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Immune-escape mutations and stop-
codons in HBsAg develop in a large
proportion of patients with chronic HBV
infection exposed to anti-HBV drugs in
Europe
Luna Colagrossi1, Lucas E. Hermans2,3, Romina Salpini1, Domenico Di Carlo1, Suzan D. Pas3, Marta Alvarez4,
Ziv Ben-Ari20, Greet Boland2, Bianca Bruzzone5, Nicola Coppola6, Carole Seguin-Devaux7, Tomasz Dyda8,
Federico Garcia4, Rolf Kaiser9, Sukran Köse10, Henrik Krarup11, Ivana Lazarevic12, Maja M. Lunar13, Sarah Maylin14,
Valeria Micheli15, Orna Mor16, Simona Paraschiv17, Dimitros Paraskevis18, Mario Poljak13,
Elisabeth Puchhammer-Stöckl19, François Simon14, Maja Stanojevic12, Kathrine Stene-Johansen21, Nijaz Tihic22,
Pascale Trimoulet23, Jens Verheyen24, Adriana Vince25, Snjezana Zidovec Lepej25, Nina Weis26, Tülay Yalcinkaya27,
Charles A. B. Boucher3, Annemarie M. J. Wensing2, Carlo F. Perno1*, Valentina Svicher1* and on behalf of the
HEPVIR working group of the European Society for translational antiviral research (ESAR)

Abstract

Background: HBsAg immune-escape mutations can favor HBV-transmission also in vaccinated individuals, promote
immunosuppression-driven HBV-reactivation, and increase fitness of drug-resistant strains. Stop-codons can enhance
HBV oncogenic-properties. Furthermore, as a consequence of the overlapping structure of HBV genome, some
immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed
at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in
chronically HBV-infected patients experiencing nucleos(t)ide analogues (NA) in Europe.

Methods: This study analyzed 828 chronically HBV-infected European patients exposed to ≥ 1 NA, with detectable HBV-
DNA and with an available HBsAg-sequence.
The immune-associated escape mutations and the NA-induced immune-escape mutations sI195M, sI196S, and sE164D
(resulting from drug-resistance mutation rtM204 V, rtM204I, and rtV173L) were retrieved from literature and examined.
Mutations were defined as an aminoacid substitution with respect to a genotype A or D reference sequence.
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Results: At least one immune-associated escape mutation was detected in 22.1% of patients with rising temporal-trend.
By multivariable-analysis, genotype-D correlated with higher selection of ≥ 1 immune-associated escape
mutation (OR[95%CI]:2.20[1.32–3.67], P = 0.002). In genotype-D, the presence of ≥ 1 immune-associated
escape mutations was significantly higher in drug-exposed patients with drug-resistant strains than with
wild-type virus (29.5% vs 20.3% P = 0.012). Result confirmed by analysing drug-naïve patients (29.5% vs 21.
2%, P = 0.032). Strong correlation was observed between sP120T and rtM204I/V (P < 0.001), and their co-
presence determined an increased HBV-DNA.
At least one NA-induced immune-escape mutation occurred in 28.6% of patients, and their selection
correlated with genotype-A (OR[95%CI]:2.03[1.32–3.10],P = 0.001).
Finally, stop-codons are present in 8.4% of patients also at HBsAg-positions 172 and 182, described to
enhance viral oncogenic-properties.

Conclusions: Immune-escape mutations and stop-codons develop in a large fraction of NA-exposed patients
from Europe. This may represent a potential threat for horizontal and vertical HBV transmission also to vaccinated
persons, and fuel drug-resistance emergence.

Keywords: HBV, HBsAg, Immune-escape, Stop-codons, Drug-resistance

Background
Worldwide, around 250 million individuals have a
chronic hepatitis B virus (HBV) infection. Among them,
around 1 million dies as a consequence of end-stage
liver disease or hepatocellular carcinoma (HCC) [1].
HBV is a highly evolving pathogen characterized by a

high degree of genetic-variability (a unique property
among DNA viruses) that is driven by the lack of
proof-reading function of HBV reverse transcriptase
(RT) and exacerbated by the high speed of the HBV
replication cycle [2].
This high degree of HBV genetic-variability allows the

virus to react to endogenous (i.e. immune system), and
exogenous (i.e. vaccination, hepatitis B immunoglobulin,
antiviral drugs) selective pressures by further modulating
its genome structure.
Among the different HBV-proteins, HBV surface

