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Zigzag edges of the honeycomb structure of graphene exhibit magnetic polarization, making them attractive
as building blocks for spintronic devices. Here, we show that devices with zigzag-edged triangular antidots
perform essential spintronic functionalities, such as spatial spin splitting or spin filtering of unpolarized incoming
currents. Near-perfect performance can be obtained with optimized structures. The device performance is robust
against substantial disorder. The gate-voltage dependence of transverse resistance is qualitatively different for
spin-polarized and spin-unpolarized devices, and can be used as a diagnostic tool. Importantly, the suggested
devices are feasible within current technologies.

DOI: 10.1103/PhysRevB.95.121406

Introduction. The weak intrinsic spin-orbit coupling and
long spin diffusion lengths suggest graphene as an ideal spin-
tronic material [1–10]. Spin splitting or filtering in graphene is
predicted for half-metallic nanoribbons [2,11–13], modulated
Rashba fields [14], flakes [15], chains [16], or via the spin
Hall effect (SHE) [17–21]. Half-metallic systems are excellent
platforms for manipulating spin due to their inherent spin
filtering behavior. Self-assembled organometallic frameworks
[22] and graphene-boron-nitride structures [23], point defects
and hydrogenation [24–26], and, in particular, nanostructured
zigzag (zz)-edged devices [11–13,15,16,27–33] are among the
proposed graphene-based half metals. Spin filters have been
proposed using triangular dots [15,31] or perforations [29]
with many similarities, e.g., low-energy localized magnetic
states and a net sublattice imbalance. However, perforations,
or antidots [34–36], have the advantage over dots of being
embedded in the graphene sheet which allows a wide range of
spin-dependent transport properties. Although signatures of
localized magnetic states have been detected [37–39], spin
manipulation in graphene-based half metals has yet to be
realized in experiments.

In this Rapid Communication, we investigate the transport
properties of graphene devices with embedded zz-edged
triangular antidots. Such devices are within the reach of state-
of-the-art lithographic methods: Triangular holes in graphene
have recently been fabricated [40], and experiments suggest
the possibility of zz-etched nanostructures [41,42]. Another
possibility is to employ a lithographic mask of patterned
hexagonal boron nitride, which naturally etches into zz-edged
triangular holes [43,44]. The zz-edged structures support local
ferromagnetic moments [3], however, global ferromagnetism
is induced when the overall sublattice symmetry of the
edges is broken [11–13,16,27,28,45]. This occurs for zz-
edged triangles [15,29–33]. We have recently discussed the
electronic structure of triangular graphene antidot lattices
(GALs) [33]—here, we focus on transport through devices
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containing a small number of antidots. Our calculations show
that large spin-polarized currents are generated by the device
illustrated in Fig. 1(a). An unpolarized current incident from
the left is funneled below the triangle if the electron spin is up
(↑, red) and above if the spin is down (↓, blue), resulting in
spin-polarized currents at contacts top (T) and bottom (B),
respectively.

The sixfold symmetry of the graphene lattice allows only
two orientations for zz-edged triangles. A 180◦ rotation
exposes zz edges with magnetic moments of opposite sign.
In turn, this inverts both the scattering directions and spin
polarization simultaneously. An independent inversion of
either scattering direction or spin polarization would change
the direction of spin current flow, but inverting both restores the
spin current flow pattern [Fig. 1(b)]. This results in robust spin
behavior over a wide range of superlattice geometries. The zz-
edged triangular GALs have magnetic moment distributions
as shown in Fig. 1(c), and display half-metallic behavior over
a wide range of energies near the Dirac point. The roles of
the two spin orientations can be interchanged by gating, as
shown in Fig. 1(d). The magnetic profile remains qualitatively
similar when the side length is varied [insets of Fig. 1(c)],
changes sign under a 180◦ rotation, and magnetism vanishes
for the 90◦ rotated (armchair-edged) triangular antidot.

