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ARTICLE

The impact of stochastic lead times on the bullwhip effect –
a theoretical insight
Zbigniew Michna a, Peter Nielsen b and Izabela E. Nielsenb

aUniwersytet Ekonomiczny we Wroclawiu, Wroclaw, Poland; bDepartment of Materials and Production,
Aalborg University, Denmark

ABSTRACT
In this article, we analyze the models quantifying the bullwhip
effect in supply chains with stochastic lead times and find advan-
tages and disadvantages of their approaches to the bullwhip
problem. Moreover, using computer simulation, we find interest-
ing insights into the bullwhip behavior for a particular instance of
a multi-echelon supply chain with constant customer demands
and random lead times. We confirm the recent finding of Michna
and Nielsen that under certain circumstances lead time signal
processing is by itself a fundamental cause of bullwhip effect
just like demand-signal processing is. The simulation also shows
that in this supply chain the delay parameter of demand forecast-
ing smooths the bullwhip effect at the manufacturer level much
faster than the delay parameter of lead time forecasting.
Additionally, in the supply chain with random demands, the
reverse behavior is observed, that is, the delay parameter of lead
time forecasting smooths bullwhip effect at the retailer stage
much faster than the delay parameter of demand forecasting. At
the manufacturer level, the delay parameter of demand forecast-
ing and the delay parameter of lead time forecasting dampen the
effect with a similar strength.
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1. Introduction

In this paper, we investigate and review the problem of stochastic lead times in supply
chains. Our goal is to present analytical models in which bullwhip effect is quantified and
especially stochastic lead times are included. Based on theoretical models, we find the
parameters responsible for the bullwhip effect and quantify their impact on bullwhip.
Moreover, we present simulation experiments where we confirm theoretical results of the
presented models and draw conclusions about more complicated and realistic supply
chains for which theoretical models do not exist. Recently, the impact of stochastic lead
times on the bullwhip effect has been studied very intensively but lead time forecasting
and its influence on the bullwhip effect requires both deep analysis and new models. First,
we analyze a model (Michna, Nielsen, & Nielsen, 2013) (a slight modification of Kim,
Chatfield, Harrison, & Hayya, 2006) where stochastic lead times and lead time demand
forecasting are considered. In this model, the analytical expression for the bullwhip effect
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measure indicates that the distribution of lead times (the probability of the longest lead
time, its expectation, and variance) and the delay parameter of the lead time demand
prediction are the main causes of the bullwhip phenomenon. Next, we investigate the
work of Duc, Luong, and Kim (2008), where stochastic lead times are considered without
forecasting and finally a recent model of Michna and Nielsen (2013) where the bullwhip
effect is quantified in the presence of lead time forecasting. Moreover, we extend the
model of Michna and Nielsen (2013) for more echelons, and – using simulation – we find
some interesting insights into the bullwhip effect’s behavior when demands and lead
times are forecasted separately. We conduct two experiments where we confirm the
impact of lead time signal processing on the bullwhip effect in multi-echelons supply
chains even if the customer demand is deterministic. Moreover, from the simulations, we
draw interesting conclusions about the dampening of bullwhip throughout the increase of
the number of past observations included in the demand and lead time forecasting.

The remainder of the paper is structured as follows: The next section analyses the
current main models of supply chains with stochastic lead times, which quantify
bullwhip effect. Moreover, we expand and modify some of the results and add computer
simulation of multi-echelon supply chains. Finally, we present conclusions and future
research opportunities.

2. Models with stochastic lead times

Nielsen, Michna, and Nielsen (2017) establish that at least in some cases, lead times can be
considered to be independent and identically distributed (i.i.d.). Thus, a logical next step is
to analyze the current state of research into supply chains where lead times are assumed to
be stochastic. Lead times are typically regarded as the second main cause of the bullwhip
effect after demand forecasting (see, e.g. Chen, Drezner, Ryan, & Simchi-Levi, 2000a).
Theoretically, zero lead time would eliminate the bullwhip effect. In practice, lead times
consist of two components: physical delays and information delays. In models, one does not
distinguish between these components as lead time is the time between when a member of
a supply chain places an order and the epoch when the product is delivered to the member.
The assumption that the lead time is constant is only theoretical. Undoubtedly, in many
supply chains, physical and information delays vary, which means that a member of a
supply chain does not know the values of the future lead times and must predict them
using past observed lead times. This is supported by, for example, Disney, Maltz, Wang,
and Warburton Roger (2016) and Nielsen et al. (2017).

