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NON-ISOTROPIC CUSP CONDITIONS AND

REGULARITY OF THE ELECTRON DENSITY OF

MOLECULES AT THE NUCLEI

S. FOURNAIS, M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF,
AND T. �STERGAARD S�RENSEN

Abstract. We investigate regularity properties of molecular one-
electron densities � near the nuclei. In particular we derive a re-
presentation

�(x) = eF(x)�(x)

with an explicit function F , only depending on the nuclear charges
and the positions of the nuclei, such that � 2 C1;1(R3), i.e., � has
locally essentially bounded second derivatives. An example con-
structed using Hydrogenic eigenfunctions shows that this regularity
result is sharp. For atomic eigenfunctions which are either even or
odd with respect to inversion in the origin, we prove that � is even
C2;�(R3) for all � 2 (0; 1). Placing one nucleus at the origin we
study � in polar coordinates x = r! and investigate @

@r
�(r; !) and

@2

@r2
�(r; !) for �xed ! as r tends to zero. We prove non-isotropic

cusp conditions of �rst and second order, which generalize Kato's
classical result.

1. Introduction and statement of the results

We consider a non-relativistic N -electron molecule with the nuclei
�xed in R3. The Hamiltonian describing the system is given by

H =
NX
j=1

�
��j �

KX
k=1

Zk
jxj �Rkj

�
+

X
1�i<j�N

1

jxi � xjj
: (1.1)

Here the Rk, k = 1; : : : ; K; Ri 6= Rj for i 6= j, denote the posi-
tions of the (�xed) nuclei in R

3 with charges Z1; : : : ; ZK , and the
xj = (xj;1; xj;2; xj;3) 2 R

3, j = 1; : : : ; N , denote the positions of
the electrons. The �j; j = 1; : : : ; N , are the associated Laplacians

so that � =
PN

j=1�j is the 3N -dimensional Laplacian. Let x =

(x1; x2; : : : ; xN) 2 R
3N and r = (r1; : : : ;rN) denote the points in
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R
3N and the 3N -dimensional gradient operator respectively. We write

H = ��+ V where V is the multiplicative potential

V (x) = �
NX
j=1

KX
k=1

Zk
jxj �Rkj

+
X

1�i<j�N

1

jxi � xjj
: (1.2)

Here we neglect the internuclear repulsion W =
PK

1�k<`�K
ZkZ`

jRk�R`j

which is just an additive term in the �xed-nuclei approximation.
The operatorH is selfadjoint with operator domainD(H) = W 2;2(R3N)

and form domain Q(H) = W 1;2(R3N) [14].
Let  be an eigenfunction of H corresponding to an eigenvalue E 2

R, that is,

H = E : (1.3)

We shall here only consider eigenfunctions  2 L2(R3N)1.
Note that physical molecular eigenfunctions have to satisfy the Pauli

principle. This is however irrelevant to our results and we impose no
such condition.
The operator in (1.1) (possibly with the addition of the internuclear

repulsion W ) can be considered as the standard model for atoms and
molecules in quantum mechanics. The analysis of H is fundamental
for the understanding of the properties of atoms, molecules or, more
generally, of matter2.
It is well known that every eigenfunction  of H is Lipschitz-conti-

nuous [13] and real analytic away from the points in con�guration space
R
3N where the potential V de�ned in (1.2) is singular (see [12, Section

7.5, pp. 177{180]). In this paper we investigate regularity properties
of the electron density � associated to an eigenfunction  . The density
� is de�ned by

�(x) =
NX
j=1

�j(x) =
NX
j=1

Z
R3N�3

j (x; x̂j)j
2 dx̂j (1.4)

where we use the notation

x̂j := (x1; : : : ; xj�1; xj+1; : : : ; xN);

and

dx̂j := dx1 : : : dxj�1dxj+1 : : : dxN ;

1For scattering problems and for solid state physics, solutions to (1.3) which are
not in L2 are also important.

2For some problems it is of course necessary to include nuclear motion, and in
the presence of heavy nuclei relativistic e�ects have to be accounted for.
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and, by abuse of notation, we identify (x1; : : : ; xj�1; x; xj+1; : : : ; xN)
with (x; x̂j).
We assume throughout when studying � stemming from some eigen-

function  that

j (x)j � C0e
�0jxj for all x 2 R3N (1.5)

for some C0; 0 > 0. By [10, Theorem 1.2] (see also [10, Remark 1.7])
this implies the existence of constants C1; 1 > 0 such that��r (x)�� � C1 e

�1jxj for almost all x 2 R3N : (1.6)