In analogy to (inverse) spin Hall measurements [21], we
study the transverse resistance generated by a longitudinal
current. Using a spin-polarized left contact we suggest a
method to distinguish between magnetic or nonmagnetic
antidots in such devices: The transverse resistance has a
characteristic antisymmetric behavior with respect to the Fermi
level only for spin-polarized antidots.

Geometry and model. The device in Fig. 1(a) consists of a
central graphene region with a single triangular antidot. (Below
we also consider a larger central region with an array of tri-
angles.) The device has four arms which terminate at metallic
contacts—left (L), right (R), top (T), and bottom (B)—which
act as sources of either unpolarized or single spin-orientation
electrons. The triangular antidots here have a side length
L� = 5a, where the lattice constant a = 2.46Å. The remaining
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FIG. 1. Device geometry (above) and infinite antidot lattice
results (below). Spin up (down) is denoted red (blue) throughout.
(a) Device geometry, with Wzz ≈ 6 nm, Wac ≈ 4 nm, L� ≈ 1 nm,
Lzz ≈ Lac ≈ 2 nm, and spin-splitting effect with color map display-
ing the local spin-dependent current magnitude for spin-unpolarized
injection through the left electrode (L) J s

L. (b) Same as (a) but with
a 180◦ rotated antidot. (c) Magnetic moment profile of the antidot
lattice: Moments are represented by circles with radii ∝|mi |. The
inset illustrates magnetic moment profiles for, from left to right,
L� = 1 nm, L� = 4 nm, rotated L� = 4 nm, and armchair-edged
L� = 1 nm. (d) Spin-dependent transmissions (Tσ ) and density of
states (ρσ ) of the antidot lattice. The lattice geometry is shown in the
inset and has a ∼6 × 6 nm square unit cell (dotted box).

dimensions in Fig. 1(a) are given in the caption. Our previous
work [33] validates the use of a nearest-neighbor tight-binding
Hamiltonian Hσ = ∑

i εiσ c†iσ ciσ + ∑
ij tij c†iσ cjσ , to describe

the electronic structure of such systems, where c†iσ (ciσ ) is
a creation (annihilation) operator for an electron with spin
σ on site i. The hopping parameter tij is t = −2.7 eV for
neighbors i and j , and zero otherwise. The T and B arm
widths are chosen to yield metallic behavior near the Fermi
level E = 0.

Local magnetic moments are included via spin-dependent
on-site energy terms εiσ = ±U

2 mi , with − for σ =↑ and +
for σ =↓. The on-site magnetic moments mi = 〈ni↑〉 − 〈ni↓〉,
where niσ is the number operator, are calculated from a
self-consistent solution of the Hubbard model within the mean-
field approximation. This is performed for the corresponding
extended GAL, displayed in the inset of Fig. 1(d), which
is an approximately square lattice with a 25a × 15

√
3a

(∼6 nm × 6 nm) unit cell. The four short graphene arm
segments are assumed to be nonmagnetic in order to isolate
the magnetic influence of the antidots. An on-site Hubbard
parameter U = 1.33|t | gives results in good agreement with
ab initio calculations in the case of graphene nanoribbons
[3]. The sublattice-dependent alignment of moments agrees
with Ruderman-Kittel-Kasuya-Yosida (RKKY) theory predic-
tions [46,47]. Our calculations assume that this extends to

J
c l

G
0

J
s l

J
c l

T
G

0

E

FIG. 2. (a) Local current magnitude through a device with a single
triangular antidot at E = 20 meV. (b) Spin polarization of currents
in the same system (red: spin up; blue: spin down). Bottom: Spin-
dependent transmissions left top [LT, (c)] and left bottom [LB, (d)].

intertriangle alignments also. Due to the large total moment
at each triangle, the intertriangle couplings should be stronger
than those between, e.g., vacancy defects with similar separa-
tions.

