage is necessary in order to create a sufficient 58 

seal between the skirt of the bucket and the surrounding soil without which the suction application 59 

is not effective. In the second phase of the installation, the required suction for given penetration 60 

depth must be designed for. Whereas this general principle is known, improvements on the detailed 61 

design for the installation are still required.  The paper presents medium-scale tests for the bucket 62 

foundation installation by the use of two different methods: jacking and suction installation. The 63 

pore pressures around the bucket skirt and the applied suction under the bucket lid are monitored 64 

during the installation tests. The model during the installation is presented in Fig.1. The analysis of 65 

the measurements re-confirms the known-findings about the reduction in soil resistance, but it also 66 

allows for thorough investigation of the seepage flow around the bucket foundation. In addition, 67 

the paper contains results of numerical simulations that represent the suction installation tests with 68 

the same conditions as the set-up in the laboratory. The comparison of both results allows the 69 

analysis of the critical allowable suction for the bucket foundation installation and better 70 

understanding of experimental results.  71 
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 72 

Figure 1. Installation of the bucket model in the sand container 73 

Soil penetration resistance of skirt structures 74 

Calculation Methods 75 

The calculation of penetration resistance can be either based on the ultimate bearing capacity 76 

theory or on the empirical model that relates the results of the CPT to the soil penetration 77 

resistance. In general, the total penetration resistance, ����, consists of the skirt tip resistance, ����, 78 

and inner and outer friction along the skirt, ����	
 and  ����	
 respectively. Eq. (1) presents the 79 

classical approach based on the bearing capacity theory for the pile design (API 2014).   80 

R� � A�� ∙ ����σ�� �h� ∙ N�, Q"�#$ % &A',� % A',�( ∙ ��� )K ∙ tanδ ∙ / σ�0
1

� �z�dz, f"�#5,      (1) 81 

where 6���, 67,� and 67,� is the tip area, the outside skirt area and the inside skirt area respectively, 82 

89�  is the effective vertical soil stress, : is the depth below soil surface and ; is the penetration depth. 83 

<� and <�  are the outside and inside diameter of the bucket and �"�# and =>�? are the suggested 84 

limit values for the tip resistance and for the skirt friction. The total resistance calculated with this 85 
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approach brings out difficulties in the estimation of soil parameters: the bearing capacity factor, @A, 86 

the coefficient of lateral earth pressure, B, and the interface angle, C. Therefore, the CPT-based 87 

approach seems more straightforward and accurate (DNV, 1992). As the cone from CPT device 88 

resembles the skirted foundation, results of measured cone resistance, qE, can be directly related 89 

to the skirt and the tip resistance of the foundation (eq. 2). The method appears to be more reliable 90 

because the CPT gives a constant record of the resistance throughout the depth. Senders et al. 91 

(2009) and Chen et al. (2016) suggest the same and show in their research that the calculated 92 

resistance based on the classical approach does not fit well within experimental data.  93 

R� � A�� ∙ qE�h� ∙ k� % �A',� % A',�� ∙ / qE�z�dz ∙ kG0
1         (2) 94 

Empirical coefficients H� and HI relate the cone resistance of CPT to the skirt tip resistance and the 95 

friction along the skirt respectively. A wide range of those parameters for sand are given by DNV 96 

(1992), however, many past studies on the penetration of skirted foundations have attempted to 97 

reduce this range (Lian et al. 2004, Lehance et al. 2005 and Andersen et al. 2008). 98 

To enable detailed design of the suction installation process, the effects of seepage must be 99 

included. The applied suction, J, and the developed excess pore pressure, K, around the bucket skirt 100 

change the resistance of sand. However, the complexity of the stress state makes it difficult to 101 

provide a good estimation of those changes. According to Houlsby and Byrne (2005), the stress state 102 

used for the calculation of soil penetration resistance should be changed due to the hydraulic 103 

gradient,�, that develops in the surrounding soil. The method presented in their paper assumes that 104 

the distribution of the excess pore pressure on the inside and outside part of the skirt is linear with 105 

depth. Therefore, the applied pressure and the development of the excess pore pressure at the tip 106 

are sufficient to obtain the stress level for each penetration depth. The ratio of the excess pore 107 
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pressure at the tip of skirt to the applied suction is called the pore pressure factor, L. Houlsby and 108 

Byrne (2005) proposed a solution for L based on numerical analyses for a uniform hydraulic 109 

conductivity (eq.3) and for a different hydraulic conductivity of the inside plug (eq.4). The ratio 110 

between inside and outside hydraulic conductivity, H�  and H� respectively, is termed as H
M���. 111 

αO � 0.45 − 0.36 ∙ W1 − YZJ W− 0
1.[\∙]^^         (3) 112 

α � _`∙abcdef�Og_`�h	_∙abcdef           (4) 113 

The reduced soil resistance is calculated by replacing the effective soil unit,j′,with its reduced or 114 

increased value for upward gradient on the inside skirt and for the downward gradient on the 115 

outside skirt respectively Wj� − �Og_�∙�
l ; 	j� % _∙�

l ^. The comparison of the calculated resistance with 116 

the installation cases showed a good fit. However, key soil parameters where optimized to get such 117 

a fit and to get a precise calculation of the resistance, a lot of experience with this method is still 118 

required.  119 

Koteras et al. (2016) proposed another formulation that gives the best fit to the results of numerical 120 

analysis performed in PLAXIS 2D.  Eq.(5) is found for the installation in sand of uniform hydraulic 121 

conductivity.  122 

α � 1.nO
o
ph1.[[            (5) 123 

Critical pressure for suction installation 124 

The design method for suction installation must comply with any possible limitations. One of those 125 

is the critical pressure, Jq
��, that can be applied under the bucket lid during the installation. As the 126 

hydraulic gradient appears inside the surrounding soil, the sand on the upward flow side becomes 127 
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looser. At some stage, the decrease in soil density can cause the complete loosening of soil around 128 

the skirt and as a result, the seal between the bucket skirt and the soil is broken. The installation 129 

process cannot proceed due to loss of seal and such a state is denoted as piping. The hydraulic 130 

gradient causing a drop of effective soil stress to zero is called the critical gradient, �q
�� � rs
rt. Even 131 

though, as first, the critical hydraulic gradient is achieved around the tip of the skirt, the localized 132 

pipes are constrained with surrounding soil. The critical gradient then proceeds upward, along the 133 

skirt, until it reaches the inner soil surface. The hydraulic gradient controlling the piping is the exit 134 

gradient that appears at the inner soil surface adjacent to the skirt (Senders and Randolph 2009). 135 