Since  is continuous, (1.5) is only an assumption on the behaviour at
in�nity. For references on the exponential decay of eigenfunctions, see
e.g. Agmon [1], Froese and Herbst [8], and Simon [19]. The proofs of
our results rely (if not indicated otherwise) on some kind of decay-rate
for  ; exponential decay is not essential, but assumed for convenience.
Note that (1.5) and (1.6) imply that � is Lipschitz continuous in R3 by
Lebesgue's theorem on dominated convergence.
In [6] we showed that � is real analytic away from the nuclei (� 2

C!(R3 n fR1; : : : ; RKg)); for earlier results see also [10], [4] and [5].
Note that the proof of the analyticity does not require any decay of
 (apart from  2 W 2;2(R3N)). That � itself is not analytic in all of
R
3 is already clear for the ground state of the Hydrogen atom (N =

K = 1;R1 = 0; Z1 = 1):  (x) = e�jxj=2 so that the associated �
(up to a normalization constant) equals e�jxj; hence � is just Lipschitz
continuous near the origin.
For the atomic case (K = 1;R1 = 0; Z1 = Z) a quantity studied

earlier is the spherical average of � which, in polar coordinates x = r!
with r = jxj and ! = x=jxj, is de�ned by

e�(r) = Z
S2

�(r!) d! ; r 2 [0;1): (1.7)

The above mentioned analyticity result implies that e� 2 C!((0;1)):
The existence of e� 0(0) and the so-called cusp condition

e� 0(0) = �Ze�(0) (1.8)

follow from a similar result of Kato [13] for  itself; see also [11] and
[10, Remark 1.13]. The existence of e� 00(0) and an implicit formula for
it was proved in [10, Theorem 1.11]; see (1.29) below for the exact
statement.
In [7] the present authors generalized the results of Kato for  con-

siderably for the Hamiltonian in (1.1). In the present paper we obtain
results, partly in the spirit of these �ndings, for the density �. In par-
ticular, we prove results on the regularity of the density � at the nuclei
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and derive identities which the �rst and second radial derivatives of �
satisfy. These identities can be interpreted as cusp conditions (analo-
gously to (1.8)). The methods developed in [10] play an essential role
in the proofs of these results.
We indicate the importance of the electron density in quantum me-

chanics. From the eigenfunction  it is, in principle, possible to calcu-
late the energy, various expectation values, etc.; but  depends on 3N
variables. Physicists and chemists usually aim at understanding atomic
and molecular properties by means of the electron density which is just
a function on R3 and can be visualized. The density also has an im-
mediate probabilistic interpretation.
In computational chemistry density functional methods are of in-

creasing importance for calculations of ground state energies of large
molecules. Thereby the energy is approximated by minimizing a `den-
sity functional' which depends nonlinearly and nonlocally upon the
density. The minimizing function is believed to be a good approxima-
tion to the density itself. The relationship between most of these func-
tionals and the full N -electron Schr�odinger equation remains unclear
though. One exception is of course the archetype density functional
theory, the Thomas-Fermi theory, which is mathematically and phys-
ically interesting, and very well understood, see [18] and [16]. For an
interesting recent review on various mathematical problems related to
the many models in computational chemistry, see [15]. For some work
on the density � from a numerical point of view, related to regularity
questions, see [2].
Questions concerning the one-electron density �, as de�ned by (1.4),

pose some challenging mathematical problems. Results as given in the
present paper contribute to a better understanding of the physics of
atoms and molecules and in addition should have relevance for compu-
tational quantum chemistry.
In the following we use the standard de�nition and notation for

H�older continuity and Lipschitz continuity, see e.g. [9]. Let f : Rn �

 ! R, then f 2 Ck;�(
) means, for � = 0, that f is k times contin-
uously di�erentiable, for � 2 (0; 1] that the k-th partial derivatives of
f are H�older continuous with exponent �. In the case k = 0, we often
write C�(
) := C0;�(
) when � 2 (0; 1).
The main result of the present paper is the following.

Theorem 1.1. Let  2 L2(R3N) be a molecular or atomic N-electron
eigenfunction, i.e.,  satis�es (1.3), with associated density �. De�ne
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F : R3 ! R by

F(x) = �
KX
k=1

Zkjx�Rkj: (1.9)

Then

�(x) = eF(x)�(x) (1.10)

with

� 2 C1;1(R3): (1.11)

This representation is optimal in the following sense: There is no func-
tion eF : R3 ! R depending only on Z1; : : : ; ZK, R1; : : : ; RK, but nei-

ther on N , �, nor E, with the property that e�
eF� is in C2(R3).