The transmission T σ
αβ for spin σ between two leads α and β

and local (bond) currents Jσ
α from lead α are calculated using

recursive Green’s function techniques [48]. They are T σ
αβ(E) =

Tr[�αGr
σ�βGa

σ ] and [Jσ
α ]ij = [Hσ ]jiIm[Gr

σ�αGa
σ ]ij , respec-

tively. Gr
σ (Ga

σ ) is the retarded (advanced) Green’s func-
tion, �α = −2 Im[�α] is the broadening for lead α, �α

is the self-energy, and i and j are indices of neigh-
boring sites. The spin and charge transmissions and lo-
cal currents are defined for independent spin channels
as T s

αβ(E) = T
↑
αβ(E) − T

↓
αβ(E), T c

αβ(E) = T
↑
αβ(E) + T

↓
αβ(E),

Js
α(E) = J↑

α(E) − J↓
α(E), and Jc

α(E) = J↑
α(E) + J↓

α(E), re-
spectively. The metallic leads are included via an effective
self-energy �metal = −i|t | added to the edge sites of the
metal/graphene interfaces [49]. For spin-polarized contacts,
the self-energy for one spin channel is set to zero. The
four-terminal transverse resistance Rxy is determined using
L and R as the source and drain and T and B as voltage probes,

Rxy = VTB/I c
L. (1)

where the transverse potential drop eVTB = μT − μB. Using
the Landauer-Büttiker relation, the charge currents through
lead α are I c

α = ∑
βσ T σ

βα(μα − μβ). It is assumed that spin
mixing occurs in the T and B leads, yielding spin-unpolarized
potentials μ

↑
T = μ

↓
T and μ

↑
B = μ

↓
B. We apply source and drain

potentials μL = eVLR and μR = 0, while T and B probes carry
zero current, I c

T = I c
B = 0. The resistance is then determined

by solving for μT, μB, and the longitudinal current.
Results and discussion. Transport properties of the system

in Fig. 1(a) are presented in Fig. 2. The spatial spin separation
is illustrated by the magnitude of the local charge current
J c

L,i = [Jc
L]

i
and its spin polarization J s

L,i/J
c
L,i = [Js

L]
i
/[Jc

L]
i
at

E = 20 meV, in Figs. 2(a) and 2(b), respectively. At this
energy, ↓ electrons are channeled above the antidot and ↑
electrons below it. Incoming ↑ electrons are backscattered
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FIG. 3. (a) Schematic of the graphene cross device with a 5 × 4
array of triangular antidots. All triangles are oriented in the same
direction with same magnetic moment profile, i.e., as in Fig. 1(c)
(red triangles). Wzz = 60

√
3a ≈ 26 nm and Wac = 131a/2 ≈ 16 nm.

(b) The splitting efficiency, as defined in main text, of the 5 × 4 array
(solid) and the single-antidot (dotted) devices. (c) The local charge
currents and (d) spin polarization for injection from the left electrode
for E = 20 meV (red: spin up; blue: spin down).

near the top vertex of the triangular antidot. This ↑-electron
behavior is also seen for both spins in the unpolarized system,
i.e., letting all mi → 0 (not shown), and is due to geometrical
factors: The jagged top half of the device is a more effective
backscatterer in general than the nanoribbonlike bottom half.
Conversely, the ↓ behavior is the opposite: Backscattering
occurs in the lower half of the device. This behavior is
indicative of scattering near the bottom edge of the triangle
which only occurs for ↓ electrons. This is supported by the
presence of strong ↓ local density of states (DOS) features
at the middle of each edge in the corresponding bulk lattice
[33]. Therefore, the scattering of ↑ electrons is dictated mainly
by the triangular shape of the antidot, whereas ↓ electrons
are more sensitive to the magnetic profile. The L-T and L-B
transmissions shown in Figs. 2(c) and 2(d) reveal that the
spin polarization occurs for a broad range of energies. Thus,
a single-antidot device can partially split or filter incoming
currents into either T or B with a large degree of polarizations
T s/T c ∼ 70%–90%.