Critical pressure studies are normally performed with numerical simulations.  136 

Erbrich and Tjelta (1999) proposed a solution for a critical suction number, uv, that shows the 137 

applied suction that causes the critical hydraulic gradient as a function of penetration ratio, Wl
w^ . 138 

The penetration depth is denoted as ;, and the diameter of foundation as <. The solution is based 139 

on steady-state flow calculations performed numerically. More recent studies relate the critical 140 

suction to a value of normalized seepage length, W7
l^. The seepage length, x, is expressed from the 141 

definition of the hydraulic gradient at the exit, �	y��, which is calculated by dividing the change of 142 

hydraulic head, ∆{, by the seepage length. Then the seepage length can be calculated as: 143 

s � �
�}~��∙��	                                  (6) 144 

Senders and Randolph (2009) performed numerical simulations in PLAXIS. To obtain a normalized 145 

seepage length as a function of penetration ratio results of PLAXIS are analyzed together with results 146 

published by Erbrich and Tjelta (1999) and the theoretical values for a sheet-pile wall.  147 
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W'
0^��� � π − ���� �5 ∙ W0

]^1.\�� ∙ W2 − n
�^	         (7) 148 

The critical pressure against piping is calculated by combining equations for the critical gradient and 149 

for the seepage length (eq.8). 150 

�����
�s∙] � W0

]^ ∙ W'
0^	          (8) 151 

It is assumed that: the inner friction along the skirt and the skirt tip resistance decrease linearly from 152 

its maximum value, when no suction is applied, to zero, when the critical suction is achieved; the 153 

outside friction along the skirt is unaffected (Senders and Randolph 2009). The reduced soil 154 

resistance is calculated with eq.(9) and it is valid for J	 ≤ Jq
��. 155 

R����E�� � &Q�� % F�����( ∙ W1 − �
�����^ % F����        (9) 156 

The proposed method gives a good fit with results of suction installation tests performed in 157 

centrifuge. However, when comparing to the installation field tests, the critical suction is exceeded 158 

with no failure occurrence.  159 

A similar solution based on simulations performed in FLAC is presented in (Ibsen and Thilsted, 2010). 160 

Eq.(10) was found to fit data best. However, the applied suction during the installation tests in 161 

Frederikshavn (Denmark) exceeded the calculated critical suction and the explanation for that is 162 

found throughout the empirical expression for the normalized seepage length of the case where a 163 

flow boundary is situated below the sand. The flow boundary can be for example a thin less 164 

permeable layer, and its presence increases the critical suction.  165 

W'
0^��� � 2.86 − ���� �4.1 ∙ W0

]^1.�[� ∙ W2 − O.\
� ^      (10) 166 
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Koteras et al. (2016) conducted also a similar study in PLAXIS 2D. Eq. (11) was given for normalized 167 

seepage length for exit hydraulic gradient.  The CPT-based method is used for calculation of soil 168 

resistance during the installation. However, the changes in outside and inside friction on the skirt 169 

and the change in skirt tip resistance are based on normalized seepage lengths obtained for 170 

hydraulic gradients calculated on the inside skirt, outside skirt and around the skirt tip respectively.  171 

A comparison with laboratory or field tests has not yet been made.  172 

 W'
0^��� � π − ���� �3.6 ∙ W0

]^1.�[� ∙ W2 − O.\
� ^      (11)  173 

Lian et al. (2014) and Chen et al. (2016) conducted laboratory tests on the suction installation of 174 

bucket foundation in sand. A medium-scale model of the bucket with a diameter of 0.5m and a skirt 175 

length of 0.5m was used in the former research and a large-scale model of the bucket with a 176 

diameter of 1.5m and a skirt length of 0.5m in the latter research was used. Those models were 177 

equipped with soil pressure tensors in order to record the soil resistance on the inside and outside 178 

of the skirt. The suction measured during the installation in both cases exceeded the critical value 179 

based on (Senders and Randolph, 2009).   180 

Lian et al. (2014) proposed the reduction coefficients for the inside friction on the skirt and for the 181 

tip resistance. The outside skirt friction is not affected. When the suction falls below the critical 182 

value, the reduction is linear between the maximum soil resistance and the zero value. However, as 183 

the critical suction was exceeded without any failure, the range for applied pressure is increased by 184 

factor 1.5. For the suction between the range of Jq
�� to 1.5Jq
��, there is no resistance from the 185 

outside skirt and from the tip.  186 
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Chen et al. (2016) concluded on their test results that the change in resistance is not linear and it is 187 

also different between the inner skirt friction and the tip resistance. The outside skirt friction is again 188 

not affected. Therefore, the reduction ratios, β� and β���, were presented (eq.12 and eq.13) and it 189 

is proposed to calculate the soil penetration resistance as showed in eq.(14). 190 

β� � 0.865 ∙ W �
�����^O.1�	        (12) 191 

β�� � 0.707 ∙ W �
�����^O.\�	        (13) 192 

R����E�� � Q���1 − β��� % F������1 − ��� % F����      (14) 193 

Summing up, either the theory based on bearing capacity, or the CPT-based approach is used for 194 

the calculation of soil penetration resistance during bucket foundation installation, the effects of 195 

suction-induced seepage must be accounted. Presented methods lack accuracy as they assume 196 

linear changes of soil resistance with penetration depth. Only Chen et al. (2016) proposed that those 197 

changes are non-linear. To analyze the soil stress changes during suction installation, medium or 198 

large scale tests are required in order to detect an interaction between the soil and the bucket skirt. 199 