Furthermore, � admits the following representation:
There exist C1; : : : ; CK 2 R

3 and � : R3 ! R such that

�(x) = �(x) +
KX
k=1

jx�Rkj
2
�
Ck �

x�Rk

jx�Rkj

�
; (1.12)

with

� 2 C2;�(R3) for all � 2 (0; 1): (1.13)

Remark 1.2. In the case of atoms (K = 1;R1 = 0; Z1 = Z), the
statement of the theorem reads: There exists C 2 R3 such that

�(x) = e�Zjxj�(x); �(x) = �(x) + jxj2
�
C �

x

jxj

�
(1.14)

with

� 2 C2;�(R3) for all � 2 (0; 1): (1.15)

To simplify the exposition, we shall give the proof of Theorem 1.1 only
in the case of atoms. The proof easily generalizes to the case of several
nuclei.

Remark 1.3. It will be evident from the proof that the result (ap-
propriately reformulated) also holds for each �j seperately (see (1.4)).
The same is true for the results below.

Proof of the optimality : We study `Hydrogenic atoms' (N = K =
1;R1 = 0; Z1 = Z) and use the notation (contrary to the rest of the
paper) x = (x1; x2; x3) 2 R

3, r = jxj. In this case, the operator in (1.1)
reduces to HZ = ��x � Z=jxj. We will present an example where, no

matter what the choice of eF (as in the theorem), � = e�
eF� cannot be

C2. The argument resembles the proof of the corresponding result in
[7].
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The 1s eigenfunction is  1s(x) = e�Zr=2 with HZ 1s = �(Z2=4) 1s

and the associated density is �1s(x) = e�Zr. The 2s and 2p eigenfunc-
tions are

 2s(x) = (1� Z
4
r)e�Zr=4;  2p(x) = x1e

�Zr=4:

Both satisfy HZ = E with E = �Z2=16. The associated densities
are

�2s(x) =  2
2s(x) = (1� Z

4
r)2e�Zr=2; �2p(x) =  2

2p(x) = x21e
�Zr=2:

Consider now  mixed =  2s +  2p and

�mixed =  2
mixed = �2s + �2p + 2 2s 2p:

A simple calculation shows that

eZr�2s; e
Zr�2p 2 C

2;1(R3);

but eZr�mixed is just C
1;1, since the mixed derivative @x2@x1 of

eZr 2s 2p = x1e
Zr=2(1� Z

4
)

does not exist at x = 0.
But if � = e

eF� with � 2 C2, then

�mixed

�1s
=
e�

eF�mixed

e� eFe�Zr
= eZr�mixed

should also be C2, a contradiction. �

Note that  2s(x) =  2s(�x) and  2p(x) = � 2p(�x), but their linear
combination  is neither even nor odd.

Remark 1.4. The representation of � as a product � = eF� with
a �xed `universal' F such that � is by one degree smoother than �
corresponds to Theorem 1.1 in [7] where a similar result was obtained
for the eigenfunction  itself. In that case though, the correponding F
is more complicated since many-particle interactions have to be taken
into account. For some interesting recent investigation in connection
with Jastrow factors from a numerical point of view, see [3].

The proof of Theorem 1.1 will be given in the next section. Here we
just mention that � satis�es an inhomogeneous Schr�odinger equation
whose investigation is crucial for regularity results like the above, as
well as it was for the results in [10]. Let H be given by (1.1) and
consider an eigenfunction  satisfying (1.3). To simplify notation we
assume without loss that  is real. The equationZ

R3N�3

 (x; x̂j)(H � E) (x; x̂j) dx̂j = 0 (1.16)
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leads to an equation (in the sense of distributions) for �j, namely,�
�

1

2
��

KX
k=1

Zk
jx�Rkj

�
�j + hj = 0: (1.17)

Summing (1.17) over j we obtain the equation for �,�
�

1

2
��

KX
k=1

Zk
jx�Rkj

�
�+ h = 0; (1.18)

with h =
PN

j=1 hj. The functions hj will be given explicitely in Sec-
tion 2; see (2.3).
In [10] we considered the spherically averaged density e� (as de�ned

by (1.7)) for the atomic case. The regularity of eh (the spherical average
of h above) was crucial for the results obtained there. Here we study
the non-averaged density � for the general case of molecules. Again,
the regularity of h is essential for our results.
We continue to consider � in the neighbourhood of one nucleus with

charge Z. Without loss we can place this nucleus at the origin.
The equations (1.12) and (1.13) show that it is natural to consider

the behaviour of �(r!) for �xed ! as r tends to zero.

Theorem 1.5. Let  2 L2(R3N) be a molecular or atomic eigenfunc-
tion, i.e.,  satis�es (1.3), with associated density �. Assume without
loss that R1 = 0 and write Z instead of Z1. Let r0 = mink>1 jRkj
(r0 =1 for atoms) and let ! 2 S2 be �xed.