A 5 × 4 array of triangular antidots is shown in Fig. 3(a).
We first assume that the magnetic moment profile is the same
for each antidot [illustrated in Fig. 3(a) by red triangles] but
below we relax this assumption. The electronic splitting of the
spin currents can be quantified by an effective figure of merit

η = T
↓

LT − T
↑

LT + T
↑

LB − T
↓

LB∑
σα =L T σ

Lα

, (2)

where η → 1 for perfect spatial spin splitting into T and B.
The figure of merit in Fig. 3(b) is larger for the array (solid
line) than for the single-antidot device (dotted line), further
illustrated by the charge and spin currents at E = 20 meV in
Figs. 3(c) and 3(d). The ↑ electrons are effectively blocked

FIG. 4. (a), (b), (d) Transport splitting efficiency of 5 × 4 an-
tidot arrays with different disorder. The splitting efficiency of ten
disordered device realizations is shown in gray, the configurational
average for each type in black, and the pristine 5 × 4 array in black
dashed [reproduced from Fig. 3(b)]. (a) Random flipping of antidots
and reversal of spin polarization (see inset). An additional array
realization with every second antidot flipped (5 × 4R) is shown by
the black dotted curve. (b) Random variation of side length, as in the
inset. (c) Realization of an antidot with removed atoms (black arrows)
and the corresponding magnetic moment profile. The moment profile
here and in Fig. 1(c) are scaled equally. (d) Splitting efficiencies for
antidot edge atom disorder [see (c)].

away from the array because of half metallicity at this energy,
and are either backscattered, or directed towards the B contact.
The ↓ electrons, on the other hand, may enter the array,
but have a large probability of deflection towards the T
contact due to repeated scattering of the type discussed for the
single-antidot case. Thus, a large imbalance between the spin-
resolved transmissions develops, with T and B polarizations
T s/T c ∼ 99% around E = 20 meV, and η is enhanced.

The ↓ behavior is similar to the ratchet effect previously
noted for triangular perturbations in graphene [50]. The spatial
spin splitting shown here is somewhat analogous to the SHE
[17–21], where currents of opposite spin are pushed to the
opposite edges of the device. A key distinction is that our
device does not require spin-orbit coupling, or topologically
protected transport channels. Even though the antidots share
many similarities with regular dots, the enhanced spin splitting
by repeated scattering from different antidots is difficult to
envision in a dot-based system.

In experiments, disorder severely degrades properties of
atomically precise antidot lattices [51]. The half metallicity
of triangular GALs is unusually robust against lattice disorder
[33]. In Fig. 4, we study the effect of disorder in a 5 × 4 antidot
array using three different methods and ten realizations of each
disorder type.

The first disorder type is a random flip of individual antidots,
as illustrated in the inset of Fig. 4(a). The individual (gray
solid) and averaged (black solid) figures of merit for this
disorder [Fig. 4(a)] are of the same order as the pristine 5 × 4
array (black dashed). This is expected as the standard and
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FIG. 5. Transverse resistance R in units of R0 = h/e2 for a
single-antidot device and two 5 × 4 array devices when injecting
only ↑ electrons into the L lead (shown in red). The resistances
of spin-unpolarized (mi = 0) and spin-polarized (M = ∑

mi = 0)
antidot devices are shown in black and red, respectively. (a) Single-
antidot device, with the inset showing a schematic of ↑-polarized
electron injection. (b) 5 × 4 array devices with aligned (solid) and the
alternatingly flipped triangles (dotted). The inset shows the schematic
of a 5 × 4 array device with ↑-polarized electron injection).

flipped single-triangle devices display very similar behavior
[Figs. 1(a) and 1(b)]. For comparison, for the case where every
second antidot has been flipped [5 × 4R (black dotted)], the
efficiency is almost exactly identical to the disordered average.
The spread of the different disorder realizations (gray curves)
is very small, suggesting that the orientation of the individual
antidots plays only a very minor role in these devices, and
may even improve the figure of merit compared to the lattice
of aligned antidots.