As the change that really happens during the suction installation it is the development of the excess 200 

pore pressure around the bucket skirt, it seems the most adequate to record the excess pore 201 

pressure during tests. Therefore, the study presented in this paper focuses on these records.  202 

Loosening of soil plug  203 

For the suction installation, the seepage induced inside the soil reduces the inside soil resistance 204 

This might result in the change of the soil hydraulic conductivity inside the bucket. Houlsby and 205 

Byrne (2005) reported that reasonable fits of calculated resistance with field tests are obtained 206 

when applying the pore pressure factor for increased H��. The comparison of the reduction in soil 207 
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resistance with centrifuge results presented by Tran and Randolph (2008) gives much better fit for 208 

the case where H
M���is equal to 1.5. Harireche et al. (2014) have shown results of the numerical 209 

analysis for pressure gradient development inside the soil related to the change in soil resistance. 210 

The comparison with centrifuge tests results presented by Tran and Randolph (2008) shows that 211 

H
M���should not only be bigger than unity but also should increase for increasing penetration depth. 212 

Whether the hydraulic conductivity inside the bucket should be increased and how exactly it should 213 

be included into the design method is still unclear and requires the further experience.  214 

Laboratory Model and Test Procedure 215 

Set-up and bucket foundation model 216 

The main aim of the laboratory tests is to analyze the soil-skirt interaction during installation of 217 

bucket foundation model. The set-up is shown in Fig. 2. Vaitkunaite et al. (2014) first introduced this 218 

facility for testing bucket foundation capacity in sand. After adjustments, the same set-up is used 219 

for testing the installation procedure of bucket foundation, including both the jacking installation 220 

and the installation due to the applied suction.  221 
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 222 

 223 

Figure 2.  Laboratory set-up (dimensions in mm) 224 

A soil container is equipped with a drainage system that consists of pipes equally distributed over 225 

the bottom, a 30 cm layer of highly permeable gravel, a geotextile sheet for prevention of sand 226 

particles to move downwards and a 1.20 m layer of sand with properties described in the following 227 

section. The internal diameter of the soil container is equal to 2.5m and the height of the container 228 

is equal to 1.52m.  229 

The model of the bucket foundation (Fig. 3) is in a medium-scale, corresponding to a prototype size 230 

in scale 1:10.  The diameter, <,  is 1 m and the skirt length, �, is 0.5 m. The thickness of skirt, t, is 231 
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equal to 3 mm. The self-weight of the model, including the connection flange to the loading system, 232 

is 201kg. The bucket model is equipped with 4 valves situated on the lid that are connected to the 233 

vacuum system during the suction procedure. 6 pore pressure transducers are attached to the 234 

bucket skirt and under the bucket lid. These allow for a continuous analysis of the seepage flow 235 

around the skirt during installation. Pressure is measured through the open ended pipes attached 236 

to the skirt. The open ends are positioned at PP1-PP3 on the outside skirt and at PP4-PP6 on the 237 

inside skirt and under the bucket lid. The displacement transducer is attached to the top of bucket 238 

model and it measures a continuous record of its displacement during tests.  Additionally, a beam 239 

with pore pressure transducers installed close to the edge of soil container allows the control of the 240 

boundary conditions. 241 

 242 

Figure 3. Model of bucket foundation (dimensions in mm) 243 
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Soil material 244 

The chosen soil material is the Aalborg University Sand no.1 that mainly contains quartz. The sand 245 

is graded; the largest grains are of round shapes and the small grains are sharp-edged. Properties 246 

were measured by Ibsen and Brødker (1994): maximum void ratio, Y?My � 0.854, minimum void 247 

ratio, Y?�� � 0.549, 50%-quantile, ��1 � 0.14 mm,  uniformity coefficient,   � � 	1.78	and specific 248 

grain density, �7 � 2.64 g/cm3. Based on CPT results important soil parameters can be derived 249 

(Ibsen et al. 2009). Those parameters are relative soil density, ¡w, triaxial friction angle, ¢�
, triaxial 250 

dilation angle, £�
, in situ void ratio, Y��7��� and effective soil unit weight, j′. The range of values 251 

from all performed tests are included in Table 1. 252 

The soil hydraulic conductivity, H, has been assessed by falling head test for different relative 253 

densities of material (Sjelmo 2012). For dense sand of around 90% of relative soil density, test results 254 

indicate the hydraulic conductivity of around  7 ∙ 10g� m/s.  255 

Test Procedure 256 

The sand is saturated during the preparation and the installation test through the drainage system. 257 

Prior to each test the sand is prepared to a dense, uniform condition. The range of relative density 258 

from all tests is 87.8% - 91.1%. Firstly, an upward hydraulic gradient of 0.9 is applied. It is controlled 259 

by valves and ascensions pipe connected to the bottom of the sand container.  Next, the sand is 260 

vibrated to the desired density. A wooden plate with holes located evenly is installed on the sand 261 

container. Next, a rod vibrator is slowly pushed into the sand through every second hole, and then 262 

in the rest of the holes on the way back. Each time the vibrator is slowly pulled. The sand conditions 263 

are analyzed through the CPT before and immediately after each of the installation tests, so that 264 

the changes in soil resistance can be captured. A laboratory CPT device developed at Aalborg 265 
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University is used. The device has the cone of 15mm diameter with a cone angle of 30° and it is 266 

calibrated at the laboratory. Before the bucket installation, CPTs are performed in 4 positions, and 267 

after installation in 8 positions; 4 of them are inside the bucket, and the other 4 are situated outside, 268 

see Fig. 4. The CPTs inside the bucket are possible through the valves’ holes situated on the bucket 269 

model. The CPTs after bucket installation are performed within 5 minutes after the installation 270 

process is completed. The differences in relative soil density before and after installation indicate 271 

whether there are any changes in soil density as an effect of the installation process. 272 

 273 

Figure 4. Positions for CPTs before (a.) and after installation test (b.) (dimensions in mm) 274 