(i) The function r 7! �(r; !) := �(r!), r 2 [0; r0), satis�es

�(�; !) 2 C2;�([0; r0)) for all � 2 (0; 1): (1.19)

(ii) Denote by 0 the derivative d
dr
, and de�ne

�(x) = eZjxj�(x) ; � = � � r2(C � !); (1.20)

where C 2 R3 is the constant C1 in (1.12) (resp. C in (1.14)).
Then

� 2 C1;1(B(0; r0)) ; � 2 C
2;�(B(0; r0)) for all � 2 (0; 1); (1.21)

and

�0(0; !) = �Z�(0) + ! � (r�)(0); (1.22)

�00(0; !) = Z2�(0) + 2! � [C � Z(r�)(0)] + ! �
�
(D2�)(0)!

�
: (1.23)

Here (D2�)(0) is the Hessian matrix of � evaluated at the ori-
gin.

Remark 1.6.
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(i) For atoms, � equals � from Theorem 1.1 and � equals � from
Remark 1.2.

(ii) Note that (1.19) trivially implies that �(r; !) = e�Zr�(r; !) with
�(�; !) 2 C2;�([0; r0)) for all � 2 (0; 1). Compare with (1.10),
(1.11).

(iii) In [10, Theorem 1.11] it was proved that e� de�ned by (1.7)
belongs to C2([0; r0))\C

2;�((0; r0)) for all � 2 (0; 1). (The proof
in [10] for the atomic case easily generalizes to the molecular
case.) Reading the proof of [10, Theorem 1.11] carefully, one
sees that it in fact yields e� 2 C2;�([0; r0)). The statement in
(1.19) shows that for �xed ! 2 S2 this holds already for �(�; !),
i.e., without averaging.

(iv) The identities (1.22) and (1.23) can be considered as non-
isotropic cusp conditions of �rst and second order. They
generalize the cusp condition (1.8), as well as the previously
mentioned result in [10] for e� 00(0); more on this in Remark 1.8
(ii) below. See also the second order cusp conditions obtained
in [7] for the eigenfunction  itself.

(v) It is worth noting that (1.22) and (1.23) can be interpreted as a
structural result for the density �: From Theorem 1.5 it follows
that in a neighbourhood of a nucleus (which is at the origin), �
satis�es (for all � 2 (0; 1))

�(r; !) = �(0) + r�1(!) + r2�2(!) +O(r2+�) ; r # 0; (1.24)

and (1.22), (1.23) show that �1 is a linear and �2 a quadratic
polynomial restricted to S2.
It is a natural question whether (1.24) extends to higher orders.

We continue with the atomic case. In view of Remark 1.2, (1.14)
and the considerations after the proof of the optimal regularity of � in
Theorem 1.1, the following theorem is natural.

Theorem 1.7. Let  2 L2(R3N) be an atomic eigenfunction with as-
sociated density �. Suppose that

j (x)j = j (�x)j for all x 2 R3N : (1.25)

Then � satis�es

�(x) = e�Zjxj�(x); � 2 C2;�(R3) for all � 2 (0; 1): (1.26)

Furthermore,

�0(0; !) = �Z�(0) ; �00(0; !) = Z2�(0) + ! �
�
(D2�)(0)!

�
: (1.27)
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We also have

�00(0; !) =
2

3

�
Z2�(0) + h(0; !)

�
+

1

3
lim
r#0

(L2�)(r; !)

r2
; (1.28)

with h from (1.18), and L2=r2 the angular part of ��, i.e., � =
@2=@r2 + (2=r)@=@r � L2=r2.

Remark 1.8.

(i) In this case � = � = � = � , as can be seen from Remark 1.6
(i) and the proof of the theorem.

(ii) Note that (1.27) shows that the cusp condition (1.8) in this case
holds for �xed angle ! 2 S2 without averaging. Further, taking
the spherical average of (1.28), we get the formula for e� 00(0)
obtained in [10, Theorem 1.11 (iv)]:

e� 00(0) = 2

3

�
Z2e�(0) + eh(0)�: (1.29)

To see this note that for all r > 0Z
S2

1 � (L2�)(r; !) d! =

Z
S2

(L21) � �(r; !) d! = 0:

Note that e� 00(0) � 0, since

eh(r) � �e�(r)
for some � � 0 [10, Theorem 1.11]. This positivity is not an
obvious consequence of the formula in (1.27).

(iii) As can be seen from the proof of Theorem 1.7, h 2 C�(R3) for
all � 2 (0; 1) in this case.

