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Abstract 

Conservation genetic disciplines have greatly progressed during the last thirty years, mainly thanks to 

the continuous development of molecular biological knowledge and the implementation of molecular 

tools used to describe diversity at the DNA level. The ongoing transition from Conservation genetics to 

Conservation genomics is showing to increase at an exponential speed as the integrated use of various 

kinds of molecular genetic data and bioinformatic approaches may improve our theoretical knowledge 

and practical approaches in the conservation and wise use of biodiversity. Aim of this mini-review is to 

push forward the ongoing transition, bearing in mind that most of the applied conservation programs 

would not need entire genomic data set, which are still expensive and time consuming. 
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Introduction  

State of the art 

The effects of environmental changes (eg. climate induced changes) in natural ecosystems are diverse, 

often complex, and unpredictable and have several consequences at various scale for biodiversity, for 

example; changes of the degree of species interactions, changes of the phenology, and changes of 
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species distributions and abundances (Walther et al., 2002; Pertoldi et al., 2007a,b; Ouborg et al., 2010). 

All these consequences influence indirectly the genetic variability of the populations (Pertoldi et al., 

2007a).  Michael E. Soulé and colleagues in their seminal collaborative books (Soulé & Wilcox, 1980; 

Soulé, 1986) defined Conservation Biology as a “science of crisis” that originated from the awareness 

of the dramatic loss of biodiversity that has occurred since the second half of the last century. The 

destruction of natural habitats, profound landscape transformations, overexploitations of forests, hunting 

and persecution of animal populations was continuing for centuries in most of the European countries 

and around the Mediterranean basin where the loss of biodiversity was highest following the first 

industrial revolution. More recently, post-colonization economic developments in Asian and South 

American countries rapidly worsened the conservation status of natural areas particularly in 

consequences of deforestation and the spread of agricultural lands. Last but not least, the globalization 

of economies, trades and travels dramatically increased the worldwide diffusion of alien invasive 

species (Luque, 2013). Conservation biologists realized that science should rapidly develop novel 

technical and communication tools to contribute to halt the loss of biodiversity, and that those 

contributions should be inherently interdisciplinary (Soulé & Wilcox, 1980). Indeed the two books: 

Conservation Biology. An evolutionary-ecological perspective (Soulé & Wilcox, 1980), and 

Conservation Biology. The science of scarcity and diversity (Soulé, 1986), included contributions from 

plant and animal ecologists, demographers, pathologists, evolutionary biologists and population 

geneticists.  

In fact, for the first time after Frankel’s paper (Genetic Conservation: our evolutionary responsibility; 

1974) and Frankel & Soulè’s book (Conservation and evolution; 1981) the genetics of populations and 

the principles of evolutionary biology were firmly included within the sciences of biological 

conservation, thus leading to a definition of Conservation Genetics as: “the theory and practice of 

genetics in the preservation of species as dynamic entities capable of evolving to cope with 

environmental change to minimize their risk of extinction” (Frankham, Briscoe & Ballou, 2002).  

Conservation genetic disciplines have greatly progressed during the last thirty years, mainly thanks to 

the continuous development of molecular biological knowledge and the implementation of molecular 

tools used to describe diversity at the DNA level. Progress in laboratory equipment and information 

technology has made it possible to apply increasingly sophisticated and powerful molecular and 

computational procedures. First-generation automated sequencers, Bayesian statistical methods and 

simulation algorithms boosted the production and accurate analyses of large empirical data sets. 

