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Abstract

Background

Radiation-therapy (RT) induces mucositis, a clinically challenging condition with limited pro-

phylactic interventions and no predictive tests. In this pilot study, we applied global gene-

expression analysis on serial human oral mucosa tissue and blood cells from patients with

tonsil squamous cell cancer (TSCC) to identify genes involved in mucositis pathogenesis.

Methods and findings

Eight patients with TSCC each provided consecutive buccal biopsies and blood cells before,

after 7 days of RT treatment, and 20 days following RT. We monitored clinical mucositis and

performed gene-expression analysis on tissue samples. We obtained control tissue from

nine healthy individuals. After RT, expression was upregulated in apoptosis inducer and

inhibitor genes, EDA2R and MDM2, and in POLH, a DNA-repair polymerase. Expression

was downregulated in six members of the histone cluster family, e.g., HIST1H3B. Gene

expression related to proliferation and differentiation was altered, including MKI67 (downre-

gulated), which encodes the Ki-67-proliferation marker, and KRT16 (upregulated), which

encodes keratin16. These alterations were not associated with the clinical mucositis grade.

However, the expression of LY6G6C, which encodes a surface immunoregulatory protein,

was upregulated before treatment in three cases of clinical none/mild mucositis, but not in

four cases of ulcerative mucositis.

Conclusion

RT caused molecular changes related to apoptosis, DNA-damage, DNA-repair, and prolifer-

ation without a correlation to the severity of clinical mucositis. LY6G6C may be a potential

protective biomarker for ulcerative mucositis. Based on these results, our study model of
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consecutive human biopsies will be useful in designing a prospective clinical validation trial

to characterize molecular mucositis and identify predictive biomarkers.

Introduction

Treatment-related toxicity remains a major concern in patients with head and neck cancers

[1,2], including squamous cell cancer of the tonsil (TSCC). The incidence of TSCC is increas-

ing, due to a shift towards younger patients with human papilloma virus (HPV)-positive can-

cers [3,4]. Consequently, more survivors must live with both short- and long-term cancer

treatment side effects, including mucositis, hypo-salivation, tissue fibrosis, and hypo-vascular

bone [5–8].

For curative intentions, radiation therapy (RT) is a key modality, with or without surgery,

combined with concomitant chemotherapy. Squamous cell carcinomas require a relatively large

amount of radiation (60 to 70 Gray [Gy]) [9]. Recently, outcomes have improved with the

advent of radio-sensitizers and intensity-modulated RT. However, mucositis remains an acute,

painful side effect [10]. Mucositis appears clinically at a total dose of approximately 35 Gy (after

about 2 weeks), and it gradually worsens with each dose delivered [11]. The incidence of muco-

sitis is 85% in patients with head and neck cancers that require RT; of these, 37% require hospi-

talization, and of these 51% require a feeding tube [5,6]. The lack of predictability of who are

severely affected is a significant clinical challenge [12]. Palliative interventions may relieve the

side effects, but no preventive medications are available that can reduce mucositis, and no

markers are available for pretreatment identification of patients likely to be severely affected

[13]. Previous studies have shown that RT causes DNA damage and oxidative stress, which sub-

sequently lead to activation of p53-induced radiotoxic pathways, apoptosis, and cell-cycle arrest

[14–16]. Furthermore, DNA repair and damage response via MDM2 suppression of p53, was

also reported a consequence of RT in addition to radiation fibrosis, and endothelial damage

[17–18]. However, no studies have described a gene expression analysis of human mucosa [19].

Here, we describe a disease- and treatment-specific global gene expression (GGE) pilot

study. We examined consecutive mucosa biopsies and peripheral blood cells collected from

patients with TSCC during RT treatment. This study aimed to generate phenotypic data to

document the feasibility of a novel in vivo model of consecutive human biopsies during RT

treatment that might provide new biological knowledge of the molecular pathogenesis of

severe mucositis and facilitate the identification of potential predictive biomarkers.

Materials and methods

Patients

The Committee on Health Research Ethics of the Northern Denmark Region (N-20100022)

approved the clinical protocol for this study. Informed written consent was obtained from all

patients, in accordance with the Declaration of Helsinki. Patients were enrolled from Septem-

ber 1, 2010, to April 30, 2013. Inclusion criteria were age�18 years, cancer-treatment naïve,

and without uncontrolled competitive disease.

We recruited 19 patients at the Department of Maxillofacial Surgery, Aalborg University

Hospital. Among those patients, nine displayed histologically confirmed TSCC and a metasta-

sis-negative FDG-PET/CT scan. Of these nine patients, seven provided three consecutive buc-

cal biopsies and peripheral blood samples. The first biopsy and blood sample set (baseline) was

acquired before the start of RT, the second set was acquired after one week of RT, and the

third set was acquired at an average of 20 days after the last RT, for outline of the study plan
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(Fig 1). Two of the nine included patients died during treatment; one after the second biopsy

and one before the first biopsy. The patient that died after the second biopsy was included in

the analysis; thus, we analyzed eight patient samples. Our control group comprised 10 healthy,

non-smoking individuals that had participated in a previous study [20]. Of these, one was

excluded, due to an autoimmune disease that was not reported at the time of biopsy; thus, nine

control samples were analyzed. All patients underwent pretreatment evaluations, including a

medical history, smoking habits (smokers were defined as smoking more than 10 cigarettes

per day), alcohol consumption (consumers were defined as drinking more than 21 units of

alcohol weekly), and a clinical examination. Baseline characteristics were noted, including age,

gender, and Eastern Cooperative Oncology Group (ECOG) performance status. Before RT,

patients were screened for dental infections, and when indicated, infections were eradicated.