2. Proofs

Proof of Theorem 1.1 : As noted in Remark 1.2, we shall give the proof
only in the case of atoms (K = 1;R1 = 0; Z1 = Z).
For the regularity questions concerning � de�ned in (1.4) it su�ces

to consider the (non-symmetrized) density �1 de�ned by

�1(x) =

Z
R3N�3

j (x; x2; : : : ; xN)j
2 dx2 � � � dxN

=

Z
R3N�3

j (x; x̂1)j
2 dx̂1 (2.1)

with x 2 R3; x̂1 = (x2; : : : ; xN) 2 R
3N�3.
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As explained in (1.16){(1.18) �1 satis�es the Schr�odinger-type equa-
tion

���1 �
2Z

jxj
�1 + 2h1 = 0; (2.2)

where the function h1 is given by

h1(x) = J1 � J2 + J3 � E�1(x); (2.3)

J1(x) =
NX
j=1

Z
R3N�3

jrj j
2 dx̂1 ; J2(x) =

NX
j=2

Z
R3N�3

Z

jxjj
 2 dx̂1;

J3(x) =
NX
k=2

Z
R3N�3

1

jx� xkj
 2 dx̂1 +

X
2�j<k�N

Z
R3N�3

1

jxj � xkj
 2 dx̂1:

(We will henceforth partly omit the variables in the integrands). Using
the exponential decay of  (1.5) and of r (1.6) one can prove that
h1 2 L

1(R3) (for details, see [10, Theorem 1.11]).
Making the Ansatz

�1(x) = e�Zjxj�1(x) (2.4)

and using (2.2), we get that �1 satis�es the equation

��1 = 2eZjxjh1 + 2Z! � r�1 � Z2�1: (2.5)

Here ! = x
jxj
. Since �1 2 C0;1(R3) (as mentioned in the introduction),

also �1 2 C0;1(R3). Clearly, the function x 7! ! belongs to L1(R3).
The fact that also x 7! h1(x) is in L

1(R3) gives, by standard elliptic
regularity [17, Theorem 10.2], that

�1 2 C
1;�(R3) for all � 2 (0; 1): (2.6)

Our aim is to prove more, namely that

��1 = c1 � ! + g ; c1 2 R
3 ; g 2 C�(R3) for all � 2 (0; 1): (2.7)

Since, by (2.6), r�1 is continuous at the origin, the term 2Z! � r�1
behaves like c

(1)
1 � ! (c

(1)
1 = 2Zr�1(0) 2 R

3) at the origin. It turns
out that generally h1 is discontinuous at the origin, also behaving like

c
(2)
1 � ! (c

(2)
1 2 R

3). However, one can solve the equation �u1 = c1 � !
(c1 2 R

3) explicitely, and one gets that the solution u1 is C1;1. From
standard elliptic regularity, the other terms give contributions which
belong to C2;�(R3). Below we give the details.
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First, we write

2Z! � r�1(x) = c
(1)
1 � ! + g1(x) ; g1 2 C

�(R3) ; � 2 (0; 1); (2.8)

c
(1)
1 = 2Zr�1(0) ; g1(x) = 2Z! �

�
r�1(x)�r�1(0)

�
:

That g1 2 C
�(R3), � 2 (0; 1), follows from Lemma A.1 in Appendix A.

We next consider h1 as de�ned in (2.3). We will show the following:

Lemma 2.1. Let h1 be as in (2.3). Then there exist c
(2)
1 2 R

3, G :
R
3 ! R, such that

h1 = c
(2)
1 � ! +G ; G 2 C�(R3) ; � 2 (0; 1): (2.9)

Before proving Lemma 2.1, we �nish the proof of Theorem 1.1.
Lemma 2.1 and Lemma A.1 in Appendix A imply that

(eZjxj � 1)h1 2 C
�(R3) for all � 2 (0; 1);

and it therefore follows from (2.5), (2.6), (2.8), and (2.9) that

��1 = c1 � ! + g ; c1 = c
(1)
1 + 2c

(2)
1 2 R3 ; (2.10)

g 2 C�(R3) ; � 2 (0; 1):

This is (2.7), which we aimed to prove.
A simple computation shows that the function u1(x) =

1
6
jxj2c1 � ! =

jxj
6
c1 � x satis�es �u1 = c1 � !, and so �1 = �1 � u1 solves ��1 = g,

g 2 C�(R3), � 2 (0; 1). From standard elliptic regularity theory [17,
Theorem 10.3] follows that �1 2 C

2;�(R3), � 2 (0; 1). Note that due to
Lemma A.1, u1 2 C

1;1(R3), and so

�1 = �1 + u1 = �1 +
1

6
jxj2(c1 � !) 2 C

1;1(R3): (2.11)

This �nishes the proof of Theorem 1.1 for atoms, with

C =
1

6

NX
j=1

cj; (2.12)

where cj is the contribution from �j. �

It remains to prove Lemma 2.1.