The main difference in supply chain models with stochastic lead times lies in the
definition of the lead time demand forecast. Let us recall that the following defines the
lead time demand at the beginning of a period t (at a certain stage of the supply chain):

DL
t ¼ Dt þ Dtþ1 þ . . .þ DtþLt�1 ¼

XLt�1

i¼0

Dtþ1; (1)

where Dt, Dt+1, . . . denote demands (from a stage below) during t, t + 1, . . . periods, and
Lt is the lead time of the order placed at the beginning of the period t (order placed to a
stage above). This value sets down the demand during a lead time. The demands come
from the stage right below, and the lead times come from the supplier right above. That is,
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they are delivery lead times of the supplier that is right above the receiving supply chain
member. This quantity is necessary to place an order. The member of the supply chain does
not know its value at time t but must predict it to place an order. Thus, to analyze the
bullwhip effect, we need to examine the definitions of lead time demand forecasting D̂L

t .
The approaches to this problem vary greatly in models with stochastic lead times, and some
of them cannot be feasible in practice. The problem of the lead time demand prediction is
much more complicated if lead times are stochastic as the forecasting of lead time demand
is then much more cumbersome. In all the presented models, we consider a simple two-
stage supply chain consisting of customers, a retailer, and a manufacturer. Moreover, we
will assume that the retailer uses the order-up-to-level policy (which is optimal in the sense
that it minimizes the total discounted linear holding and backorder costs if there are no
crossovers), then the level of the inventory at time t has to be:

St ¼ D̂L
t þ zbσt; (2)

where D̂L
t is the lead time demand forecast at the beginning of the period t (i.e. the

prediction of the quantity given in (1)), and:

σ̂2t ¼ VarðDL
t � D̂L

t Þ; (3)

is the variance of the forecast error for the lead time demand, and z is the normal z-score
that specifies the probability that demand is fulfilled by the on-hand inventory, and it can
be found based on a given service level. The definition of σ̂2t differs in articles (see, e.g.
Chen et al., 2000a; Chen, Ryan, & Simchi-Levi, 2000b; Duc et al., 2008; Kim et al., 2006)
which results in slightly different formulas of the bullwhip effect measure (e.g. equality
instead of inequality). Practically, instead of variance, one must use the empirical variance

of DL
t � D̂L

t . This complicates the theoretical derivation of the bullwhip measure signifi-
cantly. Moreover, we should note that the estimation of σ̂2t increases the size of the
bullwhip. Under the above assumptions, using the order-up-to-level policy quantity
qt placed by the retailer at the beginning of a period t is:

qt ¼ St � St�1 þ Dt�1; (4)

Negative values of qt are allowed; they correspond to returns.

2.1. Lead time demand forecasting using moving average

We will analyze a model which is a slight modification of Kim et al. (2006). In this
model, the bullwhip effect is quantified in the presence of stochastic lead times where
lead time demand is forecast using the moving-average method (see Michna et al., 2013
for a deeper discussion of Kim et al., 2006 and proofs). We assume that the customer’s
demands constitute an i.i.d. Dtf g1t¼�1; and the lead times Ltf g1t¼�1 are also indepen-
dent and identically distributed, and the sequences are mutually independent. Let us
put EDt ¼ μD; VarDt ¼ σ2D; ELt ¼ μL and VarLt ¼ σ2L: Additionally, we assume that
lead times are bounded random variables, that is, Li � M, where M is a positive integer.
This assumption is not adopted in Kim et al. (2006), but it is necessary to make the
prediction of lead time demands. More precisely, we get back at least M periods to
forecast lead time demand, that is, at time t, we surely know lead time demands of times
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t-M, t-M–1,. . ., and we may not know lead time demands of times t-M + 1, t-M + 2,. . ..
The orders with these lead times may not be realized at time t, or if they were realized,
they would be improbably short, and that means that including these lead times could
distort the forecasting. We will need to know the distribution of Lt to calculate the
bullwhip effect measure, that is, we assume that:

P Lt ¼ kð Þ ¼ pk;

where k = 1, 2,. . ., M and k are the number of periods (in practice, we estimate these
probabilities). Thus, the prediction of the lead time demand at time t using the method
of moving average with the length n is as follows.