antigen (HBsAg) contains the major hydrophilic re-
gion that is a dominant epitope crucial for binding to
neutralizing-antibodies. So far, around 30 immune-escape
mutations in HBsAg (hereafter defined as immune-associated
escape mutations), have been identified [3–5] to evade
neutralizing-antibodies, to allow persistent HBV-infection and
to promote viral fitness [2, 6]. These mutations can
have relevant pathobiological implications at the time
of immunosuppression-driven HBV-reactivation, thus
favoring the reuptake of viral replication during the initial
weakening of immune responses [6–9]. Immune-associated
escape mutations can also hamper HBsAg-recognition by
antibodies induced by vaccine, thus posing a potential
threat for the global vaccination program also in the
setting of mother-to-child transmission [2]. In addition,
Immune-associated escape mutations can decrease/ab-
rogate HBsAg-binding to antibodies used in diagnostic
assays for HBsAg-detection and -quantification [6, 10, 11],

and thus determine a false-negativity or an underestima-
tion of HBsAg levels, that can pose an issue for a proper
diagnosis and staging of chronic HBV-infection.
To date, six nucleos(t)ide analogues (NAs) have been

approved for the treatment of HBV-infection, namely
lamivudine (LAM), adefovir dipivoxil (ADV), entecavir
(ETV), telbivudine (LdT), tenofovir (TDF), and the re-
cently approved tenofovir-alafenamide (TAF). Among
them ETV, TDF or TAF are characterized by high gen-
etic barrier to resistance [12], and thus they are pre-
ferred as first-line treatment in the majority of European
Countries [13–15].
Furthermore, due to the overlapping between the genes

encoding reverse transcriptase (RT) and HBsAg, some RT
drug-resistance mutations can introduce mutations in the
major hydrophilic region of HBsAg that are capable to
reduce the binding affinity for neutralizing antibodies,
including those induced by HBV-vaccine [16]. Again,
these mutations (hereafter defined as NA-induced
immune-escape mutations) may pose a public health
concern for their pathogenetic potential and possibility
of transmission to vaccinated individuals.
Another type of mutation that can be detected in

HBsAg is represented by stop-codons. They are associ-
ated with the synthesis of truncated forms of HBsAg that
remain trapped in the endoplasmic reticulum. This
intracellular HBsAg accumulation can induce an oxida-
tive stress that can favour the neoplastic transformation
of hepatocytes [17].
Information about the prevalence of the above-mentioned

mutations in patients with chronic HBV-infection exposed
to NA in Europe is limited. Filling this gap can provide an
estimate of the pool for HBV-transmissions also to vacci-
nated individuals and/or can have a higher risk of disease
progression. Thus, this study was designed to estimate the
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prevalence and characteristics of i) immune-associated es-
cape mutations ii) NA-induced immune-escape mutations
and iii) stop-codons in HBsAg in Europe.

Methods
Study population
A multicenter survey was performed on genotypic-resistance
testing results generated during routine clinical assessments
of patients with chronic hepatitis B attending tertiary referral
centers in European countries according to Hermans et al.,
2016. Inclusion criteria were: chronic hepatitis B with
detectable serum HBV-DNA, exposure to ≥ 1 NA, RT/
HBsAg-sequence availability, and age ≥ 18 years [18].
Inclusion of patients exposed to NAs allows to define
the prevalence of immune-associated, and also of
NA-induced escape mutations.
935 RT/HBsAg-sequences were collected in the

time-window between January 1998 and August 2012.
Only 1 sequence per patient was included in the analysis.
Patient datasets were collected in the framework of the
European Society for translational antiviral research
(ESAR) from 15 countries. Countries were grouped in
geographical regions (http://unstats.un.org/unsd/) as fol-
lows: Northern Europe (Denmark/Norway), Western Eur-
ope (Austria/France/Germany/Luxembourg/Netherlands),
Eastern Europe (Poland/Romania), and Southern Europe
(Greece/Italy/Serbia/Slovenia/Spain) [19]. Israel and
Turkey were grouped with Southern European coun-
tries [18].

Data characteristics
The following information was collected: serum
HBV-DNA; HBsAg; hepatitis B e antigen (HBeAg);
anti-HBe; serum–alanine aminotransferase (serum-ALT);
exposure to ≥ 1 NA (LAM, LdT, ADV, ETV, TDF, LdT).
No administrative permissions were required to review
patients’ records and to use related data.

RT/HBsAg sequencing
RT/HBsAg sequences obtained by well-standardized
population-based sequencing procedures during routine
clinical practise were collected. Sequence data consisted
of FASTA files containing nucleic acid sequence infor-
mation of the RT/HBsAg region. The ESAR quality con-
trol procedure was applied on all submitted sequences.
If amino acid substitutions at immune-escape codons
were due to ambiguities consisting of > 2 bases per nu-
cleotide position or > 1 ambiguities per codon, or if in-
sertions or deletions were present causing a shift in the
HBsAg open-reading frame that affected immune-escape
codons, sequences were excluded from the analysis [18].
Furthermore, there was no specific pattern of mutations
linked to a specific center.