Proof of Lemma 2.1 : The proof is essentially a tedious but elementary
veri�cation, the idea being to isolate and extract the most singular
term of h1. Part of this has been carried out in [10], and, in order not
to repeat the details, we refer to that paper whenever possible. We
also use the same notation.
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De�ne

 1 = e�(F�F1) ; (2.13)

with

F (x) = �
Z

2

NX
j=1

jxjj+
1

4

X
1�j<k�N

jxj � xkj; (2.14)

F1(x) = �
Z

2

NX
j=1

q
jxjj2 + 1 +

1

4

X
1�j<k�N

q
jxj � xkj2 + 1: (2.15)

Then it follows from [10, Proposition 1.5] that  1 2 C
1;�(R3); � 2 (0; 1).

In [10, Lemma 3.5 (i)] it is proven that (with the notation from (2.3))
J2; J3 2 C

�(R3); � 2 (0; 1). Furthermore, using (2.13), J1 is written as

J1(x) =

Z
R3N�3

jr j2 dx̂1 = I1 + I2 + I3 + I4 + I5 + I6;

where

I1(x) =
NX
j=1

Z
R3N�3

jrjF j
2 2 dx̂1;

I2(x) =
NX
j=1

Z
R3N�3

jrjF1j
2 2 dx̂1;

I3(x) = �2
NX
j=1

Z
R3N�3

(rjF � rjF1) 
2 dx̂1;

I4(x) =
NX
j=1

Z
R3N�3

e2(F�F1)jrj 1j
2 dx̂1;

I5(x) = 2
NX
j=1

Z
R3N�3

(rjF � rj 1)e
2(F�F1) 1 dx̂1;

I6(x) = �2
NX
j=1

Z
R3N�3

(rjF1 � rj 1)e
2(F�F1) 1 dx̂1:

It is proven in [10, p. 93, bottom] that

I2;I4; I6 2 C
�(R3) ; � 2 (0; 1):
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It is also proven in [10] that

I1(x) =

Z
R3N�3

jr1F j
2 2 dx̂1 + ~I1(x);

I3(x) = �2

Z
R3N�3

(r1F � r1F1) 
2 dx̂1 + ~I3(x);

I5(x) = 2

Z
R3N�3

(r1F � r1 1)e
2(F�F1) 1 dx̂1 + ~I5(x); (2.16)

with ~Ij 2 C�(R3); � 2 (0; 1). (For ~I1, this is [10, (3.52) and until

(3.53)]; for ~I3 and ~I5, this is [10, (3.55) and (3.56), and between]).
Now, (see (2.14))

jr1F j
2(x; x̂1) =

Z2

4
�
Z

4

x

jxj
�

NX
j=2

x� xj
jx� xjj

+
1

16

� NX
j=2

x� xj
jx� xjj

�2
:

Therefore, we writeZ
R3N�3

jr1F j
2 2 dx̂1 = I1;1(x) + I1;2(x);

I1;1(x) = �
Z

4

x

jxj
�

Z
R3N�3

NX
j=2

x� xj
jx� xjj

 2 dx̂1;

I1;2(x) =

Z
R3N�3

nZ2

4
+

1

16

� NX
j=2

x� xj
jx� xjj

�2o
 2 dx̂1:

The proof that I1;2 belongs to C
�(R3), � 2 (0; 1), is also in [10] (between

(3.52) and (3.55)).
For I1;1, we write I1;1(x) =

Z
4
x
jxj
� Int1(x), with

Int1(x) = �

Z
R3N�3

NX
j=2

x� xj
jx� xjj

 2 dx̂1: (2.17)

The function Int1 belongs to C
�(R3), � 2 (0; 1). This follows by argu-

ments as for the integralZ
1

jx� xkj

�
x � (x� xk) 

2
�
dx2 � � � dxN

in [10] (see between (3.54) and (3.55)).
Therefore (with ! = x

jxj
),

I1;1(x) = c1;1 � ! + g1;1(x) ; g1;1 2 C
�(R3) ; � 2 (0; 1); (2.18)

c1;1 =
Z

4
Int1(0) ; g1;1(x) =

Z

4
! �
�
Int1(x)� Int1(0)

�
: (2.19)
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That g1;1 2 C�(R3), � 2 (0; 1), follows from Lemma A.1 in Appen-
dix A.
Next we consider I3 (see (2.16)). Since

r1F (x; x̂1) = �
Z

2

x

jxj
+

1

4

NX
j=2

x� xj
jx� xjj

; (2.20)

r1F1(x; x̂1) = �
Z

2

xp
jxj2 + 1

+
1

4

NX
j=2

x� xjp
jx� xjj2 + 1

;

we have

Z
R3N�3

(r1F � r1F1) 
2 dx̂1 = I3;1(x) + I3;2(x);