During the jacking installation the hydraulic piston is used to apply the required jacking force. The 275 

hydraulic motor works as a displacement control with a displacement rate of around 0.13 mm/s. 276 

The valves on the bucket lid are opened during installation and therefore, no excess pore pressure 277 

inside the bucket is expected. For the suction installation the process is divided into two steps, the 278 

self-weight installation and the suction application. The self-weight installation is performed by 279 

using the hydraulic motor that is switched to work as a force control. The force corresponding to 280 

the self-weight of the bucket model is applied. The achieved penetration depth provides an 281 

appropriate hydraulic seal between the soil and the bucket skirt for further suction application, 282 
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minimum 50 mm. Suction is then applied through the vacuum system by connecting the valves 283 

situated on the bucket lid with the vacuum pump. The pressure is controlled manually on the 284 

vacuum tank by increasing it slightly until penetration occurs. The level of water in the container is 285 

controlled and refilled constantly, as the water is sucked by the pump during installation. Tilting of 286 

the bucket model is negligible. During the installation process readings from the displacement 287 

transducer, the pore pressure transducers and the force transducer are recorded. All sensors are 288 

connected to the signal transducers boxes and then through the signal amplifiers called ‘Spider8’ 289 

and ‘MGC Plus’, the records are transmitted to the program ‘Catman’ installed on the computer. 290 

Koteras (2017) described more details on the model and the test procedure. 291 

An overview of all tests can be found in Table 2.  First three tests are suction installation tests, where 292 

additional constant force of 2.01 kN was applied. This force is added to the resulting force from 293 

applied suction throughout the entire penetration depth. Tests no. 04, 05 and 09 are pure suction 294 

installation tests. The hydraulic motor was working as a force controlled, however, the force was 295 

set to be 0 kN. The different self-weight penetration was obtained due to this procedure and its 296 

effect on the results is assessed later on in this paper. Tests no. 07, 09 and 10 are jacking installation 297 

tests. There are two values of maximum penetration given in Table 2. The first one is the value 298 

corresponding to the maximum force recorded, also given in the table. It is the first point where the 299 

bucket lid becomes in the contact with the soil. Later on the sand is still pushed and the particles 300 

are re-arranged to be more equally distributed under the bucket lid. The force is then significantly 301 

increased and the penetration still proceeds (second given value). 302 
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Development of hydraulic gradients 303 

Seepage problem formulated with numerical model 304 

The seepage problem in sand is formulated with a numerical model. Simulations on seepage flow 305 

around the bucket skirt during the installation are performed in 2D numerical program. An 306 

axisymmetric model is generated where the skirt of the bucket is simulated by using a rigid line 307 

segment with impermeable interface. This line segment has a length equal to the designed 308 

penetration depth, h, and it is situated 0.5 m from the center axis, the same distance as the radius, 309 

r, of the bucket model. The boundary at the center axis is closed for the flow. The bottom boundary 310 

and the side boundary are also modelled as closed for the flow. The total dimensions of the model 311 

are the same as the sand container’s in the laboratory’s set-up. The sketch of meshed model with 312 

dimensions is presented in Fig. 5. 313 

 314 

Figure 5. Meshed numerical model with boundary conditions (dimensions in mm) 315 
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The simulations are performed for penetration ratio, Wl
w^,  between 0.1 to 0.5 with interval of 0.02. 316 

The continuous process of installation is here presented as a series of discrete steps, where for each 317 

step the equilibrium between the soil resistance and the driving force is assumed. For each of the 318 

simulation a steady-state groundwater flow calculation type is used as the seepage is approximately 319 

stationary. Tran and Randolph (2008) used the same approach what gave a good agreement of their 320 

numerical simulations with pressure results from centrifuge tests while installing the bucket 321 

foundation. The flow around the skirt is simulated by applying flow boundary condition on the inner 322 

soil surface with appropriate hydraulic head, H. The hydraulic head on the outer soil surface is 323 

designed to be 2m, however, it is a random number and it should only be sufficient for a required 324 

head difference, ∆{, so that a hydraulic head on the inner soil surface is not below 0.  The head 325 

difference is directly related to the value of the applied suction. The same model assumptions have 326 

been used in (Koteras et al. 2016); however, different distances to the boundaries are applied here.  327 

Suction values for each step of the numerical simulations are based on mean values from laboratory 328 

test no.05 and no.09 as in those two tests the self-weight penetration of the bucket is the shortest, 329 

hence the penetration due to the suction is the longest one.  330 

The soil property relevant for flow calculation is a hydraulic conductivity, H. Sjelmo (2012) 331 

performed a falling head tests for Aalborg University Sand no. 1 of different relative soil density.  For 332 

¡w � 90.8 %  a value of H � 0.7 ∙ 10g[ m/s is proposed, whereas for ¡w � 60.5 % a value of H � 1 ∙333 

10g[ m/s should be used. Those two values are the two closest value that are chosen to represent 334 

the conditions inside the bucket skirt before and after the suction installation test. A value of H � 1 335 

m/s is used for gravel located below the sand. 336 
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Test results 337 

Reduction in soil penetration resistance 338 

Results of CPT-s are investigated and relative soil density is derived based on the past CPT 339 

calibration. Fig. 6 shows a comparison of relative soil density for suction installation and for jacking 340 

installation from CPTs performed before and immediately after installation. The graph indicates the 341 

calculated relative soil density for locations inside and outside of the bucket. 342 