TSCC tumors were staged according to the TNM system for staging cancer (T = size of pri-

mary tumor; N = presence and level of lymph node involvement; M = presence of distant

metastasis) [21]. Immunohistochemistry was performed to detect p16 overexpression in the

tumor, which indicated HPV-induced TSCC. All patients with TSCC received intention-to-

cure treatments. Accelerated external RT was applied in 6 weekly fractions of 2 Gy. RT was

supplemented, when indicated, with concomitant cisplatin (40 mg/m2) once weekly during

RT, according to international guidelines [22,23]. We noted the total radiation dose (Gy)

applied to the tumor, based on the radiation schemes. We also calculated the estimated dose

applied to the buccal mucosa at the site of the biopsy.

Mucositis assessment

Oral mucositis (OM) was evaluated weekly in all patients, by the same researcher (MM),

according to the World Health Organization oral toxicity assessment worksheet [24]. Subjec-

tive symptoms (pain and ability to eat solid food) and objective oral mucositis-related findings

(erythema, ulceration) were noted. Grades 0 and 1 comprised none/mild mucositis (NM); this

included soreness, with or without erythema, but solid food could be taken. Grades 2 to 4 com-

prised ulcerative mucositis (UM); in UM, food intake gradually declined, due to pain, and par-

enteral feeding might become necessary. The highest score measured during treatment was

noted as the patients general mucositis experience.

Collection of mucosa tissue and blood cells

Sample collection was performed with the methods described previously [20]. Briefly, a lens-

formed, 5-mm biopsy was harvested with a scalpel from the buccal mucosa approximately 1

Fig 1. The pilot study design. Tissue samples were collected from patients with tonsil squamous cell cancer

(TSCC) at three time points: at baseline, before RT (Day0), after 7 days of RT (Day7), and 20 days after the

last RT. In addition, tissue samples were collected from healthy subjects (CON). All tissue collections

consisted of one blood sample and one biopsy of oral buccal mucosa. Tissue samples were successively

stored in our biobank. Once all the material was collected, gene expression analysis was performed

collectively at the same laboratory.

https://doi.org/10.1371/journal.pone.0190709.g001
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cm inferior to the parotid papilla in a standardized manner, and the wound was tightly

sutured. One half of the biopsy was immediately embedded in RNAlater™, for GGE analysis.

The other half was fixed in formalin and embedded in paraffin for immunohistochemistry.

Within 2 h of the biopsy procedure, 15 ml of EDTA-mixed venous full blood was collected.

Then, mononuclear cells were isolated and stored at -196˚C in liquid nitrogen, until analysis.

Gene expression analysis

Gene expression was evaluated with the methods described previously in detail [20]. Briefly,

for both mononuclear cells and mucosa, we used the Affymetrix GeneChip Human Exon 1.0

ST Arrays with the Affymetrix GeneChip WT Terminal Labeling and Controls Kit (P/N

901524). CEL files were generated with Affymetrix GeneChip Command Console Software

and deposited in the NCBI Gene Expression Omnibus repository, under number GSE103412.

Immunohistochemistry

Tissue blocks were cut in 4-μm sections, and the sections were mounted on glass slides. With

an in-house optimized protocol, tissues were stained for scinderin with a rabbit polyclonal

antibody (KIAA1905, Nordic Biosite, www.nordicbiosite.com). Stained slides were scanned

on a Hamamatsu NanoZoomer slide scanner and analyzed with NDP viewer software. To esti-

mate the scinderin stain intensity, each stained slide was viewed at a magnification of ×15, and

evaluated within a framed rectangle of 0.75 × 0.4 mm (0.3 mm2). Samples were classified as no

stain (0), lightly stained (+), or heavily stained (++).

Statistical analysis

All statistical analyses were performed with R [25] version 3.2.2 and Bioconductor packages

[26].

Estimation of sample size. We applied the method described by Lee and Whitmore to

identify genes that varied more than two-fold between test points, with a false discovery rate

(FDR) less than 0.05% and a power of 90% [27]. This analysis was implemented in the R-pack-

age, size-power (Qui 2008). The results indicated that 10 patients in each group would provide

sufficient statistical power.

Data preprocessing. The CEL files produced by the Affymetrix Expression Console were

preprocessed and summarized at the gene level with the RMA algorithm in the Bioconductor

package, affy, based on custom CDF-files [28]. This preprocessing step revealed the expression

levels of 38,830 genes for each exon array. Genes were annotated with Ensembl gene

identifiers.