I3;1(x) = �
Z

8

NX
j=2

x

jxj
�

Z
R3N�3

x� xjp
jx� xjj2 + 1

 2dx̂1;

I3;2(x) =

Z
R3N�3

n Z2jxj

4
p
jxj2 + 1

+
�1
4

NX
j=2

x� xj
jx� xjj

�
� r1F1

o
 2 dx̂1:

That the �rst term in I3;2 belongs to C�(R3), � 2 (0; 1) follows by
arguments as in [10] (by applying Lemma 3.4 as done after (3.50); note

that the function x 7! jxj=
p
jxj2 + 1 belongs to C0;1(R3)).

That the last term in I3;2 belongs to C
�(R3), � 2 (0; 1), is proved in

[10, (3.55), and after].
For I3;1, we write I3;1(x) = �Z

8
x
jxj
� Int3(x), with

Int3(x) =
NX
j=2

Z
R3N�3

x� xjp
jx� xjj2 + 1

 2dx̂1: (2.21)

Similar arguments as for the �rst integral in I3;2 above show that Int3
belongs to C�(R3), � 2 (0; 1).
This implies, by Lemma A.1, that

I3;1(x) = c3;1 � ! + g3;1(x) ; g3;1 2 C
�(R3) ; � 2 (0; 1); (2.22)

c3;1 = �
Z

8
Int3(0) ; g3;1(x) = �

Z

8
! �
�
Int3(x)� Int3(0)

�
: (2.23)
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Finally, we consider I5 (see (2.16)). We use the same kind of analysis.
Using (2.20), we writeZ

R3N�3

(r1F � r1 1)e
2(F�F1) 1 dx̂1 = I5;1(x) + I5;2(x);

I5;1(x) = �
Z

4

x

jxj
�

Z
R3N�3

e2(F�F1)r1( 
2
1) dx̂1;

I5;2(x) =
1

4

NX
j=2

Z
R3N�3

x� xj
jx� xjj

� (r1 1)e
2(F�F1) 1 dx̂1:

Again, the proof that I5;2 belongs to C�(R3), � 2 (0; 1), is in [10,
(3.56), and after]. As before, we write I5;1(x) = �Z

4
x
jxj
� Int5(x) with

Int5(x) =

Z
R3N�3

e2(F�F1)r1( 
2
1) dx̂1: (2.24)

The integral Int5 belongs to C�(R3), � 2 (0; 1). This follows by ar-
guments as in [10] (the term in (3.56) with j = 1). Therefore, by
Lemma A.1,

I5;1(x) = c5;1 � ! + g5;1(x) ; g5;1 2 C
�(R3) ; � 2 (0; 1); (2.25)

c5;1 = �
Z

4
Int5(0) ; g5;1(x) = �

Z

4
! �
�
Int5(x)� Int5(0)

�
: (2.26)

It follows from all of the above that

h1 = (c1;1 � 2c3;1 + 2c5;1) � ! +
�
(g1;1 � 2g3;1 + 2g5;1) (2.27)

+ (I1;2 � 2I3;2 + 2I5;2) + (I2 + I4 + I6)

+ (~I1 + ~I3 + ~I5)� J2 + J3
�
� E�1

= (c1;1 � 2c3;1 + 2c5;1) � ! + f � E�1; with f 2 C
�(R3) ; � 2 (0; 1):

Since �1 2 C0;1(R3), (2.27) shows that h1 indeed can be written as in
(2.9); that is, this �nishes the proof of Lemma 2.1. �

Proof of Theorem 1.5 : That � 2 C1;1(B(0; r0)) follows from (1.9){
(1.11). That � 2 C2;�(B(0; r0)); � 2 (0; 1), is a consequence of (1.12){
(1.13). It remains to prove (1.19), (1.22), (1.23).
As for Theorem 1.1, we shall only give the proof for the case of atoms

(K = 1;R1 = 0; Z1 = Z; � = � and � = �).
Let in the sequel ! = x

jxj
2 S

2 be arbitrary, but �xed. Note that

(1.14) and (1.15) imply that �(r; !) = e�Zr�(r; !) with �( � ; !) 2
C2;�([0;1)). It follows that �( � ; !) 2 C2;�([0;1)) since r 7! e�Zr
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belongs to C1([0;1)). In particular, �0(0; !) = limr#0 �
0(r; !) and

�00(0; !) = limr#0 �
00(r; !). (All the above for all � 2 (0; 1)).

Next, by the above,

lim
r#0

�0(r; !) = lim
r#0

�
! � r�(r; !)