HBsAg sequences were analyzed using SeqScape-v2.6
software (Thermo-Fisher Scientific), then the sequences
were aligned using Bioedit 7.0 software [20]. Sequences
having a mixture of wild-type and mutant residues at
single positions were considered to have the mutant(s)
at that position. The mixed base identification was set at
a percentage of 20%.
HBsAg sequences have been submitted to Genbank with

the following accession number: MH218870-MH219804.

Mutation prevalence
HBsAg-sequences were analysed to define the
prevalence of immune-associated escape mutations,
NA-induced escape mutations, and stop-codons.
Mutations were defined as difference from HBV

genotype-A reference sequence (Genbank accession
number: JN182318) or HBV genotype-D reference se-
quence (Genbank accession number: GU456636).
We determined the prevalence of 29 immune-associated

escape mutations (sQ101K, sT114R, sP120S/T/A,
sT123A/N, sT126N/S, sP127L, sA128V, sQ129R/N,
sG130N/R, sT131I, sM133I/L/T, sY134L, sC138Y, sC139S,
sT140S, sP142S, sD144A/E, sG145A/R, sN146S) exten-
sively retrieved from literature and known to affect
HBsAg-recognition by antibodies [3–5, 19]. Among them,
sP120S/T/A, sT126N/S, sQ129R/N, sT131I/N, sM133I/L,
sP142S, sD144A/E, sG145A/R were known to act as
vaccine-escape mutations [3–5, 19]. All these mutations
are localized in the major hydrophilic region of HBsAg
known to contain the major B-cell epitopes.
We also analyzed the prevalence of the NA-induced

immune-escape mutations sI195M, sI196S, and sE164D
(resulting from drug-resistance mutation rtM204 V,
rtM204I, and rtV173L) [12] and stop-codons.

Statistical analysis
Statistical analysis was performed using SPSS software
(v19.0; SPSS Inc., Chicago, IL) and the statistical envir-
onment R (version 3.2.5). Data were expressed as me-
dian (interquartile range [IQR]) for quantitative variables
and as counts and percentages for qualitative variables.
Chi-Squared Test of Independence based on a 2 × 2 con-
tingency table was used for qualitative data, while
Mann-Whitney test for continuous data.
Univariable and multivariable logistic regression ana-

lysis was performed in order to assess the potential asso-
ciations between the presence of at least one i)
immune-associated escape mutation, ii) NA-induced
immune-escape mutation, iii) stop-codon, with several
factors, including: gender, age, serum HBV-DNA at the
time of genotypic testing, LAM, ADV, ETV, TDF, geo-
graphical origin, year of collection, and HBV-genotype.
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Results
Study population
The study population included 935 patients with chronic
HBV infection exposed to ≥ 1 NA. Phylogenetic analysis
showed that most patients were infected with HBV
genotype-D (573, 61.3%) and genotype-A (255, 27.3%).
In the remaining patients, the following HBV-genotypes
were detected: B (36, 3.9%), C (36, 3.9%), E (23, 2.4%), G
(5, 0.5%), H (4, 0.4%), F (3, 0.3%).
To provide a more robust characterization of

immune-escape mutations and stop-codons circulating
in Europe, the analysis was focused on 828 patients
infected with HBV genotype-D and A. Table 1 shows
demographics, clinical, biochemical, and virological
characteristics of these patients.
Patients were predominantly males (70.5%) with a me-

dian (IQR) age of 45(38–59)years (Table 1). Median
(IQR) log serum HBV-DNA was 4.4(3.2–6.4)IU/ml, and
median (IQR) ALT was 47(32–78)U/L (Table 1).
Information on HIV-1 coinfection was known for 445
patients. Among them, 103 patients were HIV
co-infected.

Treatment history and drug resistance
A detailed information of anti-HBV drugs used was
available for 650 patients. Most patients were exposed to
NA mono-therapy, predominantly with LAM (62.5%,
406/650) followed by ADV (4.9%, 32/650), ETV (4.8%,
31/650), TDF (0.8%, 5/650) and LdT (0.5%, 3/650)
(Table 1). Exposure to 2 NAs, either simultaneously
or consecutively, most frequently concerned LAM +
ADV (17.7%, 115/650), followed by LAM + TDF
(3.2%, 21/650), LAM + ETV (2.6%, 17/650), ADV +
ETV (0.6%, 4/650), ETV + TDF (0.5%, 3/650) and
ADV + TDF (0.2%, 1/650) (Table 1). Triple exposure
was present in 1.8% (12/650) of patients.
At least one drug-resistance mutation was detected in

54% (447/828) of patients. In particular, the primary mu-
tation rtM204V (conferring full-resistance to LAM, LdT,
and partially to ETV) was observed in 25.8% (214/828)
of patients, while rtM204I (conferring full-resistance to
LAM and LdT) in 20% (166/828). Conversely, rtA181T
and rtA181V (conferring full-resistance to ADV and as-
sociated with TDF suboptimal response) were detected
in 2.3% (19/828) and 3.6% (30/828) of patients,
respectively.