 343 

Figure 6. Comparison of relative soil density before and after installation: test no.05 (a. and b.) 344 

and test no.06 (c.); see Fig. 4 for locations of CPTs 345 

It can be concluded that due to the suction installation and induced seepage, there is a significant 346 

decrease in soil relative density for the soil plug, whereas the changes in relative soil density on the 347 

outside of the bucket are insignificant. Results obtained after jacking installation indicates nor 348 

significant changes in relative soil density within soil plug, neither in the soil situated outside the 349 

bucket. The trend for all tests where suction installation has been performed is similar to the given 350 

example of test no.05. For all jacking installation tests, the results of CPT-s are also comparable to 351 
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the results of test no.06. After all jacking installation tests it was concluded that there are no 352 

substantial changes in soil relative density.  353 

Table 3 presents the mean values of relative soil density for each test before installation and after 354 

installation; for inside soil plug and for soil outside the bucket. The upper 100 mm of sand is not 355 

considered in the calculations of mean values as the results show some fluctuation resulting from 356 

the presence of the sand surface. Table 3 also includes the percentage change between results 357 

before and after installation, ∆¡w,?	M�, for inside plug and for the soil located outside. The results 358 

of relative soil density obtained before installation are compared with the results obtained after 359 

installations in the two closest CPT locations (see Fig.4 for CPT locations). The mean value of the two 360 

comparisons inside the bucket and of the two comparisons outside the bucket are given in the table. 361 

A significant decrease in the relative soil density for inside soil plug after the suction installation is 362 

observed, reaching almost to 30%. On the other hand, the changes in soil inner plug after jacking 363 

installation are insignificant with a value less than 6%. For the outside soil the changes are less 364 

significant and do not indicate an increase in soil resistance neither after suction nor after force 365 

installation. Only values from first two tests shows a significant change of around 15%, however, in 366 

both tests only locations CPT1o and CPT2o are analyzed as the signals for locations CPT3o and CPT4o 367 

was not recorded. Therefore, conclusions on the change in relative soil density outside the bucket 368 

should not be based on those two tests. The reduction in soil relative density is directly related to 369 

the reduction of soil penetration resistance.  When the sand becomes looser, it resists less to the 370 

skirt penetrated into the soil. This is beneficial for the installation. However, it might also lead to 371 

failure and heave development.  372 
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Not only the reduction in soil resistance is clearly visible from CPT tests, but also when comparing 373 

the force required for installation during two different installation procedures. In four tests of 374 

jacking installations the results of applied force versus penetration depth are similar, as it was 375 

expected due to the same soil conditions achieved before each of those tests (Fig. 7a). Mean 376 

maximum value of force from all of those tests is 57 kN. The reading for the maximum value is 377 

consider as the point where the displacement curve changes its pattern and becomes more flat. In 378 

this point the bucket lid becomes in contact with sand. To investigate the change in required force 379 

between two types of installation, the average reduction in force for suction installation, ∆�M9¤, is 380 

calculated. The average values of force from all 4 jacking tests are found for all recorded penetration 381 

depths, �¥Mqa��¤,?	M�, and compared to the force used during each of suction installations also on 382 

each recorded penetration depth, �7�q����. ∆�M9¤ is then a mean value of changes in force for all 383 

recorded penetration depths between 100mm to the maximum penetration depth (the depth at 384 

which the lid becomes in contact with soil). For each of suction installation tests the force includes 385 

the part resulting from the suction and the part resulting from the self-weight of the bucket. For 386 

first three tests (01 to 03) the force includes also the additional load from hydraulic motor which 387 

was used in order to investigate the different length of self-penetration to the final results. For first 388 

three tests (01 to 03), the values are as follows: 43.4%, 44.8% and 46.1%.  Reduction in pure suction 389 

tests is slightly larger and it is equal to 56.5%, 53.8% and 49.8% for test 04, 05 and 09 respectively. 390 

As an example, the average reduction in force for test no.05 is shown in Fig.7b. Based on results it 391 

can be concluded that there is a reduction in force due to applied suction on the entire penetration 392 

depth in each of the tests, all in range of 40-60%. 393 
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 394 

Figure 7.  Results of installation tests 395 

When comparing the maximum required value of force from the suction installation tests (Table 2) 396 

with a mean maximum value of force from all 4 jacking installation tests (57kN), the reduction in 397 

this number is between 79.7 – 84.4 %.  398 

The reduction in force can only be explained by the reduction of soil penetration resistance. Results 399 

can be compared with the past researches, where by analyzing results of applied force, the 400 

reduction factor for soil penetration resistance was found. Allersma et al. (2003) mentioned the 401 

reduction factor of 8, which was found from centrifuge installation tests. Lian et al. (2004) found a 402 

reduction of 78 – 94% while comparing the suction installation with the jacking installation on 1G 403 

set-up with a small-scale model. The results are comparable with the findings described above.  404 

Soil heave development 405 

The sand loosening is beneficial for the installation because it reduces the penetration resistance. 406 

However, at the same time, the sand loosening is also responsible for the appearance of sand heave 407 
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inside the bucket. It has already been proven by previous experimental studies in dense sand that 408 

the inside heave of soil is highly probable for the suction installation process (Allersam et al 2003, 409 

Tran et al. 2005). The appearance of heave might be problematic for the further in-place bucket 410 

performance as it can result in a lower total stiffness of the foundation. Therefore, the development 411 

of heave must be taken into consideration during the design. Table 4 shows the height of heave 412 

development during all tests.  The suction installation results in slightly larger heave than the jacking 413 

installation.  414 

The reason why the soil moves towards the bucket cavity during the installation in sand is dictated 415 

by the volume expansion. Firstly, the volume expansion is a result of the change in the void ratio. 416 

The change in void ratio is also given in Table 4. The increase in void ratio for inside plug results in a 417 

larger volume of voids. With constant volume of solid material, the increase in total volume results 418 

in heave increase. Additionally, soil that is replaced by the bucket skirt is pushed either inside or 419 

outside of the bucket. However, the generated flow during the suction installation pushes the soil 420 

rather inside together with the direction of the flow. The height of heave is given as a percentage of 421 

the total skirt length, ¦l	M9	. For the suction installation tests the value ranges from 8.4% to 11.4%. 422 

For the jacking installation tests the value ranges between 6.6% and 8.0%. Tran et al. (2005) 423 

mentioned 6-8% of embedded length as a heave development for suction installation tests. Allersma 424 

et al. (2003) observed similar results, where soil heave is described to be dependable on the wall 425 

thickness, giving the increase of 5 to 10%.  In the laboratory set-up presented in this paper the 426 

influence of wall thickness of bucket foundation was not tested. However, the results of heave 427 

development are in comparable range with results found in literature. The average value of heave 428 

development for suction installation tests is 9.5%. The difference between the jacking tests and the 429 

suction tests is expected to be even more significant for the full-scale tests.  430 
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Skirt-soil interaction due to seepage 431 