D̂L
t ¼

1
n

Xn�1

j¼0

DL
t�M�j: (5)

Theorem 1 Under the above assumptions and for n � M; the bullwhip effect measure is
as follows:

BM ¼ Varqt
VarDt

¼ 1þ 2pM
n

þ 2μL
n2

þ 2μ2Dσ
2
L

σ2Dn2
(6)

Proof: See Michna et al. (2013).

It is much more difficult to find the bullwhip effect measure under the above
assumptions in the case n<M: In practice, the case n � M is more useful because a
large value of n is much more common in real supply chains. The term ((2pM)/n) in the
formula (6) is the largest one as a function of n. Thus, the probability of achieving the
longest lead time is a crucial parameter in reducing bullwhip. Moreover, if pM ¼ 0; and
we still get back M periods in the prediction of lead time demands, then the bullwhip
effect measure is reduced by the term (O(1/n)) and is of the form:

Varqt
VarDt

¼ 1þ 2μL
n2

þ 2μ2Dσ
2
L

σ2Dn
2
:

Moreover, the formula (6) reveals that the bullwhip effect depends on the lead time
distribution through its mean and variance and the probability of the longest lead time.
Another important parameter as (6) shows is that the delay parameter n is responsible
for forecasting and carries the information on past lead time demands. It is easy to
notice that the delay parameter n can diminish the bullwhip effect if it increases, which
practically means that the more accurate forecasting, the smaller the bullwhip effect
(which is completely analog to the findings in Chen et al. (2000a) on demand
forecasting).

2.2. Stochastic lead times without forecasting

In Duc et al. (2008), stochastic lead times are investigated under the assumption that
they are i.i.d. The simplest two-stage supply chain is analyzed with a first-order
autoregressive AR(1) demand process and an extension to a mixed first-order
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autoregressive moving-average ARMA(1,1). More precisely, the demands from custo-
mers to the retailer constitute the first-order autoregressive moving-average AR(1), that
is, {Dtg1t¼�1 is a stationary sequence of random variables which satisfy:

Dt ¼ μþ ρDt�1 þ �t;

where μ > 0; ρj j< 1 and �tf g1t¼�1e is a sequence of independent identically distrib-
uted random variables such that E�t ¼ 0 and Var�t ¼ σ2: It is easy to notice that

EDt ¼ μD ¼ μ
1�ρ ; EDt ¼ μD ¼ μ

1�ρ ; VarDt ¼ σ2D ¼ σ2

1�ρ2 and the correlation coefficient

Corr Dt; Dtþ1ð Þ ¼ ρ: Moreover, it is assumed that the demands are forecast using the

minimum-mean-squared-error forecasting method. If D̂tþi denoted the forecast for a
demand for the period t + i at the beginning of a period t (i.e. after i periods), then
employing the minimum-mean-squared-error forecasting method we get:

D̂tþi ¼ E Dtþ1j;Dt�1;Dt�2; . . .ð Þ

¼ μD 1� ρiþ1
� �þ ρiþ1Dt�1; (8)

where Dt�j j ¼ 1; 2; . . . are demands which have been observed by the retailer until the
beginning of a period t. Then, the lead time demand at the beginning of the period t is
defined by Duc et al. (2008) as follows.

D̂L
t ¼

XLt�1

i¼0

D̂tþi;

where D̂tþi is given in Eq. (8). Let us notice that the above lead time demand forecast is not
practically feasible, because we do not know the value of Lt at the beginning of the period t.
Practically, to place an order, we must forecast demands and lead times which means that

in the above lead time demand forecast we need to substitute a lead time prediction L̂t
instead of Lt. As in the previous model, the retailer uses the order-up-to-level policy and
the level of inventory St is given in (2). The variance of the forecast error for the lead time
demand and the order quantity qt placed by the retailer at the beginning of a period t are
defined in (3) and (4), respectively. The main result of Duc et al. (2008) is the following.