Detection of immune-associated escape mutations
At least one immune-associated escape mutation was
detected in 22.1% (183/828) of patients (min-max:1–4).
In 6% (50/828) of patients, ≥ 2 mutations were detected
(Fig. 1a).
The proportion of patients with ≥ 1 immune-associated

escape mutation was stable to around 15% (11/73) in

1998–2002 and in 2003–2005 (15/101), showed an in-
crease to 27.2% (89/327) in 2006–2008 (P = 0.012, using
1998–2002 as reference), and then declined to 20.8% (68/
327) in 2009–2012.
Furthermore, the circulation of HBV strains with ≥ 1

immune-associated escape mutation was significantly
higher in genotype-D than A (25.3%[145/573] vs
14.9%[38/255], P = 0.001) (Fig. 1a). This result was also
observed when the analysis was specifically focused on
vaccine-escape mutations (18.3%[105/573] for
genotype-D vs 7.1%[18/255] for genotype-A; P < 0.001).
HBV genotype-D was significantly associated with the

selection of specific immune-associated escape muta-
tions. This is the case of sA128V and sP120S selected
with higher prevalence in genotype-D than A (sA128V:
3.3%[19/573] vs 0.8%[2/255], P = 0.032; sP120S: 5.1%[29/
573] vs 0.8[2/255], P = 0.003) (Fig. 2a). Conversely, the
immune-associated escape mutation G130 N occurred
more frequently in genotype-A than D (2%[5/255] vs
0.2%[1/573], P = 0.012) (Fig. 2a). These results were
confirmed also when the analysis was focused on
LAM-treated patients, thus limiting the impact of
anti-HBV drugs on the selection of these mutations
(sA128V: 4.4%[16/362] vs 0.5%[2/209], P = 0.008;
sP120S: 5.5%[20/362] vs 1%[2/209], P = 0.006; sG130N:
0.3%[1/362] vs 1.9%[4/209], P = 0.063). This suggests
that the genetic-backbone of genotype-A and -D can
favour the selection of specific immune-associated es-
cape mutations.
In addition, in genotype-D, the presence of ≥ 1

immune-associated escape mutation was significantly
higher in drug-exposed patients with drug-resistance
than in patients without the drug resistance muta-
tions (29.5%[92/312] vs 20.3%[53/261], P = 0.012). In
particular, sP120T significantly correlated with
rtM204V/I (P = 0.001): 16/20 patients with sP120T
had also rtM204V/I. Moreover, patients with
rtM204V/I + sP120T had higher serum HBV-DNA
than patients with rtM204V/I alone (5.5[3.2–
7.2]logIU/ml vs 4.3[3.2–6.3]logIU/ml). This associ-
ation was not observed in genotype A.
To corroborate the correlation between

immune-associated escape mutations and drug-resistance
mutations, the prevalence of ≥ 1 immune-associated es-
cape mutations was also analysed in an independent data-
set of drug-naïve patients (cite Additional file 1: Table S1
for demographic and virological characteristics). The per-
centage of drug-naive patients harbouring drug-resistant
strains is 1% (all genotype D). The only primary
drug-resistance mutations detected were rtM204I (0.4%,
1/245) and rtN236T (0.4%, 1/245), while the only second-
ary mutations detected were rtL180M and rtV173L, each
present in 0.4% of patients. Again, the presence of ≥ 1
immune-associated escape mutations in genotype D was
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significantly higher in drug-exposed patients with
drug-resistant strains than in drug-naïve patients
(29.5%[92/312] vs 21.2%[52/245], P = 0.032). No associ-
ation was observed for genotype A (14.9%[38/255] vs
11.3% [8/71], P = 0.56).
Our results also showed that the distribution of

immune-associated escape mutations differed between
European regions (Fig. 3). Indeed, the percentage of HBV
genotype-D infected patients with ≥ 1 immune-associated
escape mutation was significantly higher in Southern
Europe than in Western/Northern Europe (36.7% vs

24.2%, P = 0.02). This increase was also observed in
Eastern compared to Western/Northern Europe, although
not statistically significant (37.5% vs 24.2%, P= 0.17) (Fig. 3).
By multivariable-analysis, factors independently associ-

ated with higher selection of ≥ 1 immune-associated escape
mutation was genotype-D (OR[95% CI]:2.20[1.32–
3.67], P = 0.002) and age (OR[95% CI]:1.02(1.00–1.03),
P = 0.013) (Table 2). A trend between the presence of ≥ 1
immune-associated escape mutations and higher levels
of serum HBV-DNA was also observed (OR[95%
CI]:1.10[0.99–1.23], P = 0.079) (Table 2).