The seepage flow around the bucket skirt is an expected effect of the applied suction as already 432 

discussed in the paper.  The recorded pore pressures, pmeasured, accompanied with calculated excess 433 

pore pressures, K, for test no.05 are given in Fig. 8a. and b. respectively. Results show the variation 434 

of pore pressures during suction installation. The result of pore pressure is recorded directly from 435 

the laboratory showing the total pressure that the soil experiences at given time. This means that 436 

the records show the hydrostatic pressure from the water and the excess pore pressure cumulated 437 

during the installation. In order to obtain the excess pore pressure a hydrostatic pressure is 438 

subtracted from its total value of pressure.  439 

 440 

Figure 8. Pore pressure results of the suction installation for test no.05: measured pore 441 

pressure (a.) and calculated excess pore pressure (b.) 442 

PP6 shows the suction pressure applied during the installation under the bucket lid. Note that the 443 

excess pore pressure refereed as K� is and exact value of the applied pressure, p. The rest of 444 
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transducers show a total pressure including both the hydrostatic pressure and the excess pore 445 

pressure. There is a significant amount of excess pore pressure on the inside of the skirt (PP4 and 446 

PP5). The measured pressure is already negative, even though the hydrostatic pressure has not yet 447 

been deducted (Fig.8a.). On the outside skirt the excess pore pressure is much smaller (PP1-PP2), 448 

and after extracting the hydrostatic value from the measured pressure, the values become closer 449 

to zero. It can be clearly seen that approaching the skirt tip from the outside soil surface and next 450 

the inside plug of the bucket, there is an increase in generated excess pore pressure. The seepage 451 

flow is induced because of the difference in hydraulic head: water flows from a higher energy to a 452 

lower energy. The seepage produces the excess pore pressure. According to results of excess pore 453 

pressure there is an upward flow on the inside wall of the bucket and the soil penetration 454 

resistance is reduced  by reduction in the effective stress. The downward flow on the outside skirt 455 

is limited only to the part close to the skirt tip, as it can be seen that there is almost no excess pore 456 

pressure at location PP1. The seepage flow is limited , thus the changes in excess pore pressure at 457 

the outside skirt are less significant in comparison to the changes at the inside skirt. Therefore, it is 458 

reasonable to assume a constant soil penetration resistance on the outside skirt and a reduction in 459 

the inside soil plug.  460 

Interestingly, the suction applied during all of the installation exceeds the value of the theoretical 461 

critical suction given by Koteras et al (2016), see Eqs.(8 and 11). However, during suction installation 462 

tests no piping failure occurred. The exceedance of critical suction pressure is shown in Fig. 8b. The 463 

piping is assumed to be formed around the skirt tip and proceed upper to the inside soil surface. 464 

While reaching the soil surface a hydraulic seal between the soil and the skirt is broken and a failure 465 

occurs. In such a case no further installation is possible. All of tests performed in the laboratory were 466 
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fully accomplished. The discussion on the exceedance of critical pressure is presented later on in 467 

the paper.  468 

Fig. 9a. and b. shows the changes in pore pressure during the jacking installation on the example of 469 

test no.06.  470 

 471 

Figure 9. Pore pressure results of the jacking installation for test no. 6: measured pore 472 

pressure (a.) and calculated excess pore pressure (b.) 473 

There is no development of the excess pore pressure during the jacking installation, so no seepage 474 

flow is expected. The change of 1 kPa for the last stage of installation is observed for all jacking 475 

installation tests and it is related to the height of valves on the bucket lid. These valves are open 476 

during force installation and from the time when the bucket lid becomes in the contact with water, 477 

the water column inside the valves raises up to the level of its height resulting in a 1 kPa change 478 
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during the last step of the jacking installation tests. As the seepage flow is not developed, there are 479 

no significant changes in soil penetration resistance.  480 

To support the statement that there is a reduction in soil penetration resistance, the average 481 

hydraulic gradients have been calculated based on the results of excess pore pressure. The gradient 482 

was calculated in 5 different locations, see Fig.10, based on results of excess pore pressure in 483 

locations PP1 –PP6 and based on the distance between the reading points.  484 

 485 

Figure 10. Calculated hydraulic gradients around the skirt during suction installation 486 

As expected, there is the highest gradient around the skirt tip, thus the highest reduction in soil 487 

resistance is expected in this location. There are high gradients close to the tip on both, inside and 488 

outside skirt. Nevertheless, it is assumed that the high gradient on the outside is probably resulting 489 

from a big excess pore pressure changes but only in a close vicinity of the tip. It should be noted 490 
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that only 6 reading points are available, so the gradients are only roughly approximated. Two 491 

calculated gradients closest to the soil surface inside and outside the bucket are small, with a value 492 

of around 0.5, what confirms that there was no piping failure during the installation. Interestingly, 493 

those gradients become stable at the very early stage of the installation even though the applied 494 

suction was still increasing. It can be concluded that the applied suction was within the limits, even 495 

though the theoretical limit was exceeded.  496 

The reduction is however dependable on the amount of applied suction. The reduction ratio is 497 

calculated as a ratio between the suction installation force, �7�q����, and the average values of force 498 

from all 4 jacking installation tests, �¥Mqa��¤,?	M�. Fig.11 presents this ratio versus the ratio of 499 

pressures: the applied pressure normalized by the theoretical critical suction pressure (Koteras et 500 

al. 2016).  501 

 502 

Figure 11.  Resistance ratio between suction and jacking installations  503 
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Clearly, a reduction in soil resistance takes place due to the seepage flow induced by the applied 504 

suction under the bucket lid. When the value of applied pressure increases so does the reduction. 505 