�
= lim

r#0

�
� Z�(r; !) + e�Zr! � r�(x)

�
= �Z�(0) + ! � r�(0);

which is (1.22).
Finally, the proof of (1.23). Due to � = e�Zr� and (1.14){(1.15) we

have

�00(r; !) = Z2�(r; !)� 2Ze�Zr! � r�(x)

+ e�Zr
�
! � r(! � r�(x)) + 2C � !

�
:

A simple computation shows that ! � r(! � r�(x)) = ! �
�
(D2�)(x)!

�
,

and, since � 2 C1;1(R3) and � 2 C2;�(R3), � 2 (0; 1), we get (1.23).
�

Proof of Theorem 1.7 : We will show that the symmetry assumption
(1.25) for  implies that c1 = 0 2 R3 in (2.7). Then

��1 = g ; g 2 C�(R3) ; � 2 (0; 1); (2.28)

and so standard elliptic regularity implies that �1 2 C2;�(R3) for all
� 2 (0; 1). This will prove (1.26).
Recall that (see (2.8), (2.9), (2.10), (2.27) (2.19), (2.23), and (2.26))

c1 = c
(1)
1 + 2c

(2)
1 = c

(1)
1 + 2c1;1 � 4c3;1 + 4c5;1; (2.29)

c
(1)
1 = 2Zr�1(0) ; c1;1 =

Z

4
Int1(0); (2.30)

c3;1 = �
Z

8
Int3(0) ; c5;1 = �

Z

4
Int5(0): (2.31)

We �rst consider c
(1)
1 . The assumption (1.25) clearly implies that

�1 is an even function on R3. It follows from �1 = eZjxj�1 that �1 2
C1;1(R3) is even and thereforer�1 2 C

0;1(R3;R3) is odd. In particular,

r�1(0) = 0, and so c
(1)
1 = 0.

It was shown in the proof of Theorem 1.1 that Intj 2 C
�(R3;R3); j =

1; 3; 5, � 2 (0; 1) (see (2.17), (2.21), and (2.24)). Furthermore, the
symmetry condition (1.25) clearly implies that all three functions are
odd (for Int5, use (2.13)). It follows that Intj(0) = 0; j = 1; 3; 5, and

therefore (see (2.30) and (2.31)) cj;1 = 0; j = 1; 3; 5. Therefore c
(2)
1 = 0
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and hence c1 = 0 in (2.29). This, and (2.7), implies (2.28), which, as
mentioned above, proves (1.26).

Note that c
(2)
1 = 0 implies that h 2 C�(R3) for all � 2 (0; 1) (see

Lemma 2.1).

The above clearly implies that r�(0) = 0 and C =
PN

j=1 cj = 0, and
so (1.22) and (1.23) imply (1.27).
It remains to prove (1.28). With � = @2=@r2 + (2=r)@=@r � L2=r2,

(2.2) becomes (after multiplication by �r)

r�00(r; !) + 2�0(r; !) + 2Z�(r; !)� 2rh(r; !) =
(L2�)(r; !)

r
:

This implies, using the fact that h 2 L1(R3) and (1.27), that

lim
r#0

(L2�)(r; !)

r
= 2

�
�0(0; !) + Z�(0; !)

�
= 0:

Let R(r; !) := (L2�)(r;!)
r2

, then (2.2) reads

�00(r; !) +
2

r

�
�0(r; !) + Z�(r; !)

�
� 2h(r; !) = R(r; !) ; r > 0: (2.32)

Note that, by l'Hôpital's rule and (1.27),

lim
r#0

2

r

�
�0(r; !) + Z�(r; !)

�
= 2

�
�00(0; !) + Z�0(0; !)

�
;

and so (2.32) implies that R(0; !) := limr#0R(r; !) exists, and

R(0; !) = 3�00(0; !) + 2Z�0(0; !)� 2h(0; !):

The existence of h(0; !) := limr#0 h(r; !) follows from Lemma 2.1.
Therefore, using (1.27), we obtain (1.28). �

Appendix A. A useful lemma

The following lemma is Lemma 2.9 in [7]; we include it, without
proof, for the convenience of the reader. (The proof is simple, and can
be found in [7]).

Lemma A.1. Let G : U ! R
n for U � R

n+m a neighbourhood of
a point (0; y0) 2 R

n � R
m. Assume G(0; y) = 0 for all y such that

(0; y) 2 U . Let

f(x; y) =

� x
jxj
�G(x; y) x 6= 0;

0 x = 0:
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Then, for � 2 (0; 1],

G 2 C0;�(U ;Rn)) f 2 C0;�(U): (A.1)

Furthermore, kfkC�(U) � 2kGkC�(U).
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