Table 1 Patients’ Characteristics

Overall
(N = 828)

Genotype-A
(N = 255)

Genotype-D
(N = 573)

P-valued

General

Median Age (IQR), years 45 (38–59) 45 (33–56) 49 (40–59) 0.001

Male, N(%)a 584 (70.5) 183 (74.4) 401 (73.6) 0.810

CHB-related data

Median HBV-DNA, log IU/ml (IQR) 4.4 (3.2–6.4) 4.7(3.3–6.9) 4.4 (3.2–6.3) 0.079

HBeAg positive, N(%)b 183 (44.1) 71 (59.7) 112 (38) < 0.001

Median ALT, IU/L (IQR) 46.5 (32–78) 46 (30–80) 48 (32–78) 0.473

Geographical origin, N(%)

Western Europe 142 (17.1) 67 (26.3) 75 (13.1) < 0.001

Northern Europe 26 (3.1) 10 (3.9) 16 (2.8) 0.519

Eastern Europe 131 (15.8) 99 (38.8) 32 (5.6) < 0.001

Southern Europe 529 (63.9) 79 (31) 450 (78.5) < 0.001

Anti-HBV drug history, N(%)c

Monotherapy

LAM 406 (62.5) 157 (66.8) 249 (60) 0.085

ADV 32 (4.9) 10 (4.3) 22 (5.3) 0.554

ETV 31 (4.8) 7 (3) 24 (5.8) 0.107

TDF 5 (0.8) 2 (0.9) 3 (0.7) 0.857

LdT 3 (0.5) 1 (0.4) 2 (0.5) 1.000

Dual exposure

LAM + ADV 115 (17.7) 27 (11.5) 88 (21.2) 0.002

LAM + TDF 21 (3.2) 14 (6) 7 (1.7) 0.003

LAM + ETV 17 (2.6) 10 (4.3) 7 (1.7) 0.045

ADV + ETV 4 (0.6) 3 (1.3) 1 (0.2) 0.137

ETV + TDF 3 (0.5) 3 (1.3) 0 (0) 0.047

ADV + ETV 1 (0.2) 0 (0) 1 (0.2) 1.000

Triple exposure

LAM + ADV + ETV 5 (0.8) 1 (0.4) 4 (1) 0.450

LAM + ADV + TDF 7 (1.1) 0 (0) 7 (1.7) 0.045
a Percentages are calculated on 791 patients with the datum available, 246 patients for genotype A and 545 for genotype D
b Percentages are calculated on 414 patients with the datum available, 119 patients for genotype A and 295 for genotype D
c Percentages are calculated on 650 patients with the type of anti-HBV drugs available, 235 patients for genotype A and 415 for genotype D
d Statistically significant difference was assessed by Chi-squared Test based on a 2 × 2 contingency table
P-value in italic are statistically significant
Abbreviations: ADV adefovir, ETV entecavir, IQR interquartile range, LAM lamivudine, LdT telbivudine, TDF tenofovir
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Detection of NA-induced immune-escape mutations
Due to RT and HBsAg open reading frames overlapping,
some drug-resistance mutations in RT can correspond to
some NA-induced immune-escape mutations in HBsAg.
The prevalence of such mutations (sI195M, sI196S, and
sE164D resulting from drug-resistance mutation rtM204 V,
rtM204I, and rtV173L) was thus investigated. At least one
NA-induced immune-escape mutation was detected in
28.6% (237/828) of patients (Fig. 1b). The proportion of
patients with ≥ 1 drug-induced immune-escape mutation
did not show statistically significant differences over time
and ranged from 38.4% in 1998–2002 to 30.0% in 2009–
2012.
Notably, HBV genotype-A was associated with a sig-

nificantly higher prevalence of NA-induced
immune-escape mutations (39.6% vs 23.7%, P < 0.001)
(Fig. 1b). This was also confirmed by
multivariable-analysis (2.03[1.32–3.10]; P = 0.001), along
with LAM use (OR[95% CI]:4.60[1.87–11.31]; P = 0.001)
(Table 3). In particular, the vaccine-escape mutational
pattern sI195M + sE164D (resulting from rtM204V +
rtV173L) was present in 7.1% (18/255) of HBV
genotype-A infected patients and in 3.7% (21/573) of
HBV genotype-D infected patients (P = 0.03) (Fig. 2b).