Conservations genetics aims at contributing to solve some fundamental issues. First of all, the reliable 

assessment and conservation strategies of genetic diversity (allelic diversity and heterozygosity) in small 

fragmented populations and endangered species (Frankham, 2010). Then, the assessment of inbreeding 

and its consequences, inbreeding depression, in natural and captive populations. Translocation and 

artificial gene flow strategies have been implemented aiming at reducing the deleterious consequences 

of inbreeding in small isolated natural populations (rescue effects; Tallmon et al., 2004). The 

management of pedigrees and purging strategies have been implemented to purge, as far as possible, the 

genetic load in inbred captive populations (Leberg & Firmin, 2007). In contrast, the theory, prediction 

and assessment of the risks of outbreeding depression, a likely consequence of crossbreeding or artificial 

gene flow among genetically divergent parentals or populations, are still definitely unexplored 

(Frankham et al., 2011). Understanding the processes of adaptation to captivity and selection for 

domestication are particularly important to fishery and hatchery culture (Frankham, 2008). It is difficult 

to estimate the extent of quantitative genetic variation and its dynamics in natural populations of 

endangered species. Thus a main issue in conservation genetics is to understand the reliability of 

estimates of molecular variation (heterozygosity) as proxy to quantitative traits variation and eventually 

to fitness (Reed & Frankham, 2003; Pertoldi et al., 2007a,b).  

This issue is crucial to implementing procedures for a reliable assessment of the potential for adaptation 

and evolution, which should rely on accurate discovery of the genotype-phenotype-fitness connections. 

The identification of evolutionary lineages and the resolution of taxonomic uncertainties has been a 

main contribution of molecular systematic and taxonomy to conservation biology. However, this issue 
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has always been confronted with the problematic multiple definitions of species and their difficult uses 

in practical conservation biology (Frankham et al., 2012).  

Another major contribution of population genetics to the conservation of biodiversity has been the 

definition of intra-specific evolutionary significant units (ESUs) and management units (MUs) (Funk et 

al., 2012). The assessment of rapid micro-evolutionary changes and particularly those generated by 

anthropogenic processes, such as the consequences of global climate changes, the overexploitation of 

marine and terrestrial species, the ecological competition and hybridization due to the diffusion of feral 

domesticated animals and alien invasive species, is now becoming a priority concern in conservation 

biology (Randi, 2008). All these issues have boosted both theoretical and practical applications in many 

fields of natural and captive population management (Frankham, 2010).  

The success of the Conservation genetics vision is largely based on the widespread and successful use 

of molecular markers and standard population genetic models. Both are powerful, but not without their 

own weaknesses. Basic assumptions in conservation genetics are that molecular markers are selectively 

neutral, they are in Hardy-Weinberg and linkage equilibrium (HWLE). The most frequently used 

molecular markers are limited numbers of hypervariable autosomal microsatellite loci (Short Tandem 

Repeats – STR). Most of the published studies used from c. 10 to a few dozen of STRs, often selected 

opportunistically, that is based on the public availability of their PCR primer sequences and 

amplification protocols, their polymorphisms in the target populations, and low costs of the laboratory 

analyses. STR selective neutrality has always been assumed, but very rarely tested. Lack of STR 

functionality has also been assumed, based on the standard “dogma” of molecular biology (one coding 

DNA gene - one transcript RNA - one functional protein molecule), but it has never been verified. In 

fact, recent studies have shown functional roles of STR expansion-contractions in regulating gene 

activities, and, in general, have revealed that most of the so-called “junk” DNA may have essential 

regulatory functions (Haasl & Payseur, 2012). Formal tests of HWLE on STR panels rely on unrealistic 

standard population genetic models (e.g., the sampled populations should have “infinite” size) or have 

low power to detect departures from the equilibria (e.g., Bonferroni or similar adjustments for replicated 

assays). Short sequences of mitochondrial DNA genes (mtDNA), often the hypervariable domains of 

the control- region (CR), the protein-coding cytochrome b gene (CYTb) or the barcoding marker 

cytochrome oxydase I (COI), are used in population genetic and phylogeographic studies. These 

maternal sequences are used assuming neutrality, which is often unknown or not true (Betancourt et al., 

2012). Moreover, sequencing the entire mtDNA genomes often produces results that are discordant with 

those resulting from the analyses of short sequences and the use of paternally inherited chromosome Y-

linked DNA sequences (or Y-linked STR) is still very limited in conservation genetics (Schregel et al., 

2015). The use of autosomal functional gene sequences (e.g., the MHC genes) is also limited, and results 

are often unclear or inconclusive (Galaverni et al., 2015). The development of coalescent modelling and 

Bayesian statistical methods allowed investigators to avoid some of the unrealistic equilibrium 

assumptions of standard population genetics, but they nevertheless require a larger data set than that 

usually obtained through molecular marker procedures (Aeschbacher et al., 2012).  