Detection of differential expression. With the patient ID as a cluster variable, we used

the limma package, a linear mixed model analysis provided in R, and the empirical Bayes

approach to test for significant differences in gene expression between the second biopsy/

blood sample and baseline, and between the third biopsy/blood sample and baseline [29]. To

test for significantly differentially expressed genes between baseline and control samples, an

unpaired t-test was performed with limma [29]. Patients were divided into two groups based

on mucositis status (UM or NM), and significantly differentially expressed genes were detected

with limma at each time point.

The FDR-adjusted P-values (�0.05) were controlled with the Benjamini–Hochberg method

[30] for each of the above tests.

Hierarchical clustering. The GGE data set of all nine control samples and the eight TSCC

samples were divided into eight subsets. These subsets were gene biotypes (defined as protein

coding), pseudogenes, miRNA, rRNA, snoRNA, snRNA, linRNA, and antisense transcript.
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Each dataset was subjected to hierarchical clustering, where the Pearson correlation was used

as a distance measure, and average linkage was used as the algorithm method [31].

Results

Clinical characteristics of TSCC

The pilot study design is shown in Fig 1. Three steps of intervention were planned during

TSCC-specific standard therapy, which included RT and cisplatin treatments. We collected 32

biopsies and performed 32 blood draws (7 × 3 sample sets + 1 × 2 sample sets for TSCC and

9 × 1 sample set for controls).

Patient clinical characteristics and demographics are shown in Table 1. Age was comparable

between the control (age 58 years, range 47–78) and TSCC (age 63.5 years, range 51–69) groups.

A trend towards male dominance was observed in the TSCC group (2 females among 8

patients), but not in the control group (4 females among 9 patients). Five of eight patients with

TSCC were smokers, and four of the eight consumed alcohol. Tumor staging was evaluated

according to the TMN system [21], and p16 overexpression was detected in six of eight tumors.

The clinical data collected during RT are shown in Table 2. After treatment initiation, the

second biopsy was acquired at a median of 7 days (range 3–12), and the third biopsy was

acquired at an average of 57 days (range 40–92). Two patients, TSCC06 and TSCC08, did not

receive cisplatin. An average dose of 68.3 Gy (range 66–76) was applied to the tumors. Accord-

ing to the radiation schemes, a total dose of approximately 30–35 Gy was applied to the buccal

mucosa bilaterally. At the time of the second biopsy, an average dose of 7.7 Gy (range 4.2–

14.4) was applied. UM was detected in five patients and NM was detected in three patients.

The median mucositis scores were 1.9 (range 0–3): 2.6 for the UM group and 0.7 for the NM

group. We observed no signs of infection at the site of biopsy. All samples yielded valid gene

expression profiles.

Gene expression in mucosa and blood

The differentially expressed genes in mucosa (Table 3) and blood (Table 4) are annotated with

a gene symbol, the fold change (FC), the adjusted p-value, the gene ontology terms (GO-

terms), and the gene function.

Table 1. Patient characteristics and demographics upon enrollment in the study.

Patient Age Gender ECOGa Smokingb Alcoholc Stagingd p16e

TSCC01 57 m 0 0 0 T1N2bM0 yes

TSCC03 67 f 2 1 1 T1N0M0 no

TSCC04 74 m 2 0 1 T1NxM0 no

TSCC05 72 m 0 0 0 T1N2aM0 yes

TSCC06 65 m 0 1 1 T1N1M0 yes

TSCC07 59 m 1 1 1 T2N1M0 yes

TSCC08 68 m 0 1 0 T4aN2cM0 yes

TSCC09 56 f 0 1 0 T2N2cM0 yes

aEastern Cooperative Oncology Group (ECOG) performance status at baseline
bSmoking categories: 0 = Non-smoker, 1 = smoked more than 10 cigarettes per day
cAlcohol categories: 0 = No alcohol consumption, 1 = consumed more than 3 units of alcohol per day
dTNM system for staging of cancer: T = size of primary tumor; N = presence and level of lymph node involvement; M = presence of distant metastasis (1)
eOverexpression of p16 indicates positive for HPV

https://doi.org/10.1371/journal.pone.0190709.t001
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Before RT was applied, eight genes were altered in patients with TSCC compared to con-

trols (Table 3). Five of these genes remained unaffected with subsequent therapy: LIFR,

FKBP5, SPARCL1, MS4A4E, and PDGFRA.

In response to treatment, we found nine downregulated genes. Eight of these genes were in

the histone cluster family, including HIST1H3B, HIST1H2BM, HIST1H3C, HIST1H3H,

HIST1H1A, and HIST1H1B; and one, MKI67, was a marker of Ki-67 proliferation. Five genes

were upregulated. Of these, two were related to apoptosis, MDM2 and EDA2R, and one,

POLH, encoded a transcriptional DNA-directed polymerase (Table 3).

On day 21 after the last RT application, we found 11 altered genes compared to baseline

(Table 3). Most were pseudogenes, including ANKRD20A5P,ANKRD20A11P,ANKRD20A9P,

and CYP4F34P (downregulated); and noncoding RNAs, CCAT1 and MIR31HG. The

MIR31HG RNA was upregulated only among patients with TSCC that received cisplatin.