Theorem 2 Under the above assumptions with the minimum-mean-squared-error fore-
casting method the bullwhip effect measure is:

BM ¼ Varqt
VarDt

Duc et al. (2008) give numerical examples and calculate the value of BM for specific
distributions of Lt, for example, three-point distribution, geometric distribution,
Poisson distribution, and discrete uniform distribution. The plots of BM as a function
of the autoregressive coefficient ρ for a fixed σD/μD are presented. It is interesting to
note that the minimal value of BM is attained for ρ around −0.6 and −0.7. The maximal
value of BM is for ρ around 0.6 or 1.
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In Duc et al. (2008), the results are extended for ARMA(1,1) demand processes (the
mixed first-order autoregressive moving-average process). In this case, the structure of
demands is defined as follows:

Dt ¼ μþ ρDt�1 þ �t � θ�t�1:

where μ; ρ; and �t are the same as in the case of AR(1) demand process and θj j< 1:
Then, under the same assumptions (the order-up-to-level inventory policy and the
minimum-mean-squared-error forecasting method), the bullwhip effect measure is
given (see Duc et al., 2008).

Theorem 3 Under ARMA(1,1) demand process with the minimum-mean-squared-error
forecasting method the bullwhip effect measure is:

BM ¼ Varq t

VarDt

¼ 1� ρ2ð Þ 1� θð Þ 1� θþ 2 θ� ρð ÞEρLt½ � þ 2ðρ� θÞ2½Eρ2Lt � ρ EρLtÞ2� �
ð1� ρÞ2 þ 1þ θ2 � 2θ

� � þ 2μ2Dσ
2
L

σ2D

Numerical results for the case of ARMA(1,1) demand process provide the same trends
as those of the AR(1) case.

2.3. Stochastic lead times with forecasting

In the work of Michna and Nielsen (2013), the impact of lead time forecasting on the
bullwhip effect is investigated. It is assumed that lead times and demands are forecast
separately which seems to be a very natural and practical approach if they are mutually
independent. More precisely, the lead time demand prediction is the following:

D̂L
t ¼ L̂tD̂t ¼ 1

mn

Xm
i¼1

Lt�i

Xn
i¼1

Dt�i; (9)

where we use the moving-average method for lead times and demands with the delay
parameters m and n, respectively. Moreover, we assume that lead times and demands
constitute i.i.d. sequences which are mutually independent. The motivation for the lead
time demand forecasting given in Eq. (9) follows EDL

t ¼ ELED (see eq. (1)) (under the
assumptions that demands and lead times are mutually independent), and employing
natural estimators of ELandED, we arrive at Eq. (9). Under the same assumptions as in
the previous models on the policy and the lead time demand forecast error, the
following result is proven (Michna & Nielsen, 2013).

Theorem 4 The measure of the bullwhip effect in a two-stage supply chain has the
following form:
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BM ¼ Varqt
VarDt

¼ 2σ2L mþ n� 1ð Þ
m2n2

þ 2μ2Dσ
2
L

σ2Dm2
þ 2μ2L

n2
þ 2μL

n
þ 1:

The above theoretical model shows that one cannot avoid lead time forecasting when
placing orders and the variance of orders will increase dramatically if a crude estimation
of lead time (e.g. small m) or no estimation is used (e.g. assuming a constant lead time
when placing orders). Moreover, demand-signal processing and lead time signal pro-
cessing, that is, the practice of adjusting demand and lead time forecasts which result in
adjusting the parameters of the inventory replenishment rules are the main and equally
important causes of the bullwhip effect.

To confirm the theoretical results derived in Michna and Nielsen (2013) and show
the impact of stochastic lead times and their forecasting on the bullwhip effect, we
simulate the bullwhip effect measure in a supply chain which consists of three echelons.
This supply chain is shown in Figure 1.