From Conservation genetics to Conservation genomics  

Conservation genetics has been successful in highlighting the roles of evolutionary and population 

genetics for the conservation of biodiversity and the sustainable use of biological resources, but it has 

not fully been able to resolve crucial issues such as:  

1) How many molecular markers are needed for a reliable representation of the heterozygosity of each 

individual, the genetic variability in a population, the genetic distances among populations, and the 

patterns of interspecific phylogenetic divergence?  

2) How can we use estimates of heterozygosity based on small numbers of molecular markers as a proxy 

of fitness?  

3)  What are the relations among molecular marker variation, phenotypic variability and evolutionary 

potential?  
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4) Are we only assuming, or could we efficiently test, if limited panels of molecular markers are 

selectively neutral (thus informative to reconstruct the population and demographic history of the 

studied populations), or not (thus informative to decipher past or recent selective processes)?  

5) When multiple-gene phylogenetic trees are reliable enough to become species trees?  

6) Are limited numbers of markers able to identify past generation hybrids and describe complex 

processes of introgression?  

7) Can we predict inbreeding/outbreeding and its consequences – inbreeding/outbreeding depression – 

from limited numbers of molecular markers?  

These and other crucial questions could be better explored and answered by genomic approaches applied 

to conservation (Pertoldi et al. 2007a; Allendorf et al. 2010; Ouborg et al. 2010). Conservation genomics 

has become possible by the rapid development of DNA sequencing technology, which moved from the 

Sanger-based chemistry and electrophoretic separation of DNA fragments, to novel non-Sanger 

sequencing and detection methods mainly derived from real-time PCR protocols. The next- generation 

sequencing methods (NGS) allow relatively rapid and massive generation of DNA sequences that, 

coupled with intensive bioinformatic data analyses, could, in principle, allow reconstruction of entire 

genomes in reasonably short time and with limited costs (Angeloni et al., 2011). However, genomics 

does not mean simply more data. Genomics means tremendous opportunities to reconstruct the 

architectures of individual genomes and patterns of multiple locus interactions in the evolutionary 

dynamics of individuals, populations and species. Genomic platforms can be used in their full or reduced 

potentialities to generate exhaustive descriptions of genetic variability and genomic architecture in both 

model and non-model species. In this way genomics can help answer some of the crucial issues 

conservation genetics was able to highlight but not to resolve.  

Identification of selected vs. neutral DNA sequences or chromosomal regions  

Comparative analyses of entire genomes or widespread chromosomal markers stimulated the 

development of computational approaches to identify genomic regions that have been shaped by various 

kinds of natural selection pressures (Nielsen, 2015). Selected markers are identified as outliers in the 

background of neutral genomic variation (Foll & Gaggiotti, 2008). Outlier loci can then be associated 

with specific environmental variables (Joost et al., 2007). Gene network and ontology analyses led to 

identification of enriched clusters of candidate genes showing similar or epistatic functions (Khatri & 

Draghici, 2005). Recent highly efficient gene editing methods could be designed to knock-out or modify 

candidate genes with known phenotypic effects, thus allowing experimental analyses of the gene – 

phenotype functional connections also in non-model species (Bono et al., 2015). In this way it is possible 

to identify those DNA sequences that effectively behave neutrally, and that can be used in population 

genetic analyses to describe the genetic consequences of demographic processes (effective population 

size and random genetic drift; dispersal and gene flow across population clusters and metapopulations). 