IL1R2 (downregulated) encoded a cytokine receptor of the interleukin 1 receptor family. SCIN
(downregulated) encoded a regulatory protein involved in exocytosis. Immunohistochemical

analysis results (Fig 2) showed reduced expression in epithelial cells, but not in the salivary

glands.

When gene expression profiles of the buccal mucosa were compared between UM and NM

samples, we found no differentially expressed genes (adjusted P< 0.05) in either blood or

mucosa. However, one gene, LY6G6C, tended to be expressed at low levels (FC -3.78; adj.

P = 0.0995) in UM baseline biopsies (Fig 3, Table 3).

We found 12 downregulated and 17 upregulated genes in blood samples from the TSCC

group compared to the control group (Table 4). These genes were dominated by small nuclear

RNAs (snRNAs), e.g., RNU6-620P and RNU6-622P, and a dot plot of these two selected genes

is shown in Fig 4.

We clustered the expression levels of snRNAs, regardless of fold-changes according to P-

value, and observed a distinct division between patients with TSCC and healthy controls (Fig

5). We found no differentially expressed genes in blood samples between baseline and day 7 or

day 20.

Discussion

This study aimed to validate our clinical pilot study set-up and demonstrate its potential for

identifying pathogenic variables or biomarkers for molecular mucositis. In response to RT, we

Table 2. Patient clinical data during radiation treatment and at follow-up.

Patient Total dose of radiation

to tumor

Estimated dose of RT at

biopsy site day7

Cisplatin (40 mg/

m2)

once weekly

during RT

WHOa Days from treatment start to

second biopsy

Days from second to

third biopsy

TSCC01 66 Gy/33 fr 4.2 yes 3 3 53

TSCC03 66 Gy/33 fr 9.5 yes 0 8 42

TSCC04 68 Gy/34 fr 9.3 yes 1 8 dead

TSCC05 68 Gy/33 fr 14.4 yes 2 12 41

TSCC06 66 Gy/33 fr 5.3 no 1 4 40

TSCC07 68 Gy/34 fr 5.1 yes 3 4 52

TSCC08 76 Gy/56 fr 6.9 no 2 9 80

TSCC09 68 Gy/34 fr 7.2 yes 3 6 92

Abbreviations: Gy: Gray; fr: fractionated; WHO: World Health Organization
amucositis stage, according to the WHO assessment scale, was measured weekly, during treatment and after, until mucositis dissolved [24].

https://doi.org/10.1371/journal.pone.0190709.t002
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identified several altered genes in the mucosa, but no differentially expressed genes in the

blood cells. Furthermore, the identified genes were not correlated to the grade of clinical

Table 3. Genes altered in mucosal tissue from patients with tonsil squamous cell carcinoma receiving radiation therapy.

Gene symbol FC p-value adj. p-

value

Qualified Gene Onotology term Function

Baseline

LIFR -2.73 2.09e-05 0.019 Leukemia Inhibitory Factor Receptor Alpha Cellular differentiation,

proliferation, survival

FKBP5 -2.48 0.00015 0.037 FK506 Binding Protein 5 Immune regulation, basic cellular

processes

SPARCL1 -2.24 0.0002 0.041 SPARC Like 1 Cell adhesion, migration, and

proliferation

MS4A4E -2.30 9.06e-06 0.018 Membrane Spanning 4-Domains A4E Cell surface signaling

PDGFRA -2.11 1.74e-06 0.010 Platelet Derived Growth Factor Receptor Alpha Cell surface tyrosine kinase

receptor

RN7SL783P 2.54 0.00010 0.031 pseudogene Unknown function

MTND5P8 2.17 0.0002 0.04 pseudogene Unknown function

ABO 2.02 8.82e-07 0.001 Alpha 1-3-N-Acetylgalactosaminyltransferase Enzyme, modifying surface

glycoproteins

After seven days of radiotherapy

HIST1H3B -2.91 7.52e-08 0.000143 Histone Cluster 1, H3b Transcription

HIST1H2BM -2.75 1.6e-07 0.000251 Histone Cluster 1, H2bm Transcription

CYSLTR1 -2.54 3.91e-05 0.0098 Cysteinyl Leukotriene Receptor 1 Cell structure

HIST1H3C -2.39 9.08e-06 0.0039 Histone Cluster 1, H3c Transcription

HIST1H3H -2.17 4.53e-08 0.000105 Histone Cluster 1, H3h Transcription

MOXD1 -2.16 6.19e-08 0.000128 Monooxygenase DBH Like 1 Metabolism

HIST1H1A -2.12 0.00016 0.022 Histone Cluster 1, H1a Transcription

HIST1H1B -2.09 1.05e-08 3.14e-05 Histone Cluster 1, H1b Transcription

MKI67 -2.00 2.58e-06 0.0016 Marker Of Proliferation Ki-67 Transcription

WDR63 2.67 1.09e-10 1.1e-06 WD Repeat Domain 63 Unknown

MDM2 2.29 6.77e-11 4.26e-11 MDM2 oncogene, E3 ubiquitin protein ligase Apoptosis

EDA2R 2.26 8.38e-11 1.0e-06 Ectodysplasin A2 receptor Apoptosis

POLH 2.17 3.22e-10 1.81e-06 Polymerase; DNA directed Transcription

KRT16 2.15 0.00058 0.052 Keratin 16 Cell structure

Three weeks after RT cessation

ANKRD20A5P -3.56 2.90e-07 0.0026 Ankyrin Repeat Domain 20 Family Member A5 Pseudogene