We conducted two experiments. In the first, we put constant customer demands and
stochastic lead times to investigate the influence of stochastic lead times and their
forecasting on their own that is we exclude the impact of stochastic demands at the
customer level and their forecasting. This simulation confirms the importance of the
lead time signal processing. In the second experiment, we include stochastic demands
and their forecasting and can confirm the theoretical conclusion derived in Michna and
Nielsen (2013). Both experiments are conducted in Matlab and a Monte Carlo method
is used to get variance of orders at every stage of the supply chain. Moreover, we take
realistic parameters of the underlying supply chain. Thus, going into details in the first
simulation, we assume that client demands are deterministic, that is, during a given
period (this will be one time unit, e.g. a day), we observe the same constant demand D.
Above the customers in our supply chain, we have a retailer, a manufacturer, and a
supplier. Between the manufacturer and the retailer, there are stochastic lead times
which create an i.i.d. sequence (i.e. they are the delivery times of the manufacturer to
the retailer). Similarly, we observe random lead times between the supplier and the

Figure 1. Simulated supply chain setup.
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manufacturer, and they constitute an i.i.d. sequence. These two sequences are mutually
independent. Moreover, we take the review period equal to one time unit (a day), and
the lead times are discrete uniform random variables taking on values 1, 2,. . ., 7 (time
units, e.g. days). The retailer uses the order-up-to-level policy and the moving-average
method to predict lead times with the delay parameter m (customer demands are a
constant equal to 5000 – e.g. a number of units of goods, so they are not predicted by
the retailer). Similarly, the manufacturer places orders to its supplier, that is, he uses the
order-up-to-level policy and the moving-average method to predict lead times with the
delay parameter m and the demands with the delay parameter n (the demands of the
retailer are now random by random lead times in his lead time demand forecast). In
Table 1, the simulation results are given for the ratio of variances of the manufacturer
and the retailer orders (variance of customer demand is zero). The simulation results
show that the bullwhip effect still exists and is quite big even if customer demands are
constant but lead times between the echelons are random. Here, one can conclude that
the lead time signal processing alone is a fundamental cause of the bullwhip effect just
like the demand-signal processing. Moreover, we get a very interesting feature of this
supply chain (i.e. with deterministic customer demand) that the delay parameter of
demand forecasting n smoothes bullwhip much faster than the delay parameter of lead
time forecasting m.

Under the same assumptions as above, we simulate the bullwhip effect adding that
customer demands are stochastic and i.i.d. following a uniform distribution with the
range (4500; 5500) the same number of unit goods as before and independent of lead
times. Let us notice that the mean value of demands equals the deterministic demand in
the first experiment that is 5000 units of goods. In Table 2, the bullwhip effect at the
retailer stage is given, that is, the quotient of the retailer variance and the customer
demand variance. Table 3 shows the same as in Table 2 but calculated theoretically
using the formula of Th. 4. Here, we get the reverse behavior from the case of
deterministic demands. That is, the delay parameter of lead time forecasting m
smoothes bullwhip much faster than the delay parameter of demand forecasting n

Table 1. The bullwhip effect measure for stochastic lead times and constant customer demands –
manufacture/retailer orders.
m/n 1 2 6 10 20

1 61.6592 17.9880 4.4984 3.3532 2.4048
3 39.1578 14.5778 4.3510 3.1641 2.4692
6 44.2991 14.4909 5.4784 3.0812 2.4720
10 42.9382 13.8638 4.3274 3.6823 2.4074
15 42.4075 14.5218 4.0920 3.1734 2.5155
20 43.292 14.194 4.150 3.165 2.744

Table 2. The bullwhip effect measure at the retailer stage for stochastic lead times and stochastic
customer demands.
m/n 1 2 6 10 20

1 2506.6 2336.7 2392.4 2380.9 2549.4
3 310.13 280.31 269.90 267.19 265.30
6 107.60 78.70 68.65 71.21 68.86
10 67.313 37.270 26.465 25.997 25.889
20 46.8218 19.3528 9.2602 8.1362 7.4563
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(see Tables 2 and 3). Moreover, we get that the theoretical result of Michna and Nielsen
(2013) (Th. 4) and our simulation coincide perfectly. Finally, in Table 4, we have the
bullwhip effect measure at the manufacturer stage, that is, the ratio of the manufacturer
order variance and the customer demand variance (we could count the quotient of the
manufacturer order variance and the retailer order variance, but it is easy to get this
having also the ratio of the retailer variance and the customer demand variance [see
Tables 2 and 3]). The simulation results for the bullwhip effect at the manufacturer
stage show that the delay parameter of demand forecasting n and the delay parameter of
lead time forecasting m dampen the effect with a similar strength.