The reduction factor higher that 1 at the beginning of the installation should be ignored. The lower 506 

graph in Fig. 11 implicates that the ratio of pressure reaches value close to 1 at the very early stage 507 

of the installation. In this stage, the force applied for the jacking installation was smaller than the 508 

force resulting from the self-weight of the bucket. As the suction force includes both, the force 509 

arising from applied suction and the self-weight of the bucket, the reduction ratio is bigger than 1 510 

in this early stage. 511 

It can be also observed that in the early stage of the installation there is a slightly smaller reduction 512 

in the first three tests (test no.01-03) and this is due to bigger self-load applied to the installation. 513 

As the self-penetration was longer, the suction was applied a bit later. However, when the 514 

penetration proceeds and gets to its final stage, there are no visible differences in the reduction and 515 

in the final required force. The values of required suction at the penetration depth h=450 mm are 516 

given in Table 2.  517 

Finally, again the exceedance of the theoretical critical suction can be observed based on Fig.11. 518 

Interestingly, there is a stabilization of suction when the pressure ratio is around 1.3. This might 519 

suggest that the allowable suction lies in this range.  520 

Boundary effects 521 

The accuracy of scaled tests in laboratory often depends on the boundary conditions that the set-522 

up applies for. The seabed is rather unlimited, whereas the set-up boundaries are situated in a close 523 

vicinity of testing area. During each of the installation tests, the beam with pore pressure 524 

transducers is inserted into the soil at the closest possible distance to the wall of soil container, see 525 
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Fig. 2. The positions of the pore pressure transducers on the beam are indicated in Fig. 12a. Those 526 

transducers are zeroed before the start of each test, so the direct measurements indicate the value 527 

of excess pore pressure. As an example, the excess pore pressures developed in the localization of 528 

the beam versus the penetration depth for the bucket during the test no.5 is given in Fig. 12b. This 529 

test is a suction installation test and the significant development of a negative pore pressure is 530 

observed, increasing together with the progression of the installation. The same trend happens to 531 

all suction installation tests, whereas for jacking installation tests changes of the pore pressure at 532 

the boundary are negligible.  533 

 534 

Figure 12. Beam with pore pressure transducer (a.) and results of excess pore pressure at the 535 

beam during the suction installation (b.) 536 

The presence of the excess pore pressure at the boundaries is the reason why the theoretical critical 537 

suction should be accounted in the numerical calculations of the seepage flow around the bucket. 538 
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the bucket skirt. The model should include the same boundary conditions as the laboratory model, 540 

so that the comparison is reasonable. This has been examined and it is described in the following 541 

section.  542 

Comparison of the results for excess pore pressures and the applied suction 543 

The results of numerical simulations are compared with mean values of excess pore pressure from 544 

test no.05 and 09. The numerical simulations of installation provides also only results of total pore 545 

pressure that soil experience and the values of excess pore pressure are calculated by extracting the 546 

hydrostatic pressure. Figure 13 presents the development of excess pore pressure due to applied 547 

suction from both, laboratory tests and numerical simulations.  548 

 549 

Figure 13. Comparison of the change in pore pressures at the skirt between numerical results 550 

and laboratory results 551 

The results of excess pore pressure are comparable what confirms that the numerical model works 552 
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laboratory results. Most of the data is well fitted and the numerical model reflects results of the 554 

laboratory installation tests (the accuracy of the pressure transducers used in the laboratory tests 555 

is ±0.2 kPa). Results are the most differing for the skirt tip. The change between the numerical model 556 

and results from the installation tests is around 1kPa. More excess pore pressure is measured during 557 

the laboratory test that it is predicted with the numerical simulations. The numerical simulations, 558 

however, are performed for the stationary flow. In general, the suction installation of the bucket 559 

foundation is assumed to be stationary. Nevertheless, the most of the flow develops around the 560 

bucket tip and, as the bucket is constantly penetrated into the soil, the seepage has no time to be 561 

fully developed. If assuming that the stationary seepage is not fully developed, the flow behavior 562 

around the tip might differ from the numerical results.  563 

The boundary effects influence the formulation of pore pressure factor (the ratio of the excess pore 564 

pressure at the skirt tip to the applied suction). It can be seen based on the laboratory results that 565 

there is a development of excess pore pressure in the vicinity of sand container walls. Therefore, it 566 

is assumed that the seepage flow is somehow changed and so thus the development of the excess 567 

pore pressure around the skirt. Eq.(15) is a new formulation for the pore pressure factor.  568 

α��§ � 0.47 − 0.25 W1 − YZJ W− 0
]∙1.�n^^       (15) 569 

The observation of the excess pore pressure around the tip from the numerical simulations is 570 

however showing an increase in this value in relation to the laboratory results. Fig.14 presents the 571 

new formulation of pore pressure factor as a function of penetration ratio, Wl
w^. Next to the 572 

formulation, the results of pore pressure factor from laboratory test no.05 and no.09 are plotted.  573 
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 574 

Figure 14.  Pressure factor at the tip: comparison of numerical results with laboratory tests 575 
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now increased. The increase of j�to 14 kN/m3 leads to better estimation where the applied suction 589 

fits in the limits, however, such a value gives unrealistic values of in-situ void ratio for sand, which 590 

is not in the range given by the maximum and the minimum void ratio. This estimation is shown in 591 

Fig. 15. As it cannot be increase in j� that results in higher critical suction, then it should be the 592 

seepage length (Jq
�� � x ∙ j′).  The seepage length is dependable on the exit hydraulic gradient (eq. 593 

6), and the gradient can be calculated from Darcy’s law as a ratio of the flow velocity at the exit, 594 

ª	y��, and the hydraulic conductivity, H. As the previous sections indicates that there is a loosening 595 

of soil plug it seems reasonable to investigate the hydraulic conductivity of soil, as it does have a 596 

great influence on the value of critical suction. An increase in hydraulic conductivity is followed by 597 

a decrease in exit hydraulic gradient and next by an increase in the seepage length. Based on the 598 

results of laboratory installations and CPTs performed before and after suction installation, 599 

increased value of H is used for the inside soil plug when calculating the critical pressure  600 