In contrast, functional genes which underwent selective processes can be used to evaluate the historical 

or contemporary consequences of adaptation.  

Reliable estimates of historical and current effective population size and gene flow  

The identification of millions of neutral markers in entirely sequenced genomes makes it possible to 

obtain accurate estimates of effective population size (Ne) and migration rates (m). These parameters 

can be correctly estimated using exclusively the neutral subset of genome markers and avoiding the 

confounding effects of non-neutral outlier DNA sequences. In fact, coalescent theory and models clearly 

show that selected loci can compress the gene genealogies (in case of selective sweep or hard directional 

selection) or can expand the genealogies (in case of balancing and disruptive selection). Historical 

dynamics of population expansion or decline can be efficiently estimated analyzing the patterns of 

heterozygosity even in a single genome (Gronau et al., 2011). The size and timing of population 

bottlenecks can be accurately estimated. Moreover, genomic data sets allow detailed analyses of linkage, 
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which have been virtually impossible with limited molecular marker panels. Analyses of haplotypes 

have been used to infer details on asymmetric or sex-biased patterns of gene flow (Schregel, 2015).  

Inference of population structuring  

Powerful Bayesian models have contributed to reconstruct the patterns of cryptic population structuring, 

i.e., that is to identify any number of a-priori unknown genetically distinct populations (Pritchard et al., 

2000). Population clusters are then used to assign individuals of unknown origins, migrants or hybrids 

to their parental populations. In this way it is possible to identify cryptic populations that can be 

eventually classified as novel species, subspecies or ESUs, and estimate accurately ongoing rates of 

gene flow and admixture (Leachè et al., 2014). The Bayesian clustering models and novel multivariate 

procedures (Jombart, 2008) strongly improved the identification of genetic units, but they need wide 

empirical set of markers, which can be obtained through genomic analyses. Also in these case-studies, 

the accurate distinction of neutral vs. non-neutral markers is crucial. For instance, populations of 

common species did not diverge by drift because of their large effective population size. Absence of 

genetic differentiation at neutral markers, however, does not means that local populations are connected 

and completely admixed, but simply that those populations could not diverge by drift. In contrast, 

selected loci can display significant signature of local adaptation, and can be used to identify distinct 

stocks that are demographically independent (Milano et al., 2014).  

Admixture analyses and introgression  

The consequences of hybridization and crossbreeding between individuals belonging to genetically 

differentiated populations can be fully identified only through the use of many molecular markers (Randi 

et al., 2001, 2002). It is well known that after the first two-three generation of hybridization and 

introgression hundreds of unlinked neutral markers are needed to identify the genomic classes of the 

admixed individuals. Genomic data can be used to identify the parental population of origin of admixed 

genotypes. Moreover, genotypes can be phased and the reconstructed haplotypes can be used in linkage 

analyses to improve genome wide introgression analyses (Lawson & Falush, 2012). Detailed 

reconstructions of the patterns of linkage decay after initial hybridization, identification of haplotype 

blocks and runs-of-homozygosity can supply detailed information on introgressed chromosomal 

segments that are eventually positively selected (or, in contrast, selectively purged). Reconstructed 

recombination patterns have also been used to estimate the time since admixture in hybridizing 

populations (Lawson & Falush, 2012, Iacolina et al., 2016).  

Inbreeding depression  

Standard population genetic models and empirical sets of data based on limited number of molecular 

markers completely failed to identify genes related to inbreeding and predict inbreeding depression. 

Genomic data allow fine-scale mapping of functional genes and variants in inbred familial groups. In 

this way inbreeding genes, deleterious allelic variants and mechanisms controlling inbreeding 

depression can eventually be identified (Kristensen and Sørensen, 2005; Kristensen et al., 2010; Reed 

et al., 2012).  