Detection of stop-codons
Stop-codons determine truncated HBsAg production that
can be implicated in hepatocarcinogenesis. Stop-codons
were observed in 8.5% of patients (9.8%[25/255] for geno-
type-A vs 7.9%[45/573] for genotype-D). They occurred
at 20 HBsAg-positions, including 172 (corresponding to
drug-resistance mutation rtA181T) and 182, both
known to increase HBV oncogenic potential (Lee et al.,
[38]). Notably, the selection of stop-codons at
HBsAg-positions 182 and 199 occurred more frequently
in genotype-A than D (4.7%[12/255] vs 1%[6/573], P =
0.001 and 2%[5/255] vs 0%[0/573], P = 0.001, respect-
ively) (Fig. 2c). These results were confirmed also when
the analysis was focused on LAM-treated patients (182:

Fig. 1 The histograms report the percentage of patients with at
least one: a immune-associated escape mutation; b NA-induced
immune-escape mutation; c stop-codon. The analyses included a
total of 828 chronically HBV-infected patients: 573 infected with HBV
genotype-D and 255 with HBV genotype-A. Statistically significant
differences were assessed by Chi Square Test based on a 2 × 2
contingency table. **: 0.001; ***: P < 0.001. Immune-associated
escape mutations (sQ101K, sT114R, sP120S/T/A, sT123A/N, sT126N/S,
sP127L, sA128V, sQ129R/N, sG130N/R, sT131I, sM133I/L/T, sY134L,
sC138Y, sC139S, sT140S, sP142S, sD144A/E, sG145A/R, sN146S) were
retrieved from literature and known to affect HBsAg recognition by
antibodies [2, 13, 14, 39–47]. The NA-induced immune-escape
mutations I195M, I196S, and E164D result from drug-resistance
mutation M204 V, M204I, and V173 L (Torresi, 2002)
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4.3%[9/209] vs 1.1%[4/362], P = 0.013; 199: 1.9%[4/209]
vs 0%[0/362], P = 0.008).
No associations were observed between the presence

of stop-codons and the following variables: patients’
demographics, serum HBV-DNA at the time of geno-
typic testing, anti-HBV drugs, geographical origin, year
of collection, and HBV-genotype.

Discussion
In this largest-to-date European survey of 828
NA-experienced chronically HBV-infected patients, ≥ 1
immune-associated escape and NA-induced mutation
was observed in 22.1 and 28.6% of patients, respectively.
Furthermore, in 8.5% of patients, ≥ 1 stop-codon in
HBsAg was detected.

Fig. 2 The histograms report the prevalence of a immune-associated escape mutations, b NA-induced immune-escape mutations, c stop-codons.
The prevalence was calculated in the group of 255 patients infected with HBV genotype-A (yellow bars) and in the group of 573 patients infected
with HBV genotype-D (green bars). Statistically significant differences were assessed by Chi Squared Test for independence based on a 2 × 2
contingency table. * P < 0.05; ** P < 0.01; *** P < 0.001. In A) a schematic representation of HBsAg functional domains is also reported: N-terminus
HBsAg (encompassing amino acids [aa] 1–7), transmembrane domain 1 (TM1, aa: 8–22), loop protruding inside the virion (23-79aa), transmembrane
domain 2 (TM2, aa: 80–98), major hydrophilic region (MHR, aa: 99–169) and transmembrane domain 3 and 4 (TM3/4, aa: 170–226). The MHR contains B
cell-epitopes including the a-determinant (aa: 124–147)
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The proportion of patients with ≥ 1 immune-associated
escape mutation was stable to around 15% in 1998–2002
and in 2003–2005, and remained > 20% in 2006–2008 and
in 2009–2012, suggesting a substantial circulation over
time of viral strains with a reduced antigenic potential.
By multivariable analysis, the selection of

immune-associated escape mutations (including
vaccine-escape mutations) was significantly higher in
HBV genotype-D than A. HBV genotype-D is known to
be more prone to the onset of HBeAg-negative chronic
hepatitis characterized by an extensive accumulation of
mutations in the pre-core/basal core promoter of
HBV-genome in response to a potent host-based selec-
tion pressure [21]. It is conceivable that this selective
pressure may also favor the generation and selection of
immune-associated escape mutations in HBsAg, further
exacerbating HBV-escape from immunological-pressure.
Only the immune-associated escape mutation G130 N

was detected more frequently in genotype-A than -D.
This difference can be explained considering the fact
that the number of nucleotide substitutions necessary to
generate G130 N from the wild-type amino acid is lower
in genotype-A than -D [22]. This suggests that the

Fig. 3 The histogram reports the percentage of patients with at
least one immune-associated escape mutations between European
regions. The prevalence was calculated in HBV genotype-D and -A
infected patients from Western/Northern (black bars), Southern (grey
bars), and Eastern Europe (light grey bars). Statistically significant
differences were assessed by Chi Squared Test for independence
based on a 2 × 2 contingency table. * P = 0.02

Table 2 Factors associated with the presence of at least one immune-associated escape mutation by fitting a uni-multivariable
logistic regression model

Variables Univariate analysisb Multivariate analysisb

crude OR [95% CI] p-value adjusted OR [95% CI] p-value

Gender (Female vs. Malea) 1.16 (0.76–1.78) 0.483 1.20 (0.77–1.87) 0.432

Age (per 1 year increase) 1.02 (1.00–1.03) 0.010 1.02 (1.00–1.03) 0.013

HBV-DNA (per 1 log10 IU/ml increase) 1.03 (0.94–1.14) 0.490 1.10 (0.99–1.23) 0.079