CYSLTR1 -3.11 3.92e-06 0.0082 Cysteinyl Leukotriene Receptor 1 Cell structure

SCIN -2.50 9.09e-05 0.044 Scinderin Cell structure

ANKRD20A11P -2.47 4.93e-05 0.033 Ankyrin Repeat Domain 20 Family Member A11 Pseudogene

ANKRD20A9P -2.32 1.2e-06 0.0052 Ankyrin Repeat Domain 20 Family Member A9 Pseudogene

CYP4F34P -2.28 4.1e-05 0.032 Cytochrome P450 Family 4 Subfamily F Member 34 Pseudogene

TC2N -2.13 6.47e-05 0.036 Tandem C2 Domains, Nuclear Metabolism

IL1R2 -2.12 3.37e-07 0.0026 Interleukin 1 Receptor Type 2; cytokine receptor of the interleukin 1

receptor family

Immune response

MIR31HG 5.30 5.71e-05 0.035 Non-coding microRNA no 3 Non-coding mi-RNA

CCAT1 3.08 1.08e-05 0.018 Colon Cancer Associated Transcript 1 Non-coding RNA

PTPRZ1 2.93 0.000103 0.047 Protein Tyrosine Phosphatase, Receptor Type Z1 Transcription

NM versus UM

LY6G6C -3.78 2.53e-06 0.0995 Lymphocyte Antigen-6 G6C Signal transduction Immune

response

https://doi.org/10.1371/journal.pone.0190709.t003
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mucositis. Furthermore, we found that although all patients with TSCC were diagnosed with a

localized solid epithelial tumor, and the biopsies from the study group was harvested from

clinically healthy buccal mucosa, the mucosal tissue and blood cells had different gene profiles

compared to healthy controls before RT.

RT effects on mucosal gene expression

Several studies have described the molecular effects of radiation on normal tissue, but no studies

have described effects on gene expression levels [19]. Generally, short-term alterations include

increased levels of p53 and other apoptotic markers (e.g., Bcl-2 and Mcl-1) [14,32], increased

numbers of inflammatory cells (CD68-positive macrophages and other leukocyte subtypes),

and alterations in inflammatory markers (e.g., NF-kB and COX-2) [32–35]. The epithelium

begins to regenerate after one week of radiation, confirmed by the identification of cell prolifer-

ation markers, Ki-67 and [3H]-TdR, and by the increased expression of keratins (keratins 1, 6,

10, 16) [36,37]. Over the long term, RT caused different distribution patterns of adhesion mole-

cules and macrophage subpopulations, compared to pretreatment specimens [38].

Table 4. Genes altered in mononuclear cells of the blood from patients with tonsil squamous cell carcinoma receiving radiation therapy.

Gene symbol FC p-value adj. p-value Qualified Gene Onotology term Function

Baseline

RNU6-620P -11.8 1.48e-12 5.80e-08 RNA, U6 small nuclear 620, pseudogene pseudogene

RNU6-422P -3.77 3.03e-08 0.00022 RNA, U6 small nuclear 422, pseudogene pseudogene

RNU6-737P -3.36 1.34e-07 0.00034 RNA, U6 small nuclear 737, pseudogene pseudogene

RNU6-795P -2.85 2.82e-06 0.0024 RNA, U6 small nuclear 795, pseudogene pseudogene

RPS7P2 -2.63 2.14e-07 0.00044 Ribosomal protein S7 pseudogene 2 pseudogene

AGAP9 -2.61 6.15e-06 0.0039 ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 9 GTPase-activating

RNU6-336P -2.45 5.72e-08 0.00025 RNA, U6 small nuclear 336, pseudogene pseudogene

OAZ1 -2.26 6.81e-06 0.0040 Ornithine decarboxylase antienzyme 1 Cell growth and proliferation

RPL23AP64 -2.19 0.00012 0.018 Ribosomal protein L23a pseudogene 64 pseudogene

RNU6-1162P -2.06 2.02e-05 0.0068 RNA, U6 small nuclear 1162, pseudogene pseudogene

CCDC144B -2.02 0.00074 0.043 Coiled-Coil Domain Containing 144B pseudogene

RN7SL432P -2.02 5.37e-07 0.00088 RNA, 7SL, cytoplasmic 432, pseudogene pseudogene

RNU6-622P 7.30 7.74e-09 8.62e-05 RNA, U6 Small Nuclear 622, Pseudogene pseudogene

DUTP6 3.45 1.74e-06 0.0019 Deoxyuridine Triphosphatase Pseudogene 6 pseudogene

SSU72P8 3.44 1.07e-07 0.0014 RNA Polymerase II CTD Phosphatase Homolog, Pseudogene 8 pseudogene