3. Conclusions and future research opportunities

The main conclusion from our research is that stochastic lead times boost the bullwhip
effect. More precisely, we deduce from the presented models, that the increase of the
expected value and variance of lead times and the probability of the longest lead time
amplify the bullwhip effect. Moreover, the delay parameter of the prediction of
demands, the delay parameter of the prediction of lead times, and the delay parameter
of the prediction of lead time demands are, depending on the model, crucial parameters
which can dampen the bullwhip effect. The simulations yield a very interesting con-
clusion that the strength of dampening the bullwhip effect is different for the demand
prediction and lead time prediction depending on the stage of a supply chain. We must
also note that in all the presented models, the bullwhip effect measure contains the term
2μ2Dσ

2
L

σ2D
(see Th. 1, 2, 3, and 4) and, except for the model of Duc et al. (2008), this term

can be terminated by the prediction (going with n or m to ∞). The conclusions
especially the impact of lead time signal processing on the bullwhip effect can be
applied in supply chains where stochastic lead times are observed and the moving-
average forecasting method is used which are quite common at many manufacturers.
Theoretical formulas and simulations reveal parameters which are essential to dampen
the bullwhip effect, e.g. the number of the past observation used to predict future

Table 3. The bullwhip effect measure at the retailer stage for stochastic lead times and stochastic
customer demands calculated theoretically.
m/n 1 2 6 10 20

1 2449.0 2417.0 2404.6 2402.9 2401.9
3 310.33 280.55 270.08 268.89 268.19
6 109.00 80.055 69.956 68.820 68.160
10 65.800 37.220 27.255 26.135 25.485
20 47.400 19.105 9.2361 8.1258 7.4820

Table 4. The bullwhip effect measure at the manufacturer stage for stochastic lead times and
stochastic customer demands.
m/n 1 2 6 10 20

1 194,700 41,742 10,720 8024.0 5891.9
3 13,495 4221.1 1191.6 856.245 676.579
6 5821.1 1216.1 364.729 226.268 171.459
10 3671.5 581.341 112.412 93.529 62.333
20 2840.2 316.308 37.244 23.710 18.972
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demand and future lead time or the parameters of the demand distribution and the lead
time distribution.

Future research on quantifying the bullwhip effect should aim at supply chains which
observe stochastic lead times with a different structure than i.i.d. and dependence
between lead times and demands. To improve the modeling of lead times requires
data such as can be gathered, for example, by technologies like radio frequency
identification (Nielsen, Lim, & Nielsen, 2010). Another challenge in bullwhip modeling
is the problem of lead time forecasting and its impact on the bullwhip effect. A member
of a supply chain placing an order must forecast lead times to determine an appropriate
inventory level to fulfill its customer orders in a timely manner. This implies that lead
times influence orders. In turn, orders can impact lead times. This feedback loop can be
the most important factor causing the bullwhip effect and seems to be relevant but very
difficult to quantify. The next problem arising in the presence of stochastic lead times is
crossover of lead times and its impact on bullwhip (see Wang & Disney, 2017) which is
now a very painful phenomenon of modern supply chains. Moreover, simultaneous
dampening of bullwhip and inventory level variability can significantly decrease costs
which yields that order variance and net stock variance should be analyzed (see Wang &
Disney, 2017). Other replenishment policies such as proportional order-up-to-level
policy should be investigated in the context of bullwhip and stock level variability
when stochastic lead times are assumed with crossovers. Thus, the spectrum of models
which reflect structures of many realistic supply chains and must be investigated is very
wide. However, these problems do not seem to be solved easily by providing analytical
models alone (see Wang & Disney, 2017) for the progress and trends in the bullwhip
effect research).
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