LAM 1.16 (0.65–2.08) 0.616 1.46 (0.71–3.02) 0.307

ADV 1.44 (0.96–2.17) 0.078 1.31 (0.83–2.06) 0.250

ETVc 1.28 (0.71–2.31) 0.409 2.04 (0.97–4.29) 0.060

TDF 0.76 (0.31–1.87) 0.547 1.13 (0.43–3.02) 0.803

Geographical origin

Southa 1 1

West 0.71 (0.43–1.17) 0.175 1.03 (0.55–1.89) 0.937

North 0.55 (0.18–1.62) 0.276 0.72 (0.23–2.28) 0.581

East 0.75 (0.46–1.22) 0.250 1.26 (0.62–2.55) 0.519

Year of collection

1997-2002a 1 1

2003–2005 1.07 (0.42–2.71) 0.892 0.79 (0.28–2.20) 0.651

2006–2008 2.37 (1.11–5.07) 0.026 1.65 (0.67–4.01) 0.273

2009–2012 1.79 (0.84–3.83) 0.134 1.36 (0.50–3.68) 0.547

Genotype (D vs. Aa) 2.19 (1.43–3.34) < 0.0001 2.20 (1.32–3.67) 0.002
a Reference group
b The analysis was led on 650 patients for whom type of anti-HBV drugs received was known
c Among 64 ETV-treated patients, 26 received LMV
P-value in italic are statistically significant
Abbreviations: ADV adefovir, CI Confidence interval, ETV entecavir, LAM lamivudine, OR Odd ratio, TDF tenofovir
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different genetic background of HBV-genotypes can
modulate the generation of immune-associated escape
mutations, and consequently HBV-antigenicity.
Recent studies highlighted the role of

immune-associated escape mutations in
immunosuppression-driven HBV-reactivation [6–9, 23].
It has been proposed that immune-associated escape
mutations can favor the re-uptake of HBV-replication
during the initial weakening of immune-system, particu-
larly during rituximab-treatment (known to deplete
B-lymphocytes) [6]. The substantial circulation of
immune-associated escape mutations may thus pose an
issue in term of increased risk of HBV-reactivation in
immunosuppressed-patients.
Previous in-vitro studies showed that some

immune-associated escape mutations can promote the fit-
ness of HBV lamivudine-resistant strains [23, 24]. We found
an enrichment of immune-associated escape mutations in
drug-exposed patients with drug-resistant strains compared
to drug-exposed patients with wild-type virus and to
drug-naïve patients. This highlights a strict relationship be-
tween drug-resistance and immune-associated escape mu-
tations, and suggests the ability of immune-associated
escape mutations to stabilize drug-resistance mutations in
viral-quasispecies. We observed that sP120T significantly

correlated with rtM204V/I, and their co-presence is charac-
terized by elevated serum HBV-DNA. This is consistent
with an in-vitro study showing sP120T ability to rescue
HBV-replication impaired by rtM204V/I [24].
The ability of immune-associated escape mutations to

promote the fitness of HBV lamivudine-resistant strains
can raise the issue on lamivudine-use as prophylaxis in
immunosuppressed-patients, and highlights the import-
ance to use potent anti-HBV drugs in order to prevent
HBV-reactivation. Since the highly potent anti-HBV
drugs will soon become generic, this will also allow to
reduce the cost related to the management of
immunosuppressed-patients at risk of HBV-reactivation.
This has also implications for those European Coun-

tries in which lamivudine is still prescribed, again sup-
porting the role of potent anti-HBV drugs for a proper
management of patients with chronic HBV-infection.
The circulation of immune-associated escape muta-

tions can have important implications, since they can
potentially affect the efficacy of the current vaccination
strategy. Indeed, several studies have highlighted the
presence of immune-associated escape mutations in in-
dividuals who contracted HBV-infection despite com-
pleted HBV-vaccination [25–27]. In a study led in
Taiwan, a positive HBV-DNA was detected in 10 of 60

Table 3 Factors associated with the presence of at least one drug-induced immune-associated escape mutation by fitting a uni-
multivariable logistic regression model

Variables Univariate analysis Multivariate analysis

crude OR [95% CI] p-value adjusted OR [95% CI] p-value

Gender (Female vs. Malea) 0.76 (0.51–1.14) 0.188 0.71 (0.46–1.08) 0.111

Age (per 1 year increase) 1.00 (0.99–1.01) 0.672 1.00 (0.99–1.01) 0.850

HBV-DNA (per 1 log10 IU/ml increase) 1.06 (0.97–1.15) 0.208 1.04 (0.94–1.15) 0.409