RNU6-919P 3.37 1.06e-05 0.0051 RNA, U6 Small Nuclear 919, Pseudogene pseudogene

RPS6P15 3.01 2.82e-06 0.0024 Ribosomal Protein S6 Pseudogene 15 pseudogene

RN7SL748P 2.44 1.59e-05 0.0061 RNA, 7SL, Cytoplasmic 748, Pseudogene pseudogene

RPL10P4 2.33 2.88e-07 0.00051 Ribosomal Protein L10 Pseudogene 4 pseudogene

RPL21P133 2.32 6.39e-07 0.0010 Ribosomal Protein L21 Pseudogene 133 pseudogene

RN7SL290P 2.22 1.06e-05 0.0051 RNA, 7SL, Cytoplasmic 290, Pseudogene pseudogene

OR5M4P 2.21 4.97e-05 0.011 Olfactory Receptor Family 5 Subfamily M Member 4 Pseudogene pseudogene

RNU6-151P 2.19 1.58e-07 0.00036 RNA, U6 Small Nuclear 151, Pseudogene pseudogene

RNU6-135P 2.19 1.29e-07 0.00034 RNA, U6 Small Nuclear 135, Pseudogene pseudogene

RNA5SP116 2.18 0.00085 0.046 RNA, 5S Ribosomal Pseudogene 116 pseudogene

NUTM2D 2.13 0.00016 0.021 NUT family member 2D unknown

RNA5SP54 2.06 8.49e-08 0.00030 RNA, 5S Ribosomal Pseudogene 54 pseudogene

RN7SL865P 2.05 0.00074 0.043 RNA, 7SL, Cytoplasmic 865, Pseudogene pseudogene

RPS29P8 2.00 8.69e-07 0.0012 Ribosomal Protein S29 Pseudogene 8 pseudogene

https://doi.org/10.1371/journal.pone.0190709.t004
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The present pilot study identified markers of apoptotic activity. EDA2R was upregulated in

the mucosa 7 days after RT initiation, compared to its pretreatment status. EDA2R encodes the

ectodysplasin A2 receptor, a transmembrane protein in the tumor necrosis factor receptor

Fig 2. Immunohistochemical analysis of mucosal tissue expression of scinderin. Oral buccal mucosa section

(×15 magnification) stained with an SCIN antibody. (a) High scinderin expression is evident in mucosa from a control

individual (patient CON05). (b) Low scinderin expression is evident in mucosa from a patient with tonsil squamous cell

cancer (patient TSCC07); the biopsy was acquired Day20. SCIN encodes a regulatory protein involved in exocytosis

and we expected to se downregulation in salivary gland tissue, however epithelial cells were heavily stained in the

healthy control group.

https://doi.org/10.1371/journal.pone.0190709.g002
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superfamily. Upon stimulation, this receptor activates the NF-B and JNK apoptotic pathways

[39]. In addition, six members of the histone cluster family were downregulated, which indi-

cated DNA damage. Histones are basic nuclear proteins responsible for nucleosome structure.

Previous studies in cell lines have described histone downregulation in response to RT [40].

Fig 3. Expression of LY6G6C in mucosa. Dot plot shows expression of LY6G6C, at baseline (Day 0), after

7 days of RT (Day 7), and 20 days after the last RT session (Day 20), among patients that developed

ulcerative mucositis (red) or mild/no mucositis (green), and in controls (blue). Patients with mild/ no mucositis

exhibited an upregulation of LY6G6C. LY6G6C encodes a surface immunoregulatory protein expressed on

mucosal dendritic cells.

https://doi.org/10.1371/journal.pone.0190709.g003

Fig 4. Expression of RNU6-620P and RNU6-622P in blood cells. Dot plot shows expression of RNU6-

620P (FC-x11.8; P = 5.80e-80) and RNU6-622P (FCx7.3 P = 8.62e-05) at baseline (Day 0), after 7 days of RT

(Day 7), and 20 days after the last RT session (Day 20), among patients that developed ulcerative mucositis

(red) or mild/no mucositis (green). Expression in normal controls is indicated with blue circles. These genes

encode small nuclear RNAs, which are non-protein coding genes. Patients with TSCC expressed a significant

different level of both genes compared to healthy controls.

https://doi.org/10.1371/journal.pone.0190709.g004
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In parallel, the MDM2 oncogene (MDM2) was upregulated. MDM2 encodes an E3 ubiqui-

tin ligase, localized in the nucleus, and is regulated transcriptionally by p53. In turn, E3 ubiqui-

tin ligase mediates the ubiquitination of p53, and thereby, inhibits p53-mediated cell-cycle

arrest and apoptosis [41]. In addition, the upregulation of POLH, a polymerase that replicates

UV-damaged DNA, indicated a DNA defense mechanism. Thus, we identified both inducers

and inhibitors of apoptosis and DNA damage, consistent with findings reported in previous

preclinical studies.