Applied conservation genomics  

“Conservation genomics” can be broadly defined as the use of new genomic techniques to solve 

problems in conservation biology (Allendorf et al., 2010). Genomic platforms and bioinformatic tools 

are rapidly improving, allowing fast accumulation of huge datasets at increasingly lower costs also in 

non-model plant and animal species. Obviously, conservation sciences will benefit enormously from 

the use of genomic technologies and resources.  

Whole genome sequences  

Publicly available entire genomes of reference model or non- model species are essential to describe the 

architecture of species’ genetic variation and select the most informative markers. The genomes should 

have been accurately reconstructed and genes should be accurately identified, mapped and annotated. 
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Comparative whole-genome sequencing in the essential starting step to identify neutral DNA sequences 

as well as candidate loci. Whole genome data integrated with transcriptome, proteome and metabolome 

data will predictably provide in the near future the avenues to decipher the gene-to-phenotype functional 

connections. A number of molecular techniques (GBS, RAD-tag, ddRAD sequencing yield reduced 

subset of target sequences which simplify the generation of data at lower costs (Narum et al., 2013, 

Bahrndorff et al., 2016). Reduced representation methods can generate thousands to hundreds of 

thousand SNPs at homologous DNA sequences in hundreds of samples, thus enabling immediate 

population genetic analyses and the identification of informative markers. The DNA reads produced by 

reduced representation methods can be easily aligned and mapped into the available reference genomes, 

thus allowing the identification of synonymous vs. non-synonymous polymorphisms in protein-coding 

genes, or SNPs in regulatory regions. Linkage analyses allow the identification of haplotype blocks and 

ROH, that are extremely informative in admixture analyses. The bioinformatic evaluation of whole 

genome or reduced representation sets of data can results in the accurate selection of informative panels 

of molecular markers, usually SNPs, but also STRs or indels. Panels of selected informative markers 

can be used to genotype population samples at low cost in conservation genetics or monitoring 

programmes. Tens to hundreds of thousands of SNPs are spread in DNA microarrays, currently available 

in a growing number of plant and animal species. Custom SNP panels can be easily designed and 

analysed in low-cost microfluidic platforms (Wang et al., 2009; Mikheyev & Tin, 2014). The fast 

technical progresses in genomic engineering are producing equipments that promise efficient and cheap 

applications also in practical conservation genetics. Personal genomic platforms can be used to sequence 

small genomes, multilocus amplicons, DNA sequences from capture arrays and other DNAs obtained 

through reduced representation methods (Wang et al., 2009; Mikheyev & Tin, 2014). Other useful 

platforms in conservation are real-time PCR procedure implemented in small volumes of 386 microwell 

plates, and microfluidic chips (Wang et al., 2009). These platforms are flexible enough to analyze at 

low cost different arrays of sample x custom marker numbers, thus providing the data normally used in 

conservation and monitoring programmes. In parallel, bioinformatic software to analyse genomic data 

are becoming increasing user-friendly.  

Conclusions 

Undoubtely, we are assisting to a transition from the conservation genetics to the conservation genomics 

era. Further scientific progress will be accelerated by merging and complementing current efforts in 

evolutionary and ecological genetics by: 1) collecting informative genetic and environmental data sets 

in natural populations and from preserved specimens, 2) merging taxonomic, ecological and genetic 

databases 3) using molecular data in synergy with quantitative traits and environmental data, 4) 

unravelling the distribution of variation at functional vs. non-coding sequences in natural populations. 

However, the evaluation, validation, and implementation of new molecular and theoretical tools have 

to be further developed in order to standardize research approaches and evaluation procedures, 

Lastly, we should always bear in mind that most of the applied conservation programs would not need 

entire genomic data set, which are still expensive and time–consuming. Most of the ongoing 

conservation programs would, however, strongly benefit from accurate selection of large sets of 

informative markers. These panels can be obtained through adaptive handling of the above mentioned 

pipelines.  
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