LAM 4.03 (1.97–8.25) < 0.0001 4.60 (1.87–11.31) 0.001

ADV 0.42 (0.27–0.65) < 0.0001 0.53 (0.33–0.86) 0.009

ETV 0.99 (0.57–1.73) 0.981 2.02 (0.95–4.29) 0.068

TDF 1.10 (0.52–2.31) 0.805 1.58 (0.67–3.73) 0.294

Geographical origin

Southa 1 1

West 1.01 (0.65–1.58) 0.951 0.75 (0.43–1.32) 0.323

North 0.58 (0.21–1.58) 0.287 0.49 (0.17–1.41) 0.184

East 1.79 (1.18–2.71) 0.006 1.22 (0.64–2.33) 0.552

Year of collection

1997-2002a 1 1

2003–2005 0.58 (0.29–1.17) 0.128 0.88 (0.41–1.92) 0.754

2006–2008 0.61 (0.34–1.08) 0.088 1.09 (0.54–2.19) 0.817

2009–2012 0.72 (0.41–1.27) 0.259 0.83 (0.36–1.88) 0.650

Genotype (A vs. Da) 2.15 (1.53–3.02) < 0.0001 2.03 (1.32–3.10) 0.001
a Reference group (dummy)
P-value in italic are statistically significant
Abbreviations: ADV adefovir, CI Confidence interval, ETV entecavir, LAM lamivudine, OR Odd ratio, TDF tenofovir
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individuals in which the HBsAg or anti-hepatitis B core
(HBc) was either positive or equivocal despite vaccin-
ation [27]. Among them, 8 have received 3 doses of vac-
cine. Five out of 8 vaccinees harbored HBsAg mutations:
4 with immune-associated escape mutations, and 1 with
a stop-codon in HBsAg [27].
Immune-escape mutations can also play a relevant role

in the setting of mother-to-child transmission. Currently,
HBV-vaccine (in addition to immunoglobulins) is ad-
ministered to children born to HBV-infected mothers. In
a recent study, serum HBV-DNA was detected in 28%
children born from HBsAg-positive mothers, and fully
responded to HBV-vaccination. Among them, 62% in-
fected children had ≥ 1 immune-associated escape muta-
tion, suggesting the maternal transmission of viral
strains with enhanced capability to evade neutralizing
antibodies in vaccinated-children [28].
In chronic HBV-infection, recent studies highlighted

that the presence of immune-associated escape muta-
tions at baseline was negatively correlated with
HBsAg-loss during treatment with potent anti-HBV
drugs [29, 30]. It is conceivable that the circulation of
these mutations can hamper the full immune control of
the virus despite potent anti-HBV therapy. This issue
should be considered by the recent therapeutic strategies
aimed at achieving HBV-cure.
Finally, different studies showed that some

immune-associated escape mutations can affect
HBsAg-quantification by altering HBsAg-binding to
antibodies used in diagnostic assays [6, 31, 32].
HBsAg-amount is used to provide a more precise defin-
ition of the inactive carrier status and to monitor the ef-
ficacy of interferon-treatment. The presence of
immune-associated escape mutations may cause an
underestimation of HBsAg-levels thus hampering the
proper management of chronically HBV-infected
patients.
Due to the peculiar HBV-genome organization,

drug-resistance mutations rtM204 V, rtM204I, and
rtV173 L correspond to the NA-induced immune-escape
mutations sI195M, sI196S, and sE164D. In our study,
HBV genotype-A was associated with a significantly
higher prevalence of NA-induced immune-escape muta-
tions. This is in line with previous studies showing that
genotype-A is more prone to develop rtM204V than
genotype-D at lamivudine failure [32–34]. The issue of
NA-induced escape mutations is critical considering the
ongoing use of lamivudine in some European regions
where genotype-A is predominant [18, 35].
Finally, ≥ 1 stop-codon was detected in 8.5% of pa-

tients. Stop-codons can determine the accumulation of
truncated HBsAg in the endoplasmic-reticulum, thus in-
ducing oxidative stress and in turn enhancing hepato-
cytes proliferation [36, 37]. They were detected at 20

HBsAg-positions including 172 and 182, known to pro-
mote the carcinogenic transformation of hepatocytes
[38, 39]. Notably, stop-codon at HBsAg-position 172 de-
rives from the drug-resistance mutation rtA181T selected
under ADV- and (in some cases) LAM-treatment [39].
This represents an important issue probably originating
from the broad use of first-generation drugs which may
have fuelled the circulation of viral strains with an
increased oncogenic potential.

Conclusions
“Immune-escape mutations and stop-codons develop in
a large proportion of NA-exposed patients in Europe.
These mutant isolates may potentially transmit in gen-
eral population, including vaccinated individuals, and
fuel drug-resistance emergence”.
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