Proliferation-related genes were also altered. MKI67, which encodes Ki-67, a nuclear pro-

tein that is essential for cellular proliferation, was downregulated after 7 days of RT. This find-

ing contrasted with findings from a previous study on human mucosa [32]. However, KRT16
was upregulated. KRT16 encodes keratin16, a protein characteristic of early differentiated epi-

thelial cells. This short-term change indicated continuous epithelial proliferation [42]. This

finding was also reported in a previous study [37].

SCIN encodes a calcium ion- and actin filament-binding protein with a regulatory function

in exocytosis [43]. We expected SCIN to be associated with salivary gland function because of

the connection to exocytosis function and prior studies have reported histological changes in

radiated salivary glands, including atrophy, edema, cell death, and fibrous tissue formation

[44]. However an immune histochemical stain for SCIN revealed that the presence was seen in

the epithelial cells (Fig 2).

A potential biomarker for the grade of clinical mucositis

When we compared samples from three patients with NM to samples from 4 patients with

UM, we found that LY6G6C (lymphocyte antigen 6 complex, locus G6C) was upregulated

(x3.78; P = 0.0995) in NM before treatment, although this finding was not statistically signifi-

cant (Fig 3). LY6G6C belongs to a cluster of leukocyte antigen-6 genes linked to the major

Fig 5. Small nuclear RNA (snRNA) clustered according to P value. The expression of snRNA regardless

of fold change was clustered according to P value, showing a distinct division between patients with TSCC

and healthy controls.

https://doi.org/10.1371/journal.pone.0190709.g005
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histocompatibility complex–class II. This complex is located at the cell surface, where it is

involved in immune-mediated signal transduction.

In a previous study, we showed that two members of the major histocompatibility com-

plex–class II gene family, HLADR-B1 and B5, could potentially predict UM in patients with

multiple myeloma [20]. We therefore hypothesize that HLA-based immunity protect against

tissue inflammation during treatment in both these disease categories. Because mucositis may

be considered an inflammatory state, those findings might add to our molecular understand-

ing of why RT induces severe mucositis in some patients.

Pretreatment gene signature of TSCC

In mucosa, we found that TSCC induced a specific gene signature different from controls

(Table 3). In particular, we found that TSCC induced changes in the expression of leukemia

inhibitor factor receptor-alpha (LIFR), platelet-derived growth factor receptor-alpha (PDGFR),

and secreted protein acidic and cysteine rich-like protein (SPARCL) genes. First, this signature

was present in clinically normal-appearing oral mucosa located at a distance from the tonsil

tumor. Second, the signature was expressed independently of alcohol consumption, smoking

habits, and p16 overexpression in the tumor, in addition to other clinical features. Third, this

signature remained practically unchanged throughout RT.

LIFR, a transmembrane receptor protein of the type 1 cytokine receptor family, is involved

in cellular differentiation, proliferation, and survival; moreover, it inhibits the p53 apoptotic

pathway. Low expression has been detected in various human cancers [45]. However, LIFR has

been identified as both a suppressor and a promoter of carcinogenesis. PDGFR encodes a cell-

surface tyrosine kinase receptor that binds platelet-derived growth factor family members. The

receptor complex activates pathways involved in cell migration and chemotaxis during wound

healing [46]; additionally, mutations in PDGFRA play an active role in cancer development

[47]. Finally, SPARCL is involved in extracellular matrix synthesis. It was downregulated in

number human cancer types [48]. It remains unclear why these genes, which are involved in

cellular differentiation, wound healing, and extracellular matrix formation, are downregulated

in clinically normal-appearing mucosa acquired from patients with TSCC. Future studies

should investigate whether this phenotype might indicate increased susceptibility to malignant

transformation.

The GGE analysis of blood samples revealed a large array of snRNA-type pseudogenes. Of

these, RNU6-620Pwas downregulated 11.8-fold (P = 5.80e-80) and RNU6-622Pwas upregu-

lated 7.3-fold (P = 8.62e-05) compared to controls. A cluster analysis of the expression of

snRNAs and other noncoding RNAs in the blood revealed that distinctly different clusters of

noncoding RNAs were associated with TSCC and controls (Fig 5). The protein coding genes

did not show the same distinction.

Conclusion

In this pilot study, we described a gene signature expressed by mucosal tissue and circulating

peripheral blood cells from patients with TSCC in response to RT. We chose to take the second

biopsy before any macroscopic damage in order to gain insight into the molecular processes

that underlie mucositis and to avoid harvesting disintegrates tissue dominated by inflamma-

tory mediators. RT caused molecular alterations related to apoptosis, DNA damage, DNA

repair, and proliferation. However, these alterations were independent of clinical mucositis

severity. Furthermore we identified a potential protective biomarker for ulcerative mucositis.

Based on these results, we concluded that our model was feasible, and the data will be useful in
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designing a prospective clinical validation trial for characterizing mucositis at the molecular

level and identifying predictive biomarkers.