(H � 1 ∙ 10g[ m/s is used). This resulted in a new formulation for the normalized seepage length, 601 

eq.(16). The critical suction pressure based on the normalized seepage length from eq.(16) is 602 

included in Fig.15. 603 

W'
0^���,��§ � 1.25 ∙ «π − ���� �2.5 W0

]^1.�[� W2 − O.\
� ^¬       (16) 604 
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 605 

Figure 15.  Comparison of applied suction with critical values based on numerical simulations 606 

It is concluded that the hydraulic conductivity for the inside soil plug is increased, and therefore, 607 

more suction can be applied without causing a piping problems. With a high probability, the same 608 

trend should be applied with the full-scale tests, however, it requires a confirmation. The ratio 609 

between initial hydraulic conductivity and the increased value for the inside plug, H���/H��, is equal 610 

to 1.4. Similar observation has been made by Tran et al. (2005). The results of centrifuge tests on 611 

the installation of bucket foundation have shown that for increasing penetration the soil relative 612 

density drops, hence the sand becomes looser. The ratio between soil hydraulic conductivities is in 613 

a range between 1 to 2 with an average value of 1.5.  614 

Conclusions 615 

A soil-skirt interaction during suction and jacking installation of the bucket foundation has been 616 

analyzed by performing 10 medium-scale tests in the dense sand. The comparison between soil 617 

resistance during two different installations indicates a significant reduction in favor for the suction 618 
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installation. The reduction is also confirmed by measuring soil conditions before and after each 619 

installation through CPT-s. The comparison of calculated soil relative density indicates a major 620 

decrease in sand density for the inside plug, however, the changes on the outside of the bucket are 621 

negligible. This confirms the proposed assumptions for the calculation of penetration resistance 622 

during the suction installation. Whereas the inside friction and the tip resistance is reduced by the 623 

applied suction, the possible increase on the outside friction can be neglected.  624 

Measured results of excess pore pressure around the bucket skirt during the suction installation 625 

confirm the appearance of seepage flow that in general reduces the soil penetration resistance. 626 

Results of gradients developed during the installation are helpful in the assessment of redistribution 627 

of effective stresses, thus the changes in soil penetration resistance. Additionally, the reasonable 628 

comparison of the test measurements with the results of numerical simulations validates the FE 629 

model and its assumptions. This allows for better understanding of the limits for the critical suction 630 

against the piping. The sand loosening within the inside plug results in an increase of the hydraulic 631 

conductivity. Assuming that the stationary seepage flow is not fully developed when the bucket 632 

penetrates into the soil allows to use an increased hydraulic conductivity in calculation of theoretical 633 

critical suction. The stationary flow calculation gives a lower limit for the suction. An increase 634 

hydraulic conductivity increases this limit what is beneficial for the suction installation. This will 635 

allow deeper suction installation and the installation of larger buckets.  636 

The last but not least, the heave development for the suction installation in dense sand is observed 637 

in all of the tests, giving the heave height of around 10% of total skirt length. The inside soil heave 638 

must be included in the design, as it can decrease the total stiffness of the foundation.  639 
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Table 1. Range of values for soil parameters from CPT for all installation tests 

Soil parameters Range of values 

Relative soil density [%] 88 - 91 

Triaxial friction angle [°] 54 - 54.5 

Triaxial dilation angle [°] 19.9 - 20.5 

In situ void ratio [-] 0.625 - 0.653 

Effective soil unit weight [kN/m3] 9.7 - 9.9 
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Table 2. Overview of test campaign 

Test no. 
Driving force for  

the installation 

Maximum 

installation 

force, F#� [kN] 

Required suction 

for h � 450mm, p���[kPa] 

Self-weight 

penetration, 

hself-weight [mm] 

Maximum 

penetration, h#� [mm] 

01 Suction + Force 11.56 9.18 125 462/ 470 

02 Suction + Force 11.58 9.21 127 468 / 468 

03 Suction + Force 11.05 8.23 130 468 / 471 

04 Suction 8.92 8.53 78 460 / 474 

05 Suction 8.96 8.67 73 462 / 466 

06 Force 57.7 - - 483 / 487 

07 Force 59.1 - - 483 / 488 

08 Force 58.01 - - 477 / 482 

09 Suction 9.65 9.52 66 447 / 458 

10 Force 53.1 - - 472 / 479 
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Table 3. Results of relative soil density, ¡w, and results of effective soil unit weight, j′ 

Test no. 

Before installation After installation 

I],#�� [%] 

γ#���  

[kN/m3] 

Inside the bucket Outside the bucket 

I],#�� [%] ∆I],#�� [%] I],#�� [%] ∆I],#�� [%] 

01 87.83 9.73 62.99 28.28 74.69 14.96 

02 90.78 9.88 65.65 27.68 75.61 16.71 

03 88.78 9.78 64.11 27.79 85.83 3.32 

04 91.13 9.90 66.33 27.21 82.33 9.66 

05 90.30 9.86 66.69 26.15 85.05 5.81 

06 89.12 9.80 87.19 2.16 85.48 4.08 

07 88.72 9.78 85.38 3.76 82.88 6.58 

08 90.59 9.88 85.53 5.59 82.54 8.20 

09 90.29 9.86 63.76 29.38 82.89 8.20 

10 89.74 9.83 85.78 4.41 83.78 6.64 
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Table 4. The change in void ratio and corresponding height of inside heave 

Test no. 

Height of heave 

plug, h0���[mm] 

(±5) 

Void ratio 

before, 

e²�G���[-] 

Void ratio 

after, eG�� [-] 

Ratio of heave 

height to the 

skirt length, 

r0��� [%] 

01 45 0.653 0.867 9.0 

02 47 0.628 0.844 9.4 

03 44 0.645 0.857 8.8 

04 42 0.625 0.838 8.4 

05 49 0.632 0.835 9.8 

06 38 0.637 0.659 7.6 

07 40 0.646 0.674 8.0 

08 33 0.630 0.673 6.6 

09 57 0.632 0.860 11.4 

10 36 0.637 0.671 7.2 
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