The second disorder type [inset of Fig. 4(b)] randomly
varies the triangle side lengths L → L ± δL, where δL ∈
{0,a,2a}. The individual and the averaged splitting efficiencies
are shown in Fig. 4(b). The effect of this disorder is minimal,
suggesting that it is the presence of multiple spin-dependent
scatterers with similar qualitative behavior and not their exact
positioning or size, which enhances the spin-splitting effect.
Enlarging or shrinking a triangle changes the length of the
spin-polarized zz edge, and thus the total magnetic moment
of an individual triangle [see the inset of Fig. 1(c), and
the Supplemental Material [52]]. However, the qualitative
scattering processes are unchanged.

The third type of disorder, in Fig. 4(c), randomly removes
Nrem � 3 edge atoms. Removing an edge atom splits the
zz edges into smaller segments and significantly influences
the magnetic moment profile (see also the Supplemental
Material [52]). Random flipping of local moments should play
a similar role. Each device realization comprises several anti-
dots with a randomly chosen Nrem ∈ {0,1,2,3}. The splitting
efficiencies shown in Fig. 4(d) show some deviations from
pristine behavior. This can be attributed to the reduction of

the total magnetic moment as well as the random introduction
of scattering centers at each of the antidots. Edge disorder
is particularly severe for small antidots and is capable of
quenching magnetism entirely at some edges. The longer edge
lengths likely in experiment will be more robust against this
type of disorder.

Finally, we consider the transverse resistance in a four-
terminal device. The resistances Rxy of the single-antidot
device and the 5 × 4 and 5 × 4R devices are shown in Figs. 5(a)
and 5(b), respectively. The difference between the top and
bottom chemical potentials is μT − μB ∝ T c

LTT c
RB − T c

RTT c
LB,

and vanishes in the case of complete left-right symmetry.
For spin-unpolarized electrons the system is exactly L/R
symmetric and the resistance is zero (not shown). Figure 5
shows cases with a ↑-polarized L lead. The transverse
resistances in Fig. 5(a) through a single magnetic antidot (red)
show clear antisymmetry with respect to energy. At positive
energies, the fact that the ↓ electrons are now not flowing
between L and T has the effect of shifting the potential at T
closer to that at the R lead, i.e., μT < eVLR/2. Simultaneously,
the potential at B remains close to midway between the L and R
potential, i.e., μB ∼ eVLR/2. This yields a negative transverse
potential drop μT − μB < 0 and in turn a negative resistance
Rxy < 0. For E < 0 the spins are flipped and the sign of both
the potential drop and the resistance is inverted. When the
antidot is unpolarized, positive and negative energies behave
similarly, and the resistance is symmetric across the Fermi
level, as shown in Fig. 5 (black). The same is seen for the both
the 5 × 4 array and the 5 × 4R array devices in Fig. 5(b). This
clear distinction between magnetic and nonmagnetic antidots
provides an excellent measure of whether the device actually
splits spin currents, and can, in general, be used to detect
magnetism in other nanostructured devices.

Summary. We have demonstrated that magnetic triangular
antidots in graphene provide an efficient platform for spatial
spin-splitting devices. The incoming current is split into
output leads according to spin orientation, analogous to the
spin Hall effect, but without relying on spin-orbit effects.
The outgoing spin polarizations can be flipped using a gate
potential. The predicted performance is robust against typical
disorders present in realistic devices. The transverse resistance
yields a clear signal distinguishing the magnetic nature of the
perforations.
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Richter, Phys. Rev. Lett. 100, 177207 (2008).
[28] B. Wang, J. Wang, and H. Guo, Phys. Rev. B 79, 165417 (2009).
[29] X. H. Zheng, G. R. Zhang, Z. Zeng, V. M. Garcı́a-Suárez, and
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