Accesion codes

Phenotype data described in this manuscript was deposited at the NCBI Gene Expression

Omnibus (GEO) repository under no GSE103412.
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filament-severing protein, in different tissues. FEBS Lett 1990; 268:209–12. http://dx.doi.org/10.1016/

0014-5793(90)81010-L PMID: 2166683

44. Acauan MD, Figueiredi MA, Cherubini K, Gomes AP, Salum FG. Radiotherapy-induced salivary dys-

function: structural changes, pathogenic mechanisms and therapies. Arch Oral Biol 2015; 60:1802–10.

http://dx.doi.org/10.1016/j.archoralbio.2015.09.014 PMID: 26454716

Gene expression study of radiated human mucosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0190709 January 16, 2018 15 / 16

http://dx.doi.org/10.1016/S1462-3889(07)70003-0
http://www.R-project.org/
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://dx.doi.org/10.1002/sim.1335
http://www.ncbi.nlm.nih.gov/pubmed/12436455
http://dx.doi.org/10.1093/nar/gni179
http://dx.doi.org/10.1093/nar/gni179
http://dx.doi.org/10.2202/1544-6115.1027
https://www.jstor.org/stable/2346101
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1111/j.1601-0825.2006.01254.x
http://dx.doi.org/10.1111/j.1601-0825.2006.01254.x
http://dx.doi.org/10.1016/j.ijrobp.2005.04.041
http://dx.doi.org/10.1016/j.ijrobp.2005.04.041
http://www.ncbi.nlm.nih.gov/pubmed/16099597
https://doi.org/10.1016/S0360-3016(02)02867-5
https://doi.org/10.1016/S0360-3016(02)02867-5
http://www.ncbi.nlm.nih.gov/pubmed/12182993
http://dx.doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH754>3.0.CO;2-P
http://dx.doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH754>3.0.CO;2-P
http://www.ncbi.nlm.nih.gov/pubmed/11180172
http://dx.doi.org/10.1016/S0360-3016(01)02721-3
http://dx.doi.org/10.1016/S0360-3016(01)02721-3
http://www.ncbi.nlm.nih.gov/pubmed/11958883
http://dx.doi.org/10.1016/j.tripleo.2005.03.033
http://www.ncbi.nlm.nih.gov/pubmed/16448923
http://dx.doi.org/10.1034/j.1600-0722.2001.00975.x
http://dx.doi.org/10.1034/j.1600-0722.2001.00975.x
http://www.ncbi.nlm.nih.gov/pubmed/11347662
http://dx.doi.org/10.1038/onc.2009.154
http://www.ncbi.nlm.nih.gov/pubmed/19543321
http://dx.doi.org/doi:10.1038/sj.emboj.7600120
http://dx.doi.org/doi:10.1038/sj.emboj.7600120
http://www.ncbi.nlm.nih.gov/pubmed/14976556
http://dx.doi.org/10.7555/JBR.27.20130030
http://dx.doi.org/10.7555/JBR.27.20130030
http://www.ncbi.nlm.nih.gov/pubmed/23885265
http://dx.doi.org/10.1111/j.1087-0024.2004.09310.x
http://www.ncbi.nlm.nih.gov/pubmed/15369215
http://dx.doi.org/10.1016/0014-5793(90)81010-L
http://dx.doi.org/10.1016/0014-5793(90)81010-L
http://www.ncbi.nlm.nih.gov/pubmed/2166683
http://dx.doi.org/10.1016/j.archoralbio.2015.09.014
http://www.ncbi.nlm.nih.gov/pubmed/26454716
https://doi.org/10.1371/journal.pone.0190709


45. Alisoltani A, Fallahi H, Ebrahimi M, Ebrahimi M, Ebrahimie E. Prediction of Potential Cancer-Risk

Regions Based on Transcriptome Data: Towards a Comprehensive View. PlosOne 2014. http://dx.doi.

org/10.1371/journal.pone.0096320

46. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in

wound healing. Wound Repair Regen 2008; 16:585–601. http://dx.doi.org/10.1111/j.1524-475X.2008.

00410.x PMID: 19128254

47. Li M, Jendrossek V, Belka C. The role of PDGF in radiation oncology. Radiat Oncol 2007; 2:5. http://dx.

doi.org/10.1186/1748-717X-2-5 PMID: 17217530

48. Gagliardi F, Narayanan A, Mortini P. Critical Reviews in Oncology / Hematology SPARCL1 a novel

player in cancer biology. Crit Rev Oncol / Hematol 2017; 109:63–8. http://dx.doi.org/10.1016/j.

critrevonc.2016.11.013

Gene expression study of radiated human mucosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0190709 January 16, 2018 16 / 16

http://dx.doi.org/10.1371/journal.pone.0096320
http://dx.doi.org/10.1371/journal.pone.0096320
http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x
http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x
http://www.ncbi.nlm.nih.gov/pubmed/19128254
http://dx.doi.org/10.1186/1748-717X-2-5
http://dx.doi.org/10.1186/1748-717X-2-5
http://www.ncbi.nlm.nih.gov/pubmed/17217530
http://dx.doi.org/10.1016/j.critrevonc.2016.11.013
http://dx.doi.org/10.1016/j.critrevonc.2016.11.013
https://doi.org/10.1371/journal.pone.0190709

